1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
|
# Functions to read data from the files:
#
# alllabels.*, allgens.*, alldegphi.*, allisog.*,
# intpts.*, opt_man.*, 2adic.*, galrep.*
#
# and also torsion growth and Iwasawa data files. The latter used to
# be arranged differently; now they are not, but only exist in the
# ranges up to 50000.
import os
from sage.all import ZZ, QQ, RR, RealField, EllipticCurve, Integer, prod, factorial, primes, gcd
from sage.databases.cremona import class_to_int, parse_cremona_label
from trace_hash import TraceHashClass
from codec import split, parse_int_list, parse_int_list_list, proj_to_point, proj_to_aff, point_to_weighted_proj, decode, encode, split_galois_image_code, parse_twoadic_string, shortstr, liststr, weighted_proj_to_proj
from red_gens import reduce_gens
from moddeg import get_modular_degree
HOME = os.getenv("HOME")
# Most data from John Cremona (https://github.com/JohnCremona/ecdata)
# which we assume cloned in the home directory
ECDATA_DIR = os.path.join(HOME, "ecdata")
UPLOAD_DIR = os.path.join(HOME, "ecq-upload")
# Iwasawa data from Rob Pollack (https://github.com/rpollack9974/Iwasawa-invariants) but reorganised here:
IWASAWA_DATA_DIR = ECDATA_DIR
# Data files derived from https://github.com/bmatschke/s-unit-equations/tree/master/elliptic-curve-tables
MATSCHKE_DIR = os.path.join(HOME, "MatschkeCurves")
# Data files for Stein-Watkins database curves
SWDB_DIR = os.path.join(HOME, "swdb")
DEFAULT_PRECISION = 53
PRECISION = 53 # precision of heights, regulator, real period and
# special value, and hence analytic sha, when these are
# computed and not just read from the files.
######################################################################
#
# Functions to parse single lines from each of the file types
#
# In each case the function returns a full label and a dict whose keys
# are (exactly?) the relevant table columns
#
######################################################################
#
# Parsing common label/ainvs columns:
#
# allgens, allisog, alldegphi, opt_man, 2adic: first 4 cols are N,iso,number,ainvs
# alllabels: first 3 cols are N,iso,number
# intpts: first 2 cols are label, ainvs
# galrep: first 1 col is label
#
# so there are 1 or 3 label columns, and there may or may not be an ainvs column
def parse_line_label_cols(L, label_cols=3, ainvs=True, raw=False):
r"""
Parse the first columns of one line to extract label and/or ainvs
If label_cols is 3, the first 3 columns are conductor, iso, number, else the first column is label.
If ainvs is True, the next columnm is the ainvs.
If raw is False, 'conductor' is an int and 'ainvs' a list of ints, otherwise they stay as strings.
Cols filled: 'label', 'conductor', 'iso', 'number', and optionally 'ainvs'.
"""
data = L.split()
record = {}
if label_cols == 1:
record['label'] = label = data[0]
N, isoclass, num = parse_cremona_label(label)
sN = str(N)
record['conductor'] = sN if raw else N
record['isoclass'] = isoclass
record['iso'] = ''.join([sN, isoclass])
record['number'] = str(num) if raw else num
else:
record['conductor'] = data[0] if raw else int(data[0])
record['isoclass'] = data[1]
record['iso'] = ''.join(data[:2])
record['number'] = data[2] if raw else int(data[2])
record['label'] = ''.join(data[:3])
if ainvs:
record['ainvs'] = data[label_cols] if raw else parse_int_list(data[label_cols])
return record['label'], record
######################################################################
#
# allgens parser
#
# This is the biggest since it's the only one where curves have to be
# constructed and nontrivial dependent column data computed. After
# running this on all files and outputting new the computed data to a
# new set of files, this will no longer be needed.
def parse_allgens_line(line):
r"""
Parse one line from an allgens file
Lines contain 6+t+r fields (columns)
conductor iso number ainvs r torsion_structure <tgens> <gens>
where:
torsion_structure is a list of t = 0,1,2 ints
<tgens> is t fields containing torsion generators
<gens> is r fields containing generators mod torsion
"""
label, record = parse_line_label_cols(line, 3, True)
first = record['number'] # tags first curve in each isogeny class
data = split(line)
ainvs = record['ainvs']
E = EllipticCurve(ainvs)
N = E.conductor()
assert N == record['conductor']
record['bad_primes'] = bad_p = N.prime_factors() # will be sorted
record['num_bad_primes'] = len(bad_p)
record['jinv'] = E.j_invariant()
record['signD'] = int(E.discriminant().sign())
record['cm'] = int(E.cm_discriminant()) if E.has_cm() else 0
if first:
record['aplist'] = E.aplist(100, python_ints=True)
record['anlist'] = E.anlist(20, python_ints=True)
# passing the iso means that we'll only do the computation once per isogeny class
record['trace_hash'] = TraceHashClass(record['iso'], E)
local_data = [{'p': int(ld.prime().gen()),
'ord_cond':int(ld.conductor_valuation()),
'ord_disc':int(ld.discriminant_valuation()),
'ord_den_j':int(max(0, -(E.j_invariant().valuation(ld.prime().gen())))),
'red':int(ld.bad_reduction_type()),
'rootno':int(E.root_number(ld.prime().gen())),
'kod':ld.kodaira_symbol()._pari_code(),
'cp':int(ld.tamagawa_number())}
for ld in E.local_data()]
record['tamagawa_numbers'] = cps = [ld['cp'] for ld in local_data]
record['kodaira_symbols'] = [ld['kod'] for ld in local_data]
record['reduction_types'] = [ld['red'] for ld in local_data]
record['root_numbers'] = [ld['rootno'] for ld in local_data]
record['conductor_valuations'] = cv = [ld['ord_cond'] for ld in local_data]
record['discriminant_valuations'] = [ld['ord_disc'] for ld in local_data]
record['j_denominator_valuations'] = [ld['ord_den_j'] for ld in local_data]
record['semistable'] = all([v == 1 for v in cv])
record['tamagawa_product'] = tamprod = prod(cps)
# NB in the allgens file all points are stored in projective
# coordinates as [x:y:z]. In the database (as of 2020.11.18) we
# store both sets of generators as lists of strings, using
# projective coordinates '(x:y:z)' for gens of infinite order but
# affine coordinates '(x/z,y/z)' for torsion gens. Then in the
# code (web_ec.py) we convert projective coords to affine anyway,
# using code which can handle either, but has less to do if the
# point is already affine. So let's do the conversion here.
record['rank'] = rank = int(data[4])
record['rank_bounds'] = [rank, rank]
record['ngens'] = rank
tor_struct = parse_int_list(data[5])
record['torsion_structure'] = tor_struct
record['torsion'] = torsion = prod(tor_struct)
record['torsion_primes'] = [int(p) for p in Integer(torsion).support()]
# read and reduce generators and torsion generators
gens = [proj_to_point(gen, E) for gen in data[6:6 + rank]]
tgens = [proj_to_point(gen, E) for gen in data[6 + rank:]]
gens, tgens = reduce_gens(gens, tgens, False, label)
record['gens'] = [point_to_weighted_proj(gen) for gen in gens]
record['torsion_generators'] = [point_to_weighted_proj(gen) for gen in tgens]
record['heights'] = [P.height(precision=PRECISION) for P in gens]
reg = E.regulator_of_points(gens, precision=PRECISION) if gens else 1
record['regulator'] = reg
L = E.period_lattice()
record['real_period'] = om = L.omega(prec=PRECISION) # includes #R-components factor
record['area'] = A = L.complex_area(prec=PRECISION)
record['faltings_height'] = -A.log()/2
if first: # else add later to avoid recomputing a.r.
# Analytic rank and special L-value
ar, sv = E.pari_curve().ellanalyticrank(precision=PRECISION)
record['analytic_rank'] = ar = ar.sage()
record['special_value'] = sv = sv.sage()/factorial(ar)
# Analytic Sha
sha_an = sv*torsion**2 / (tamprod*reg*om)
sha = sha_an.round()
assert sha > 0
assert sha.is_square()
assert (sha-sha_an).abs() < 1e-10
record['sha_an'] = sha_an
record['sha'] = int(sha)
record['sha_primes'] = [int(p) for p in sha.prime_divisors()]
Etw, Dtw = E.minimal_quadratic_twist()
if Etw.conductor() == N:
record['min_quad_twist_ainvs'] = ainvs
record['min_quad_twist_disc'] = 1
else:
record['min_quad_twist_ainvs'] = [int(a) for a in Etw.ainvs()]
record['min_quad_twist_disc'] = int(Dtw)
return label, record
######################################################################
#
# alllabels parser
#
def parse_alllabels_line(line):
r""" Parses one line from an alllabels file. Returns the label
and a dict containing seven fields, 'conductor', 'iso', 'number',
'lmfdb_label', 'lmfdb_iso', 'iso_nlabel', 'lmfdb_number', being strings or ints.
Cols filled: 'label', 'conductor', 'iso', 'number', 'lmfdb_label', 'lmfdb_iso', 'lmfdb_number', 'iso_nlabel'.
[NO] Also populates two global dictionaries lmfdb_label_to_label and
label_to_lmfdb_label, allowing other upload functions to look
these up.
Input line fields:
conductor iso number conductor lmfdb_iso lmfdb_number
Sample input line:
57 c 2 57 b 1
"""
data = split(line)
if data[0] != data[3]:
raise ValueError("Inconsistent conductors in alllabels file: %s" % line)
label, record = parse_line_label_cols(line, 3, False)
record['lmfdb_isoclass'] = data[4]
record['lmfdb_iso'] = lmfdb_iso = ''.join([data[3], '.', data[4]])
record['lmfdb_label'] = ''.join([lmfdb_iso, data[5]])
record['lmfdb_number'] = int(data[5])
record['iso_nlabel'] = class_to_int(data[4])
return label, record
######################################################################
#
# allisog parser
#
def parse_allisog_line(line):
r"""
Parse one line from an allisog file
Input line fields:
conductor iso number ainvs all_ainvs isogeny_matrix
Sample input line:
11 a 1 [0,-1,1,-10,-20] [[0,-1,1,-10,-20],[0,-1,1,-7820,-263580],[0,-1,1,0,0]] [[1,5,5],[5,1,25],[5,25,1]]
"""
label, record = parse_line_label_cols(line, 3, False)
assert record['number'] == 1
isomat = split(line)[5][2:-2].split("],[")
record['isogeny_matrix'] = mat = [[int(a) for a in r.split(",")] for r in isomat]
record['class_size'] = len(mat)
record['class_deg'] = max(max(r) for r in mat)
record['all_iso_degs'] = dict([[n+1, sorted(list(set(row)))] for n, row in enumerate(mat)])
record['isogeny_degrees'] = record['all_iso_degs'][1]
# NB Every curve in the class has the same 'isogeny_matrix',
# 'class_size', 'class_deg', and the for the i'th curve in the
# class (for i=1,2,3,...) its 'isogeny_degrees' column is
# all_iso_degs[i].
return label, record
######################################################################
#
# alldegphi parser
#
def parse_alldegphi_line(line, raw=False):
r""" Parses one line from an alldegphi file.
Input line fields:
conductor iso number ainvs degree
Sample input line:
11 a 1 [0,-1,1,-10,-20] 1
"""
label, record = parse_line_label_cols(line, 3, False, raw=raw)
deg = split(line)[4]
record['degree'] = deg if raw else int(deg)
return label, record
######################################################################
#
# intpts parser
#
def make_y_coords(ainvs, x):
a1, a2, a3, a4, a6 = ainvs
f = ((x + a2) * x + a4) * x + a6
b = (a1*x + a3)
d = (ZZ(b*b + 4*f)).isqrt()
y = (-b+d)//2
return [y, -b-y] if d else [y]
def count_integral_points(ainvs, xs):
return sum([len(make_y_coords(ainvs, x)) for x in xs])
def parse_intpts_line(line, raw=False):
r""" Parses one line from an intpts file.
Input line fields:
label ainvs x-coordinates_of_integral_points
Sample input line:
11a1 [0,-1,1,-10,-20] [5,16]
"""
label, record = parse_line_label_cols(line, 1, True, raw=raw)
rxs = split(line)[2]
xs = parse_int_list(rxs)
ainvs = record['ainvs']
if raw:
ainvs = parse_int_list(ainvs)
nip = count_integral_points(ainvs, xs)
record['xcoord_integral_points'] = rxs if raw else xs
record['num_int_pts'] = str(nip) if raw else nip
return label, record
######################################################################
#
# opt_man parser
#
def parse_opt_man_line(line, raw=False):
r"""Parses one line from an opt_man file, giving optimality and Manin
constant data.
Input line fields:
N iso num ainvs opt mc
where opt = (0 if not optimal, 1 if optimal, n>1 if one of n
possibly optimal curves in the isogeny class), and mc = Manin
constant *conditional* on curve #1 in the class being the optimal
one.
Sample input lines with comments added:
11 a 1 [0,-1,1,-10,-20] 1 1 # optimal, mc=1
11 a 2 [0,-1,1,-7820,-263580] 0 1 # not optimal, mc=1
11 a 3 [0,-1,1,0,0] 0 5 # not optimal, mc=5
499992 a 1 [0,-1,0,4481,148204] 3 1 # one of 3 possible optimal curves in class g, mc=1 for all whichever is optimal
499992 a 2 [0,-1,0,-29964,1526004] 3 1 # one of 3 possible optimal curves in class g, mc=1 for all whichever is optimal
499992 a 3 [0,-1,0,-446624,115024188] 3 1 # one of 3 possible optimal curves in class g, mc=1 for all whichever is optimal
499992 a 4 [0,-1,0,-164424,-24344100] 0 1 # not optimal, mc=1
"""
label, record = parse_line_label_cols(line, 3, False)
opt, mc = split(line)[4:]
record['optimality'] = opt if raw else int(opt)
record['manin_constant'] = mc if raw else int(mc)
return label, record
######################################################################
#
# 2adic parser
#
def parse_twoadic_line(line, raw=False):
r""" Parses one line from a 2adic file.
Input line fields:
conductor iso number ainvs index level gens label
Sample input lines:
110005 a 2 [1,-1,1,-185793,29503856] 12 4 [[3,0,0,1],[3,2,2,3],[3,0,0,3]] X24
27 a 1 [0,0,1,0,-7] inf inf [] CM
"""
label, record = parse_line_label_cols(line, 3, False, raw=raw)
s = line.split(maxsplit=4)[4]
record.update(parse_twoadic_string(s, raw=raw))
#print(record)
return label, record
######################################################################
#
# galrep parser
#
def parse_galrep_line(line, raw=False):
r"""Parses one line from a galrep file.
Codes follow Sutherland's coding scheme for subgroups of GL(2,p).
Note that these codes start with a 1 or 2 digit prime followed a
letter in ['B','C','N','S'].
Input line fields:
label codes
Sample input line:
66c3 2B 5B.1.2
"""
label, record = parse_line_label_cols(line, 1, False, raw=raw)
image_codes = split(line)[1:] # list of strings
pr = [int(split_galois_image_code(s)[0]) for s in image_codes] # list of ints
rad = prod(pr)
record['modp_images'] = image_codes
record['nonmax_primes'] = pr
record['nonmax_rad'] = rad
return label, record
######################################################################
#
# iwasawa parser
#
def parse_iwasawa_line(line, debug=0, raw=False):
r"""Parses one line from an Iwasawa data input file.
Sample line: 11 a 1 0,-1,1,-10,-20 7 1,0 0,1,0 0,0 0,1
Fields: label (3 fields)
a-invariants (1 field but no brackets)
p0
For each bad prime: 'a' if additive
lambda,mu if multiplicative (or 'o?' if unknown)
For each good prime: lambda,mu if ordinary (or 'o?' if unknown)
lambda+,lambda-,mu if supersingular (or 's?' if unknown)
"""
if debug:
print("Parsing input line {}".format(line[:-1]))
label, record = parse_line_label_cols(line, 3, False, raw=raw)
badp = Integer(record['conductor']).support()
nbadp = len(badp)
data = split(line)
rp0 = data[4]
p0 = int(rp0)
record['iwp0'] = rp0 if raw else p0
if debug:
print("p0={}".format(p0))
iwdata = {}
# read data for bad primes
for p, pdat in zip(badp, data[5:5+nbadp]):
p = str(p)
if debug > 1:
print("p={}, pdat={}".format(p, pdat))
if pdat in ['o?', 'a']:
iwdata[p] = pdat
else:
iwdata[p] = [int(x) for x in pdat.split(",")]
# read data for all primes
# NB Current data has p<50: if this increases to over 1000, change the next line.
for p, pdat in zip(primes(1000), data[5+nbadp:]):
p = str(p)
if debug > 1:
print("p={}, pdat={}".format(p, pdat))
if pdat in ['s?', 'o?', 'a']:
iwdata[p] = pdat
else:
iwdata[p] = parse_int_list(pdat, delims=False)
record['iwdata'] = iwdata
if debug:
print("label {}, data {}".format(label, record))
return label, record
######################################################################
#
# growth parser
#
def parse_growth_line(line, raw=False):
r"""Parses one line from a torsion growth file.
Sample line: 14a1 [3,6][1,1,1] [2,6][2,-1,1]
Fields: label (single field, Cremona label)
1 or more items of the form TF (with no space between)
with T =[n] or [m,n] and F a list of integers of length
d+1>=3 containing the coefficients of a monic polynomial
of degree d defining a number field (constant coeff
first).
Notes: (1) in each file d is fixed and contained in the filename
(e.g. growth2.000000-399999) but can be recovered from any line
from the length of the coefficient lists.
(2) The files for degree d only have lines for curves where there
is growth in degree d, so each line has at least 2 fields in it.
(3) The returned record (dict) has one relevant key
'torsion_growth' which is a dict with a unique key (the degree)
and value a list of pairs [F,T] where both F and T are lists of
ints. It is up to the calling function to merge these for
different degrees.
"""
label, record = parse_line_label_cols(line, 1, False, raw=raw)
data = [[parse_int_list(F, delims=False), parse_int_list(T, delims=False)]
for T, F in [s[1:-1].split("][") for s in split(line)[1:]]]
degree = len(data[0][0])-1
record['torsion_growth'] = {degree: data}
return label, record
iwasawa_ranges = ["{}0000-{}9999".format(n, n) for n in range(15)]
######################################################################
#
# Function to read all growth data (or a subset)
#
# (special treatment needed because of the nonstandard filenames, in directories by degree)
#
growth_degrees = (2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21)
#NB the 0'th range is usually '00000-09999' but for growth files it's just '0-9999'
growth_ranges = ["0-9999"] + ["{}0000-{}9999".format(k, k) for k in range(1, 40)]
def read_all_growth_data(base_dir=ECDATA_DIR, degrees=growth_degrees, ranges=growth_ranges, raw=False):
r"""Read all the data in files base_dir/growth/<d>/growth.<r> where d
is a list of degrees and r is a range.
Return a single dict with keys labels and values curve records
with label keys and one 'torsion_growth' key.
"""
all_data = {}
for r in ranges:
if r == '00000-09999':
r = '0-9999'
if r not in growth_ranges:
continue
for d in degrees:
if d not in growth_degrees:
continue
data_filename = os.path.join(base_dir, 'growth/{}/growth{}.{}'.format(d, d, r))
n = 0
with open(data_filename) as data:
for L in data:
label, record = parse_growth_line(L, raw=raw)
n += 1
if label in all_data:
all_data[label]['torsion_growth'].update(record['torsion_growth'])
else:
all_data[label] = record
return all_data
def parse_allgens_line_simple(line):
r"""
Parse one line from an allgens file
Lines contain 6+t+r fields (columns)
conductor iso number ainvs r torsion_structure <tgens> <gens>
where:
torsion_structure is a list of t = 0,1,2 ints
<tgens> is t fields containing torsion generators
<gens> is r fields containing generators mod torsion
"""
label, record = parse_line_label_cols(line, 3, True)
E = EllipticCurve(record['ainvs'])
data = split(line)
rank = int(data[4])
record['gens'] = [proj_to_point(gen, E) for gen in data[6:6 + rank]]
return label, record
def parse_extra_gens_line(line):
r"""
Parse one line from a gens file (e.g. output by my pari wrapper of ellrank)
Lines contain 5 fields (columns)
conductor ainvs ar [rlb,rub] gens
where:
ar = analytic rank
rlb, rub are lower/upper bounds on the rank
gens is a list of pairs of rationals, of length rlb
Returns a pair of ainvs (as a tuple) and a list of points
"""
data = split(line)
N = ZZ(data[0])
ainvs = parse_int_list(data[1])
#ar = int(data[2])
#rbds = parse_int_list(data[3])
gens = data[4]
if gens == '[]':
gens = []
else:
E = EllipticCurve(ainvs)
gens = [E([QQ(c) for c in g.split(",")]) for g in gens[2:-2].split('],[')]
return N, tuple(ainvs), gens
# Original columns of a curvedata file:
curvedata_cols_old1 = ['label', 'isoclass', 'number', 'lmfdb_label', 'lmfdb_isoclass',
'lmfdb_number', 'iso_nlabel', 'faltings_index', 'faltings_ratio',
'conductor', 'ainvs', 'jinv', 'cm',
'isogeny_degrees', 'semistable', 'signD',
'min_quad_twist_ainvs', 'min_quad_twist_disc',
'bad_primes', 'tamagawa_numbers', 'kodaira_symbols',
'reduction_types', 'root_numbers', 'conductor_valuations',
'discriminant_valuations', 'j_denominator_valuations',
'rank', 'rank_bounds', 'analytic_rank', 'ngens', 'gens',
'heights', 'regulator', 'torsion', 'torsion_structure',
'torsion_generators', 'tamagawa_product', 'real_period',
'area', 'faltings_height', 'special_value', 'sha_an', 'sha']
twoadic_cols = ['twoadic_index', 'twoadic_label', 'twoadic_log_level', 'twoadic_gens']
galrep_cols = ['modp_images', 'nonmax_primes', 'nonmax_rad']
intpts_cols = ['xcoord_integral_points', 'num_int_pts']
# Columns after adding twoadic, galrep and intpts columns (making
# those separate files unnecessary) and 'trac_hash' and 'degree':
curvedata_cols_old2 = ['label', 'isoclass', 'number', 'lmfdb_label', 'lmfdb_isoclass',
'lmfdb_number', 'iso_nlabel', 'faltings_index', 'faltings_ratio',
'conductor', 'ainvs', 'jinv', 'cm',
'isogeny_degrees', 'semistable', 'signD',
'min_quad_twist_ainvs', 'min_quad_twist_disc',
'bad_primes', 'tamagawa_numbers', 'kodaira_symbols',
'reduction_types', 'root_numbers', 'conductor_valuations',
'discriminant_valuations', 'j_denominator_valuations',
'rank', 'rank_bounds', 'analytic_rank', 'ngens', 'gens',
'heights', 'regulator', 'torsion', 'torsion_structure',
'torsion_generators', 'tamagawa_product', 'real_period',
'area', 'faltings_height', 'special_value', 'sha_an', 'sha',
'trace_hash', 'degree',
'xcoord_integral_points', 'num_int_pts',
'twoadic_index', 'twoadic_label', 'twoadic_log_level', 'twoadic_gens',
'modp_images', 'nonmax_primes', 'nonmax_rad']
# Columns after adding 'absD' and 'stable_faltings_height'
curvedata_cols = ['label', 'isoclass', 'number', 'lmfdb_label', 'lmfdb_isoclass',
'lmfdb_number', 'iso_nlabel', 'faltings_index', 'faltings_ratio',
'conductor', 'ainvs', 'jinv', 'cm',
'isogeny_degrees', 'semistable', 'signD', 'absD',
'min_quad_twist_ainvs', 'min_quad_twist_disc',
'bad_primes', 'tamagawa_numbers', 'kodaira_symbols',
'reduction_types', 'root_numbers', 'conductor_valuations',
'discriminant_valuations', 'j_denominator_valuations',
'rank', 'rank_bounds', 'analytic_rank', 'ngens', 'gens',
'heights', 'regulator', 'torsion', 'torsion_structure',
'torsion_generators', 'tamagawa_product', 'real_period',
'area', 'faltings_height', 'stable_faltings_height',
'special_value', 'sha_an', 'sha',
'trace_hash', 'degree',
'xcoord_integral_points', 'num_int_pts',
'twoadic_index', 'twoadic_label', 'twoadic_log_level', 'twoadic_gens',
'modp_images', 'nonmax_primes', 'nonmax_rad']
classdata_cols = ['iso', 'lmfdb_iso', 'trace_hash', 'class_size', 'class_deg', 'isogeny_matrix', 'aplist', 'anlist']
datafile_columns = {
'curvedata': curvedata_cols,
'curvedata_ext': curvedata_cols,
'classdata': classdata_cols,
}
# datafile_columns['curvedata'] = curvedata_cols_old2 # TEMPORARY
# print("curvedata columns")
# print(datafile_columns['curvedata'])
# print("curvedata_ext columns")
# print(datafile_columns['curvedata_ext'])
def parse_curvedata_line(line, raw=False, ext=False):
"""
"""
data = split(line)
if ext:
cols = datafile_columns['curvedata_ext']
else:
cols = datafile_columns['curvedata']
if len(data) != len(cols):
raise RuntimeError("curvedata line has {} columns but {} were expected".format(len(data), len(cols)))
if raw:
record = dict([(col, data[n]) for n, col in enumerate(cols)])
record['semistable'] = bool(int(record['semistable']))
record['potential_good_reduction'] = (parse_int_list(record['jinv'])[1] == 1)
record['num_bad_primes'] = str(1+record['bad_primes'].count(","))
record['class_size'] = str(1+record['isogeny_degrees'].count(","))
if ext:
for c in galrep_cols:
record[c] = decode(c, record[c])
if record['twoadic_index'] == '0':
for c in twoadic_cols:
if c != 'twoadic_index':
record[c] = decode(c, record[c])
else:
record = dict([(col, decode(col, data[n])) for n, col in enumerate(cols)])
record['potential_good_reduction'] = (record['jinv'].denominator() == 1)
record['num_bad_primes'] = len(record['bad_primes'])
record['class_size'] = len(record['isogeny_degrees'])
# Cremona labels only defined for conductors up to 500000:
if ZZ(record['conductor']) < 500000:
record['Clabel'] = record['label']
record['Ciso'] = record['label'][:-1]
record['Cnumber'] = record['number']
if record['sha'] != "?":
record['sha_primes'] = [int(p) for p in Integer(record['sha']).prime_divisors()]
record['torsion_primes'] = [int(p) for p in Integer(record['torsion']).prime_divisors()]
record['lmfdb_iso'] = ".".join([str(record['conductor']), record['lmfdb_isoclass']])
record = add_extra_data(record) ## add absD and stable_faltings_height
return record['label'], record
def parse_classdata_line(line, raw=False):
"""
"""
data = split(line)
if raw:
record = dict([(col, data[n]) for n, col in enumerate(datafile_columns['classdata'])])
else:
record = dict([(col, decode(col, data[n])) for n, col in enumerate(datafile_columns['classdata'])])
return record['iso']+'1', record
######################################################################
#
parsers = {'allgens': parse_allgens_line,
'alllabels': parse_alllabels_line,
'allisog': parse_allisog_line,
'alldegphi': parse_alldegphi_line,
'intpts': parse_intpts_line,
'opt_man': parse_opt_man_line,
'2adic': parse_twoadic_line,
'galrep': parse_galrep_line,
'curvedata': parse_curvedata_line,
'classdata': parse_classdata_line,
'growth': parse_growth_line,
'iwasawa': parse_iwasawa_line,
}
all_file_types = list(parsers.keys())
old_file_types = ['alllabels', 'allgens', 'allisog']
more_old_file_types = ['alldegphi', 'intpts', '2adic', 'galrep']
new_file_types = [ft for ft in all_file_types if ft not in old_file_types]
newer_file_types = [ft for ft in new_file_types if ft not in more_old_file_types]
optional_file_types = ['opt_man', 'growth', 'iwasawa']
main_file_types = [t for t in new_file_types if t not in optional_file_types]
new_main_file_types = [t for t in newer_file_types if t not in optional_file_types]
assert new_main_file_types == ['curvedata', 'classdata']
all_ranges = ["{}0000-{}9999".format(n, n) for n in range(50)]
iwasawa_ranges = ["{}0000-{}9999".format(n, n) for n in range(15)]
######################################################################
#
# Function to read data from ['allgens', 'alllabels', 'allisog'] in
# one or more ranges and fill in additional data required for
# curvedata and classdata files.
#
# This is used in the (one-off) function make_curvedata() which makes
# curvedata and classdata files for each range.
def read_old_data(base_dir=ECDATA_DIR, ranges=all_ranges):
r"""Read all the data in files base_dir/<ft>/<ft>.<r> where ft is each
of ['allgens', 'alllabels', 'allisog'] and r is a range.
Return a single dict with keys labels and values complete
curve records.
"""
all_data = {}
for r in ranges:
for ft in ['allgens', 'alllabels', 'allisog']:
data_filename = os.path.join(base_dir, '{}/{}.{}'.format(ft, ft, r))
parser = parsers[ft]
n = 0
with open(data_filename) as data:
for L in data:
label, record = parser(L)
first = (record['number'] == 1)
# if n > 100 and first:
# break
if label:
if first:
n += 1
if label in all_data:
all_data[label].update(record)
else:
all_data[label] = record
if n%1000 == 0 and first:
print("Read {} classes from {}".format(n, data_filename))
print("Read {} lines from {}".format(n, data_filename))
# Fill in isogeny data for all curves in each class:
for label, record in all_data.items():
n = record['number']
if n > 1:
record1 = all_data[label[:-1]+'1']
record['isogeny_degrees'] = record1['all_iso_degs'][n]
for col in ['isogeny_matrix', 'class_size', 'class_deg']:
record[col] = record1[col]
# Fill in MW & BSD data for all curves in each class:
FRout = open("FRlists.txt", 'w')
for label, record in all_data.items():
n = record['number']
if n == 1:
# We sort the curves in each class by Faltings height.
# Note that while there is always a unique curve with
# minimal height (whose period lattice is a sublattice of
# all the others), other heights may appear multiple
# times. The possible ordered lists of ratios which have
# repeats include: [1,2,2,2], [1,2,4,4], [1,2,4,4,8,8],
# [1,2,4,4,8,8,16,16], [1,3,3], [1,3,3,9],
# [1,2,3,4,4,6,12,12]. As a tie-breaker we use the LMFDB
# ordering.
sort_key = lambda lab: [all_data[lab]['faltings_height'], all_data[lab]['lmfdb_number']]
class_size = record['class_size']
if class_size == 1:
record['faltings_index'] = 0
record['faltings_ratio'] = 1
else:
class_labels = [label[:-1]+str(k+1) for k in range(class_size)]
class_labels.sort(key=sort_key)
base_label = class_labels[0]
base_record = all_data[base_label]
area = base_record['area']
base_record['faltings_index'] = 0
base_record['faltings_ratio'] = 1
for i, lab in enumerate(class_labels):
if i == 0:
continue
rec = all_data[lab]
area_ratio = area/rec['area'] # real, should be an integer
rec['faltings_index'] = i
rec['faltings_ratio'] = area_ratio.round()
FRout.write("{}: {}\n".format(label, [all_data[lab]['faltings_ratio'] for lab in class_labels]))
else:
record1 = all_data[label[:-1]+'1']
for col in ['analytic_rank', 'special_value', 'aplist', 'anlist', 'trace_hash']:
record[col] = record1[col]
# Analytic Sha
sha_an = record['special_value']*record['torsion']**2 / (record['tamagawa_product']*record['regulator']*record['real_period'])
sha = sha_an.round()
assert sha > 0
assert sha.is_square()
assert (sha-sha_an).abs() < 1e-10
record['sha_an'] = sha_an
record['sha'] = int(sha)
record['sha_primes'] = [int(p) for p in sha.prime_divisors()]
FRout.close()
return all_data
######################################################################
#
# Output functions
#
######################################################################
#
# make one line
def make_line(E, columns):
"""
Given a curve record E, return a string of the selected columns.
"""
return ' '.join([encode(E[col]) for col in columns])
######################################################################
#
# one-off function to read {allgens, alllabels, allisog} files for one
# or more ranges, and write {curvedata, classdata} files for
# the same ranges.
def make_curvedata(base_dir=ECDATA_DIR, ranges=all_ranges, prec=DEFAULT_PRECISION):
r"""Read all the data in files base_dir/<ft>/<ft>.<r> for ft in
['allgens', 'alllabels', 'allisog'] and r in ranges.
Write files base_dir/<f>/<f>.<r> for the same r and for f in
['curvedata', 'classdata'].
"""
global PRECISION
PRECISION = prec
for r in ranges:
print("Reading data for range {}".format(r))
all_data = read_old_data(base_dir=base_dir, ranges=[r])
# write out data
for ft in ['curvedata', 'classdata']:
cols = datafile_columns[ft]
filename = os.path.join(base_dir, '{}/{}.{}'.format(ft, ft, r))
print("Writing data to {}".format(filename))
n = 0
with open(filename, 'w') as outfile:
for _, record in all_data.items():
if ft == 'curvedata' or record['number'] == 1:
line = make_line(record, cols)
outfile.write(line +"\n")
n += 1
print("{} lines written to {}".format(n, filename))
def read_data(base_dir=ECDATA_DIR, file_types=new_main_file_types, ranges=all_ranges, raw=True, resort=True):
r"""Read all the data in files base_dir/<ft>/<ft>.<r> where ft is a file type
and r is a range.
Return a single dict with keys labels and values complete
curve records.
Resort permutes the rows/columns of the isogeny matrix to be indexed
by LMFDB numbers.
"""
all_data = {}
for r in ranges:
for ft in file_types:
if ft == 'growth': # special case below
continue
if ft == 'iwasawa' and r not in iwasawa_ranges + ['0-999']:
continue
data_filename = os.path.join(base_dir, '{}/{}.{}'.format(ft, ft, r))
print("Starting to read from {}".format(data_filename))
parser = parsers[ft]
n = 0
with open(data_filename) as data:
for L in data:
label, record = parser(L, raw=raw)
first = (ft == 'classdata') or (int(record['number']) == 1)
if label:
if first:
n += 1
if label in all_data:
all_data[label].update(record)
else:
all_data[label] = record
if n%10000 == 0 and first:
print("Read {} classes so far from {}".format(n, data_filename))
print("Finished reading {} classes from {}".format(n, data_filename))
if 'curvedata' in file_types and 'classdata' in file_types:
print("filling in class_deg, class_size and trace_hash from class to curve")
for label, record in all_data.items():
if int(record['number']) > 1:
label1 = label[:-1]+'1'
for col in ['class_deg', 'class_size', 'trace_hash']:
record[col] = all_data[label1][col]
if 'classdata' in file_types and resort:
print("permuting isogeny matrices")
for label, record in all_data.items():
n = int(record['class_size'])
number = int(record['number'])
if n <= 2 or number > 1:
continue
isomat = record['isogeny_matrix']
if raw:
isomat = parse_int_list_list(isomat)
clabel = label[:-1]
def num2Lnum(i):
return int(all_data[clabel+str(i)]['lmfdb_number'])
# perm = lambda i: next(c for c in self.curves if c['number'] == i+1)['lmfdb_number']-1
# newmat = [[isomat[perm(i)][perm(j)] for i in range(n)] for j in range(n)]
newmat = [[0 for _ in range(n)] for _ in range(n)]
for i in range(n):
ri = num2Lnum(i+1)-1
for j in range(n):
rj = num2Lnum(j+1)-1
newmat[ri][rj] = isomat[i][j]
if raw:
newmat = str(newmat).replace(' ', '')
record['isogeny_matrix'] = newmat
if 'growth' in file_types:
print("reading growth data")
growth_data = read_all_growth_data(ranges=ranges)
for label, record in all_data.items():
if label in growth_data:
record.update(growth_data[label])
return all_data
def read_data_ext(base_dir=ECDATA_DIR, file_types=new_main_file_types, ranges=all_ranges, raw=True, resort=True):
r"""Read all the data in files base_dir/curvedata/curvedata.<r>.ext and
base_dir/classdata/classdata.<r> and r is a range.
Return a single dict with keys labels and values complete
curve records.
Resort permutes the rows/columns of the isogeny matrix to be indexed
by LMFDB numbers.
"""
all_data = {}
for r in ranges:
for ft in file_types:
if ft == 'curvedata':
data_filename = os.path.join(base_dir, '{}/{}.{}.ext'.format(ft, ft, r))
else:
data_filename = os.path.join(base_dir, '{}/{}.{}'.format(ft, ft, r))
parser = parsers[ft]
print("Starting to read from {}".format(data_filename))
n = 0
with open(data_filename) as data:
for L in data:
if ft == 'curvedata':
label, record = parse_curvedata_line(L, raw=raw, ext=True)
else:
label, record = parser(L, raw=raw)
first = (ft == 'classdata') or (int(record['number']) == 1)
if label:
if first:
n += 1
if label in all_data:
all_data[label].update(record)
else:
all_data[label] = record
if n%10000 == 0 and first:
print("Read {} classes so far from {}".format(n, data_filename))
print("Finished reading {} classes from {}".format(n, data_filename))
print("filling in iso, class_deg, and trace_hash from class to curve")
for label, record in all_data.items():
if int(record['number']) > 1:
label1 = label[:-1]+'1'
for col in ['iso', 'class_deg', 'trace_hash']:
record[col] = all_data[label1][col]
if 'classdata' in file_types and resort:
print("permuting isogeny matrices")
for label, record in all_data.items():
n = int(record['class_size'])
number = int(record['number'])
if n <= 2 or number > 1:
continue
isomat = record['isogeny_matrix']
if raw:
isomat = parse_int_list_list(isomat)
clabel = label[:-1]
def num2Lnum(i):
return int(all_data[clabel+str(i)]['lmfdb_number'])
# perm = lambda i: next(c for c in self.curves if c['number'] == i+1)['lmfdb_number']-1
# newmat = [[isomat[perm(i)][perm(j)] for i in range(n)] for j in range(n)]
newmat = [[0 for _ in range(n)] for _ in range(n)]
for i in range(n):
ri = num2Lnum(i+1)-1
for j in range(n):
rj = num2Lnum(j+1)-1
newmat[ri][rj] = isomat[i][j]
if raw:
newmat = str(newmat).replace(' ', '')
record['isogeny_matrix'] = newmat
if 'growth' in file_types:
print("reading growth data")
growth_data = read_all_growth_data(ranges=ranges)
for label, record in all_data.items():
if label in growth_data:
record.update(growth_data[label])
return all_data
######################################################################
#
# Function to output files which can be uploaded to the database using copy_from() or update_from_file()
#
# NB postgresql has various integer types of different *fixed*
# bit-lengths, of which te largest if 'bigint' but even that is too
# big for a 20-digit integer, so quite a few of the columns have to
# use the 'numeric' type. The website code will cast to integers
# where necessary.
#
# NB The LMFDB table ec_curvedata columns 'label', 'iso', 'number'
# have been renamed 'Clabel', 'Ciso', 'Cnumber' and will only be
# filled for conductor<500000 for which Cremona labels exist. Our
# data files currently still have these fields as they are used to
# create labels for data processing purposes. None of the other tables
# have these columns (any more).
schemas = {'ec_curvedata': {'Clabel': 'text', 'lmfdb_label': 'text', 'Ciso': 'text', 'lmfdb_iso': 'text',
'iso_nlabel': 'smallint', 'Cnumber': 'smallint', 'lmfdb_number': 'smallint',
'ainvs': 'numeric[]', 'jinv': 'numeric[]', 'conductor': 'integer',
'cm': 'smallint', 'isogeny_degrees': 'smallint[]',
'nonmax_primes': 'smallint[]', 'nonmax_rad': 'integer',
'bad_primes': 'integer[]', 'num_bad_primes': 'smallint',
'semistable': 'boolean', 'potential_good_reduction': 'boolean',
'optimality': 'smallint', 'manin_constant': 'smallint',
'num_int_pts': 'integer', 'torsion': 'smallint',
'torsion_structure': 'smallint[]', 'torsion_primes': 'smallint[]',
'rank': 'smallint', 'analytic_rank': 'smallint',
'sha': 'integer', 'sha_primes': 'smallint[]', 'regulator': 'numeric',
'signD': 'smallint', 'absD': 'numeric',
'degree': 'bigint', 'class_deg': 'smallint', 'class_size': 'smallint',
'min_quad_twist_ainvs': 'numeric[]', 'min_quad_twist_disc': 'smallint',
'faltings_height': 'numeric', 'stable_faltings_height': 'numeric',
'faltings_index': 'smallint', 'faltings_ratio': 'smallint'},
# local data: one row per (curve, bad prime)
'ec_localdata': {'lmfdb_label': 'text', 'conductor': 'integer',
'prime': 'integer', 'tamagawa_number': 'smallint', 'kodaira_symbol': 'smallint',
'reduction_type': 'smallint', 'root_number': 'smallint',
'conductor_valuation': 'smallint', 'discriminant_valuation': 'smallint',
'j_denominator_valuation': 'smallint'},
'ec_mwbsd': {'lmfdb_label': 'text', 'conductor': 'integer',
'torsion_generators': 'numeric[]', 'xcoord_integral_points': 'numeric[]',
'special_value': 'numeric', 'real_period': 'numeric', 'area': 'numeric',
'tamagawa_product': 'integer', 'sha_an': 'numeric', 'rank_bounds': 'smallint[]',
'ngens': 'smallint', 'gens': 'numeric[]', 'heights': 'numeric[]'},
# class data: one row per isogeny class
'ec_classdata': {'lmfdb_iso': 'text', 'conductor': 'integer',
'trace_hash': 'bigint', 'class_size': 'smallint', 'class_deg': 'smallint',
'isogeny_matrix': 'smallint[]',
'aplist': 'smallint[]', 'anlist': 'smallint[]'},
'ec_2adic': {'lmfdb_label': 'text', 'conductor': 'integer',
'twoadic_label': 'text', 'twoadic_index': 'smallint',
'twoadic_log_level': 'smallint', 'twoadic_gens': 'smallint[]'},
# galrep data: one row per (curve, non-maximal prime)
'ec_galrep': {'lmfdb_label': 'text', 'conductor': 'integer',
'prime': 'smallint', 'image': 'text'},
# torsion growth data: one row per (curve, extension field)
'ec_torsion_growth': {'lmfdb_label': 'text', 'conductor': 'integer',
'degree': 'smallint', 'field': 'numeric[]', 'torsion': 'smallint[]'},
'ec_iwasawa': {'lmfdb_label': 'text', 'conductor': 'integer',
'iwdata': 'jsonb', 'iwp0': 'smallint'}
}
######################################################################
Qtype = type(QQ(1))
def postgres_encode(col, coltype):
"""
Encoding of column data into a string for output to an upload file.
NB A list stored in the database as a postgres array (e.g. int[] or
numeric[]) must appear as (e.g.) {1,2,3} not [1,2,3].
"""
if col is None or col == "?":
return "\\N"
if coltype == "boolean":
return "t" if col else "f"
if isinstance(col, Qtype): # to handle the j-invariant
col = [col.numer(), col.denom()]
scol = str(col).replace(" ", "")
if coltype == 'jsonb':
scol = scol.replace("'", '"')
if '[]' in coltype:
scol = scol.replace("[", "{").replace("]", "}")
return scol
def table_cols(table, include_id=False):
"""
Get the list of column names for a table, sorted for consistency,
with 'label' (or 'iso' for the classdata table) moved to the
front, and 'id' at the very front if wanted.
"""
if table == 'ec_galrep':
return ['lmfdb_label', 'conductor', 'prime', 'image']
if table == 'ec_torsion_growth':
return ['lmfdb_label', 'conductor', 'degree', 'field', 'torsion']
cols = sorted(list(schemas[table].keys()))
# We want the first two columns to be 'id', 'lmfdb_label' or 'id', 'lmfdb_iso' if present
if table == 'ec_classdata':
cols.remove('lmfdb_iso')
cols = ['lmfdb_iso'] + cols
else:
cols.remove('lmfdb_label')
cols = ['lmfdb_label'] + cols
if 'id' in cols:
cols.remove('id')
if include_id:
cols = ['id'] + cols
return cols
def data_to_string(table, cols, record):
"""
table: a table name: one of schemas.keys()
cols: list of columns to output
record: a complete curve or class record
"""
schema = schemas[table]
if 'id' in cols:
schema['id'] = 'bigint'
return "|".join([postgres_encode(record.get(col, None), schema[col]) for col in cols])
tables1 = ('ec_curvedata', 'ec_mwbsd', 'ec_2adic', 'ec_iwasawa') # tables with one row per curve
tables2 = ('ec_classdata',) # table with one row per isogeny class
tables3 = ('ec_localdata', # one row per bad prime
'ec_galrep', # one row per non-maximal prime
'ec_torsion_growth', # one row per extension degree
)
all_tables = tables1 + tables2 + tables3
optional_tables = ('ec_iwasawa', 'ec_torsion_growth')
main_tables = tuple(t for t in all_tables if t not in optional_tables)
def make_table_upload_file(data, table, NN=None, include_id=True, columns=None):
"""This version works when there is one row per curve or one per
class. The other cases are passed to special versions.
If columns is None then all columns for the table will be output,
otherwise only those in columns. This is for updating only some
columns of a table.
"""
if not NN:
NN = 'all'
if table == 'ec_localdata':
return make_localdata_upload_file(data, NN)
if table == 'ec_galrep':
return make_galrep_upload_file(data, NN)
if table == 'ec_torsion_growth':
return make_torsion_growth_upload_file(data, NN)
include_id = include_id and (table == 'ec_curvedata')
filename = os.path.join(UPLOAD_DIR, ".".join([table, NN]))
allcurves = (table != 'ec_classdata')
with open(filename, 'w') as outfile:
print("Writing data for table {} to file {}".format(table, filename))
if not allcurves:
print(" (only outputting one curve per isogeny class)")
cols = table_cols(table, include_id)
if columns:
cols = [c for c in cols if c in columns]
schema = schemas[table]
if 'id' in cols:
schema['id'] = 'bigint'
# Write header lines: (1) column names; (2) column types; (3) blank
outfile.write("|".join(cols) + "\n")
outfile.write("|".join([schema[col] for col in cols]) + "\n\n")
n = 1
for record in data.values():
if table == 'ec_iwasawa' and 'iwdata' not in record:
continue
if include_id:
record['id'] = n
if allcurves or int(record['number']) == 1:
outfile.write(data_to_string(table, cols, record) +"\n")
n += 1
if n%10000 == 0:
print("{} lines written so far...".format(n))
n -= 1
print("{} lines written to {}".format(n, filename))
def make_localdata_upload_file(data, NN=None):
"""
This version is for ec_localdata only. For each curve we output
n lines where n is the number of bad primes.
"""
if not NN:
NN = 'all'
table = 'ec_localdata'
filename = os.path.join(UPLOAD_DIR, ".".join([table, NN]))
with open(filename, 'w') as outfile:
print("Writing data for table {} to file {}".format(table, filename))
cols = table_cols(table, include_id=False)
schema = schemas[table]
# Write header lines: (1) column names; (2) column types; (3) blank
outfile.write("|".join(cols) + "\n")
outfile.write("|".join([schema[col] for col in cols]) + "\n\n")
n = 1
for record in data.values():
for i in range(int(record['num_bad_primes'])):
# NB if the data is in raw form then we have 8 strongs
# representing lists of ints, otherwise we actually
# have 8 lists of ints, so we must paerse the strongs
# in the first case.
for ld in ['bad_primes', 'tamagawa_numbers', 'kodaira_symbols',
'reduction_types', 'root_numbers', 'conductor_valuations',
'discriminant_valuations', 'j_denominator_valuations']:
if record[ld][0] == '[':
record[ld] = parse_int_list(record[ld])
prime_record = {'label': record['label'], 'lmfdb_label': record['lmfdb_label'],
'conductor': record['conductor'],
'prime': record['bad_primes'][i],
'tamagawa_number': record['tamagawa_numbers'][i],
'kodaira_symbol': record['kodaira_symbols'][i],
'reduction_type': record['reduction_types'][i],
'root_number': record['root_numbers'][i],
'conductor_valuation': record['conductor_valuations'][i],
'discriminant_valuation': record['discriminant_valuations'][i],
'j_denominator_valuation': record['j_denominator_valuations'][i],
}
line = data_to_string(table, cols, prime_record)
outfile.write(line +"\n")
n += 1
if n%10000 == 0:
print("{} lines written to {} so far...".format(n, filename))
n -= 1
print("{} lines written to {}".format(n, filename))
def make_galrep_upload_file(data, NN=None):
"""This version is for ec_galrep only. For each curve we output n
lines where n is the number of nonmaximal primes, so if there are
no non-maximal primes for a curve then there is no line output for
that curve.
"""
if not NN:
NN = 'all'
table = 'ec_galrep'
filename = os.path.join(UPLOAD_DIR, ".".join([table, NN]))
with open(filename, 'w') as outfile:
print("Writing data for table {} to file {}".format(table, filename))
cols = table_cols(table, include_id=False)
schema = schemas[table]
# Write header lines: (1) column names; (2) column types; (3) blank
outfile.write("|".join(cols) + "\n")
outfile.write("|".join([schema[col] for col in cols]) + "\n\n")
n = 1
for record in data.values():
#print(record['nonmax_primes'], record['modp_images'])
for p, im in zip(record['nonmax_primes'], record['modp_images']):
prime_record = {'label': record['label'], 'lmfdb_label': record['lmfdb_label'],
'conductor': record['conductor'],
'prime': p,
'image': im,
}
outfile.write(data_to_string(table, cols, prime_record) +"\n")
n += 1
if n%10000 == 0:
print("{} lines written to {} so far...".format(n, filename))
n -= 1
print("{} lines written to {}".format(n, filename))
def make_torsion_growth_upload_file(data, NN=None):
"""This version is for ec_torsion_growth only. For each curve we output one
line for each field (of degree<24 currently) in which the torsion
grows.
"""
if not NN:
NN = 'all'
table = 'ec_torsion_growth'
filename = os.path.join(UPLOAD_DIR, ".".join([table, NN]))
with open(filename, 'w') as outfile:
print("Writing data for table {} to file {}".format(table, filename))
cols = table_cols(table, include_id=False)
schema = schemas[table]
# Write header lines: (1) column names; (2) column types; (3) blank
outfile.write("|".join(cols) + "\n")
outfile.write("|".join([schema[col] for col in cols]) + "\n\n")
n = 1
for record in data.values():
if 'torsion_growth' not in record:
continue
for degree, dat in record['torsion_growth'].items():
for field, torsion in dat:
field_record = {'label': record['label'], 'lmfdb_label': record['lmfdb_label'],
'degree': degree,
'field': field,
'torsion': torsion,
}
outfile.write(data_to_string(table, cols, field_record) +"\n")
n += 1
if n%10000 == 0:
print("{} lines written to {} so far...".format(n, filename))
n -= 1
print("{} lines written to {}".format(n, filename))
def fix_labels(data, verbose=True):
for record in data.values():
lmfdb_label = "".join([record['lmfdb_iso'], record['lmfdb_number']])
if lmfdb_label != record['lmfdb_label']:
if verbose:
print("changing {} to {}".format(record['lmfdb_label'], lmfdb_label))
record['lmfdb_label'] = lmfdb_label
return data
def fix_faltings_ratios(data, verbose=True):
for label, record in data.items():
if label[-1] == '1':
Fratio = '1'
if record['faltings_ratio'] != Fratio:
if verbose:
print("{}: changing F-ratio from {} to {}".format(label, record['faltings_ratio'], Fratio))
record['faltings_ratio'] = Fratio
else:
label1 = label[:-1]+"1"
record1 = data[label1]
Fratio = (RR(record1['area'])/RR(record['area'])).round()
assert Fratio <= 163
Fratio = str(Fratio)
if Fratio != record['faltings_ratio']:
if verbose:
print("{}: changing F-ratio from {} to {}".format(label, record['faltings_ratio'], Fratio))
record['faltings_ratio'] = str(Fratio)
return data
def make_all_upload_files(data, tables=all_tables, NN=None, include_id=False):
for table in tables:
make_table_upload_file(data, table, NN=NN, include_id=include_id)
def write_curvedata(data, r, base_dir=MATSCHKE_DIR):
r"""
Write file base_dir/curvedata/curvedata.<r>
"""
cols = datafile_columns['curvedata']
filename = os.path.join(base_dir, 'curvedata', 'curvedata.{}'.format(r))
#print("Writing data to {}".format(filename))
n = 0
with open(filename, 'w') as outfile:
for record in data.values():
line = make_line(record, cols)
outfile.write(line +"\n")
n += 1
print("{} lines written to {}".format(n, filename))
# temporary function for writing extended curvedata files
def write_curvedata_ext(data, r, base_dir=MATSCHKE_DIR):
r"""
Write file base_dir/curvedata/curvedata.<r>.ext
"""
cols = datafile_columns['curvedata_ext']
filename = os.path.join(base_dir, 'curvedata', 'curvedata.{}.ext'.format(r))
print("Writing data to {}".format(filename))
# print("--old columns were")
# print(datafile_columns['curvedata'])
# print("--new columns are")
# print(cols)
n = 0
with open(filename, 'w') as outfile:
for record in data.values():
if 'degree' not in record or record['degree'] == 0:
record['degree'] = None
line = make_line(record, cols)
outfile.write(line +"\n")
n += 1
if n%10000 == 0:
print("... {} lines written to {} so far".format(n, filename))
print("{} lines written to {}".format(n, filename))
def write_classdata(data, r, base_dir=MATSCHKE_DIR):
r"""
Write file base_dir/classdata/classdata.<r>
"""
cols = datafile_columns['classdata']
filename = os.path.join(base_dir, 'classdata', 'classdata.{}'.format(r))
#print("Writing data to {}".format(filename))
n = 0
with open(filename, 'w') as outfile:
for record in data.values():
if int(record['number']) == 1:
line = make_line(record, cols)
outfile.write(line +"\n")
n += 1
print("{} lines written to {}".format(n, filename))
def write_intpts(data, r, base_dir=MATSCHKE_DIR):
r"""
Write file base_dir/intpts/intpts.<r>
"""
cols = ['label', 'ainvs', 'xcoord_integral_points']
filename = os.path.join(base_dir, 'intpts', 'intpts.{}'.format(r))
#print("Writing data to {}".format(filename))
n = 0
with open(filename, 'w') as outfile:
for record in data.values():
line = make_line(record, cols)
outfile.write(line +"\n")
n += 1
print("{} lines written to {}".format(n, filename))
def write_degphi(data, r, base_dir=MATSCHKE_DIR):
r"""
Write file base_dir/alldegphi/alldegphi.<r>
"""
cols = ['conductor', 'isoclass', 'number', 'ainvs', 'degree']
filename = os.path.join(base_dir, 'alldegphi', 'alldegphi.{}'.format(r))
#print("Writing data to {}".format(filename))
n = 0
with open(filename, 'w') as outfile:
for record in data.values():
if record['degree']:
line = make_line(record, cols)
outfile.write(line +"\n")
n += 1
print("{} lines written to {}".format(n, filename))
def write_datafiles(data, r, base_dir=MATSCHKE_DIR):
r"""Write file base_dir/<ft>/<ft>.<r> for ft in ['curvedata',
'classdata', 'intpts', 'alldegphi']
"""
for writer in [write_curvedata, write_classdata, write_intpts, write_degphi]:
writer(data, r, base_dir)
# Read allgens file (with torsion) and output paricurves file
#
def make_paricurves(infilename, mode='w', prefix="t"):
infile = open(infilename)
_, suf = infilename.split(".")
paricurvesfile = open(prefix+"paricurves."+suf, mode=mode)
for L in infile.readlines():
N, cl, num, ainvs, r, gens = L.split(' ', 5)
if int(r) == 0:
gens = "[]"
else:
gens = gens.split()[1:1+int(r)] # ignore torsion struct and gens
gens = "[{}]".format(",".join([proj_to_aff(P) for P in gens]))
label = '"{}"'.format(''.join([N, cl, num]))
line = '[{}]'.format(', '.join([label, ainvs, gens]))
paricurvesfile.write(line+'\n')
infile.close()
paricurvesfile.close()
################################################################################
# old functions before major ecdb rewrite
# Create alldegphi files from allcurves files:
def make_alldegphi(infilename, mode='w', verbose=False, prefix="t"):
infile = open(infilename)
_, suf = infilename.split(".")
alldegphifile = open(prefix+"alldegphi."+suf, mode=mode)
for L in infile.readlines():
N, cl, num, ainvs, _ = L.split(' ', 4)
label = "".join([N, cl, num])
E = EllipticCurve(parse_int_list(ainvs))
degphi = get_modular_degree(E, label)
line = ' '.join([str(N), cl, str(num), shortstr(E), liststr(degphi)])
alldegphifile.write(line+'\n')
if verbose:
print("alldegphifile: {}".format(line))
infile.close()
alldegphifile.close()
def put_allcurves_line(outfile, N, cl, num, ainvs, r, t):
line = ' '.join([str(N), cl, str(num), str(ainvs).replace(' ', ''), str(r), str(t)])
outfile.write(line+'\n')
def make_allcurves_lines(outfile, code, ainvs, r):
E = EllipticCurve(ainvs)
N, cl, _ = parse_cremona_label(code)
for i, F in enumerate(E.isogeny_class().curves):
put_allcurves_line(outfile, N, cl, str(i+1), list(F.ainvs()), r, F.torsion_order())
outfile.flush()
def process_curve_file(infilename, outfilename, use):
infile = open(infilename)
outfile = open(outfilename, mode='a')
for L in infile.readlines():
N, iso, num, ainvs, r, tor, _ = L.split()
code = N+iso+num
N = int(N)
num = int(num)
r = int(r)
tor = int(tor)
ainvs = parse_int_list(ainvs)
use(outfile, code, ainvs, r, tor)
infile.close()
outfile.close()
def make_allgens_line(E):
tgens = parse_int_list_list(E['torsion_generators'])
gens = parse_int_list_list(E['gens'])
parts = [" ".join([encode(E[col]) for col in ['conductor', 'isoclass', 'number', 'ainvs', 'ngens', 'torsion_structure']]),
" ".join([encode(weighted_proj_to_proj(P)) for P in gens]),
" ".join([encode(weighted_proj_to_proj(P)) for P in tgens])]
return " ".join(parts)
def write_allgens_file(data, BASE_DIR, r):
r""" Output an allgens file. Used, for example, to run our C++
saturation-checking program on the data.
"""
allgensfilename = os.path.join(BASE_DIR, 'allgens', 'allgens.{}'.format(r))
n = 0
with open(allgensfilename, 'w') as outfile:
for record in data.values():
n += 1
outfile.write(make_allgens_line(record) + "\n")
print("{} line written to {}".format(n, allgensfilename))
def make_allgens_file(BASE_DIR, r):
data = read_data(BASE_DIR, ['curvedata'], [r])
write_allgens_file(data, BASE_DIR, r)
# one-off to add 'absD' and 'stable_faltings_height'
def c4c6D(ainvs):
(a1, a2, a3, a4, a6) = ainvs
(b2, b4, b6, b8) = (a1*a1 + 4*a2,
a1*a3 + 2*a4,
a3**2 + 4*a6,
a1**2 * a6 + 4*a2*a6 - a1*a3*a4 + a2*a3**2 - a4**2)
(c4, c6) = (b2**2 - 24*b4,
-b2**3 + 36*b2*b4 - 216*b6)
D = -b2**2*b8 - 8*b4**3 - 27*b6**2 + 9*b2*b4*b6
return (c4, c6, D)
def add_extra_data(record, prec=128):
# We avoid constructing the elliptic curve as that is very much slower
(c4, _, D) = c4c6D(parse_int_list(record['ainvs']))
record['absD'] = ZZ(D).abs()
if gcd(D, c4) == 1:
record['stable_faltings_height'] = record['faltings_height']
else:
R = RealField(prec)
g = gcd(D, c4**3)
record['stable_faltings_height'] = R(record['faltings_height']) - R(g).log()/12
return record
|