1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
|
import os
from sage.all import ZZ, QQ, Integer, EllipticCurve, class_to_int
try:
from sage.databases.cremona import cmp_code
except:
pass
from files import read_data, MATSCHKE_DIR, write_curvedata
from moddeg import get_modular_degree
from codec import (parse_int_list, point_to_weighted_proj,
liststr, shortstr, shortstrlist, matstr, point_to_proj, mat_to_list_list)
# one-off function to fix curvedata encoding of gens and torsion_generators
# from e.g. [(-5:625:1),(580/9:1250/27:1)]
def fix_gens(r, base_dir=MATSCHKE_DIR):
data = read_data(base_dir, ['curvedata'], [r], True)
def parse_points(s, E):
if s == '[]':
return []
else:
return [E([QQ(c) for c in pt.split(":")]) for pt in s[2:-2].split("),(")]
for record in data.values():
E = EllipticCurve(parse_int_list(record['ainvs']))
for t in ['gens', 'torsion_generators']:
record[t] = [point_to_weighted_proj(gen) for gen in parse_points(record[t], E)]
write_curvedata(data, r + '.new', base_dir=base_dir)
# one-off function to compute modular degrees when we originally
# forgot to include them in the main script.
def make_degrees(infilename, base_dir, verbose=1):
alldata = {}
nc = 0
with open(os.path.join(base_dir, infilename)) as infile:
for L in infile:
nc += 1
sN, isoclass, class_size, number, lmfdb_number, ainvs = L.split()
iso = ''.join([sN, isoclass])
label = ''.join([iso, number])
lmfdb_number = int(lmfdb_number)
lmfdb_isoclass = isoclass
lmfdb_iso = '.'.join([sN, isoclass])
lmfdb_label = ''.join([lmfdb_iso, number])
iso_nlabel = class_to_int(isoclass)
number = int(number)
class_size = int(class_size)
ainvs = parse_int_list(ainvs)
N = ZZ(sN)
bad_p = N.prime_factors() # will be sorted
record = {
'label': label,
'isoclass': isoclass,
'iso': iso,
'number': number,
'iso_nlabel': iso_nlabel,
'lmfdb_number': lmfdb_number,
'lmfdb_isoclass': lmfdb_isoclass,
'lmfdb_iso': lmfdb_iso,
'lmfdb_label':lmfdb_label,
'faltings_index': number,
'class_size': class_size,
'ainvs': ainvs,
'conductor': N,
'bad_primes': bad_p,
'num_bad_primes': len(bad_p),
}
alldata[label] = record
if verbose:
print("{} curves read from {}".format(nc, infilename))
nc = 0
for label, record in alldata.items():
nc += 1
if verbose:
print("Processing {}".format(label))
N = record['conductor']
iso = record['iso']
number = record['number']
first = (number == 1) # tags first curve in each isogeny class
ncurves = record['class_size']
if first:
alllabels = [iso+str(n+1) for n in range(ncurves)]
allcurves = [EllipticCurve(alldata[lab]['ainvs']) for lab in alllabels]
E = allcurves[0]
cl = E.isogeny_class(order=tuple(allcurves))
record['isogeny_matrix'] = mat = mat_to_list_list(cl.matrix())
record['class_deg'] = max(max(r) for r in mat)
record['isogeny_degrees'] = mat[0]
record['degree'] = degphi = get_modular_degree(E, label)
record['degphilist'] = degphilist = [degphi*mat[0][j] for j in range(ncurves)]
if verbose:
print("degphilist = {}".format(degphilist))
else:
record1 = alldata[iso+'1']
E = allcurves[number-1]
record['class_deg'] = record1['class_deg']
record['isogeny_degrees'] = record1['isogeny_matrix'][number-1]
record['degree'] = record1['degphilist'][number-1]
if verbose:
print("Modular degree = {}".format(record['degree']))
if nc % 1000 == 0:
print("{} curves processed...".format(nc))
print("Finished processing {} curves".format(nc))
return alldata
# Given a filename like curves.000-999, read the data in the file,
# compute the isogeny class for each curve, and output (1)
# allcurves.000-999, (2) allisog.000-999 (with the same suffix).
def make_allcurves_and_allisog(infilename, mode='w'):
infile = open(infilename)
_, suf = infilename.split(".")
allcurvefile = open("tallcurves." + suf, mode=mode)
allisogfile = open("tallisog." + suf, mode=mode)
for L in infile.readlines():
N, cl, _, ainvs, r, _, _ = L.split()
E = EllipticCurve(parse_int_list(ainvs))
Cl = E.isogeny_class()
Elist = Cl.curves
mat = Cl.matrix()
torlist = [F.torsion_order() for F in Elist]
for i, Ei in enumerate(Elist):
line = ' '.join([N, cl, str(i+1), shortstr(Ei), r, str(torlist[i])])
allcurvefile.write(line + '\n')
print("allcurvefile: {}".format(line))
line = ' '.join([str(N), cl, str(1), ainvs, shortstrlist(Elist), matstr(mat)])
allisogfile.write(line + '\n')
print("allisogfile: {}".format(line))
infile.close()
allcurvefile.close()
allisogfile.close()
# Version using David Roe's new Isogeny Class class (trac #12768)
def make_allcurves_and_allisog_new(infilename, mode='w', verbose=False):
infile = open(infilename)
_, suf = infilename.split(".")
allcurvefile = open("tallcurves."+suf, mode=mode)
allisogfile = open("tallisog."+suf, mode=mode)
count = 0
for L in infile.readlines():
count += 1
if count%1000 == 0:
print(L)
N, cl, _, ainvs, r, _, _ = L.split()
E = EllipticCurve(parse_int_list(ainvs))
Cl = E.isogeny_class(order="database")
Elist = Cl.curves
torlist = [F.torsion_order() for F in Elist]
for i, Ei in enumerate(Elist):
line = ' '.join([N, cl, str(i+1), shortstr(Ei), r, str(torlist[i])])
allcurvefile.write(line + '\n')
if verbose:
print("allcurvefile: {}".format(line))
mat = Cl.matrix()
line = ' '.join([str(N), cl, str(1), ainvs, shortstrlist(Elist), matstr(mat)])
allisogfile.write(line + '\n')
if verbose:
print("allisogfile: {}".format(line))
infile.close()
allcurvefile.close()
allisogfile.close()
#
# Compute torsion gens only from allcurves file
#
def make_rank0_torsion(infilename, mode='w', verbose=False, prefix="t"):
infile = open(infilename)
_, suf = infilename.split(".")
allgensfile = open(prefix+"allgens0."+suf, mode=mode)
for L in infile.readlines():
N, cl, num, ainvs, r, _ = L.split()
if int(r) == 0:
E = EllipticCurve(parse_int_list(ainvs))
# compute torsion data
T = E.torsion_subgroup()
torstruct = list(T.invariants())
torgens = [P.element() for P in T.gens()]
gens = []
# Output data
line = ' '.join([str(N), cl, num, ainvs, r]
+ [liststr(torstruct)]
+ [point_to_proj(P) for P in gens]
+ [point_to_proj(P) for P in torgens]
)
allgensfile.write(line+'\n')
if verbose:
print("allgensfile: {}".format(line))
infile.close()
allgensfile.close()
# Read allgens file without torsion and output allgens file with torsion
#
def add_torsion(infilename, mode='w', verbose=False, prefix="t"):
infile = open(infilename)
_, suf = infilename.split(".")
allgensfile = open(prefix+"allgens."+suf, mode=mode)
for L in infile.readlines():
N, cl, num, ainvs, r, gens = L.split(' ', 5)
gens = gens.split()
E = EllipticCurve(parse_int_list(ainvs))
T = E.torsion_subgroup()
torstruct = list(T.invariants())
torgens = [P.element() for P in T.smith_gens()]
# allgens (including torsion gens, listed last)
line = ' '.join([N, cl, num, ainvs, r]
+ [liststr(torstruct)]
+ gens #[point_to_proj(P) for P in gens]
+ [point_to_proj(P) for P in torgens]
)
if verbose:
print(line)
allgensfile.write(line + '\n')
infile.close()
allgensfile.close()
# Read allgens file and for curves with non-cyclic torsion, make sure
# that the gens are in the same order as the group structure
# invariants:
def fix_torsion(infilename, mode='w', verbose=False, prefix="t"):
infile = open(infilename)
_, suf = infilename.split(".")
allgensfile = open(prefix+"allgens." + suf, mode=mode)
for L in infile.readlines():
if verbose:
print("old line")
print(L)
N, cl, num, ainvs, r, gens = L.split(' ', 5)
gens = gens.split()
tor_invs = gens[0]
inf_gens = gens[1:int(r)+1]
tor_gens = gens[int(r)+1:]
if verbose:
print("old line rank = %s, gens=%s"%(r, gens))
print(tor_invs, inf_gens, tor_gens)
if len(tor_gens) < 2:
allgensfile.write(L)
else:
if verbose:
print("old line")
print(L)
E = EllipticCurve(parse_int_list(ainvs))
T = E.torsion_subgroup()
tor_struct = list(T.invariants())
tor_gens = [P.element() for P in T.smith_form_gens()]
assert all([P.order() == n for P, n in zip(tor_gens, tor_struct)])
# allgens (including torsion gens, listed last)
line = ' '.join([N, cl, num, ainvs, r]
+ [liststr(tor_struct)]
+ inf_gens #[point_to_proj(P) for P in gens]
+ [point_to_proj(P) for P in tor_gens]
)
if verbose:
print("new line")
print(line)
allgensfile.write(line+'\n')
infile.close()
allgensfile.close()
def fix_all_torsion():
for n in range(23):
ns = str(n)
filename = "allgens." + ns + "0000-" + ns + "9999"
print(filename)
fix_torsion(filename)
def merge_gens(infile1, infile2):
_, suf = infile1.split(".")
infile1 = open(infile1)
infile2 = open(infile2)
allgensfile = open("mallgens." + suf, mode='w')
L1 = infile1.readline()
L2 = infile2.readline()
while len(L1) > 0 and len(L2) > 0:
N1, cl1, cu1, _ = L1.split(' ', 3)
N2, cl2, cu2, _ = L2.split(' ', 3)
if compare([N1, cl1, cu1], [N2, cl2, cu2]) < 0:
allgensfile.write(L1)
L1 = infile1.readline()
else:
allgensfile.write(L2)
L2 = infile2.readline()
while len(L1) > 0:
allgensfile.write(L1)
L1 = infile1.readline()
while len(L2) > 0:
allgensfile.write(L2)
L2 = infile2.readline()
infile1.close()
infile2.close()
allgensfile.close()
def compare(Ncc1, Ncc2):
d = Integer(Ncc1[0])-Integer(Ncc2[0])
if d != 0:
return d
code1 = Ncc1[1] + Ncc1[2]
code2 = Ncc2[1] + Ncc2[2]
d = cmp_code(code1, code2)
return d
def check_degphi(infilename):
infile = open(infilename)
for L in infile.readlines():
N, cl, num, _, d = L.split()
if int(N) == 990 and cl == 'h':
continue
d = int(d)
if int(num) == 1:
d1 = d
else:
if d1 < d:
pass
else:
print("%s: d=%s but d1=%s (ratio %s)"%(N+cl+str(num), d, d1, d1 // d))
infile.close()
|