File: red_gens.py

package info (click to toggle)
sagemath-database-cremona-elliptic-curves 20221013-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 5,252,172 kB
  • sloc: python: 3,515; makefile: 83; sh: 28
file content (211 lines) | stat: -rw-r--r-- 6,804 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
######################################################################
#
# Functions for Minkowski-reduction of generators, and naive reduction
# of torsion generators and of generators mod torsion.
#
######################################################################

pt_wt = lambda P: len(str(P))

def reduce_tgens(tgens, verbose=False):
    """
    tgens: list of torsion generators (if two, sorted by order)

    Return a new list of generators which is minimal with respect to string length.
    """
    r = len(tgens)
    if r == 0:
        return tgens
    if r == 1: # cyclic
        P1 = tgens[0]
        n1 = P1.order()
        if n1 == 2: # no choice
            return tgens
        Plist = [i * P1 for i in range(1, n1) if n1.gcd(i) == 1]
        Plist.sort(key=pt_wt)
        Q = Plist[0]
        if Q != P1 and verbose:
            print("Replacing torsion [{}] generator {} with {}".format(n1, P1, Q))
        return [Q]
    # now r=2 and P1 has order n1=2  while n2 = 2, 4, 6, 8.
    # -- we use brute force
    assert r == 2
    if tgens[0].order() > tgens[1].order():
        tgens.reverse()
    P1, P2 = tgens
    n1 = P1.order() # = 2
    n2 = P2.order() # = 2, 4, 6 or 8
    assert n1 == 2 and n2 in [2, 4, 6, 8]
    m = n2 // 2
    P1a = m * P2    # other 2-torsion
    P1b = P1 + P1a  # points
    gen_pairs = []
    for j in range(n2):
        jP2 = j * P2
        for i in range(n1):
            Q = i * P1 + jP2
            if Q.order() != n2:
                continue
            Q2 = m * Q
            for P in [P1, P1a, P1b]:
                if P != Q2:
                    gen_pairs.append((P, Q))
    pt_wt2 = lambda PQ: sum(pt_wt(P) for P in PQ)
    gen_pairs.sort(key=pt_wt2)
    rtgens = list(gen_pairs[0])
    # for structure [2,2] we swap the two gens over so that the first has smallest x-coordinate
    if n2 == 2:
        rtgens.sort(key=lambda P: list(P)[0])
    if rtgens != tgens and verbose:
        print("Replacing torsion [{},{}] generators {} with {}".format(n1, n2, tgens, rtgens))
    return rtgens

def check_minkowski(gens):
    """
    Check the points are Minkowski-reduced (rank up to 3 only)
    """
    r = len(gens)
    if r < 2 or r > 3:
        return True
    if r == 2:
        P1, P2 = gens
        h1 = P1.height()
        h2 = P2.height()
        h3 = (P1 + P2).height()
        return h1 < h2 and h2 < h3 and h3 < 2 * h1 + h2
    # r=3
    if not check_minkowski(gens[:2]):
        return False
    if not check_minkowski(gens[1:]):
        return False
    if not check_minkowski(gens[::2]):
        return False
    P1, P2, P3 = gens
    h3 = P3.height()
    P4 = P1 + P2
    if h3 > (P3 + P4).height() or h3 > (P3 - P4).height():
        return False
    P4 = P1 - P2
    return h3 < (P3 + P4).height() and h3 < (P3 - P4).height()

def reduce_mod_2d(P3, P1, P2, debug=False):
    """
    Assuming [P1,P2] reduced, return P3+n1*P1+n2*P2 of minimal height
    """
    if debug:
        print("Reducing {} mod [{},{}]".format(P3, P1, P2))
    h1 = P1.height()
    h2 = P2.height()
    assert h1 <= h2
    P12 = P1 + P2
    h12 = (P12.height() - h1 - h2) / 2
    assert 2 * h12.abs() <= h1

    # now the height of x*P1+y*P2 is ax^2+2bxy+cy^2

    h3 = P3.height()
    h13 = ((P1 + P3).height() - h1 - h3) / 2
    h23 = ((P2 + P3).height() - h2 - h3) / 2

    d = h1 * h2 - h12 * h12
    y1 = (h2 * h13 - h12 * h23) / d
    y2 = (h1 * h23 - h12 * h13) / d

    # now y1*P1+y2*p2 is the orthogonal projection of P3 onto the P1,P2-plane

    n1 = y1.round()
    n2 = y2.round()

    if debug:
        print("orthog proj has coords ({},{}), rounded to ({},{})".format(y1, y2, n1, n2))
    Q3 = P3 - (n1 * P1 + n2 * P2) # approximate answer
    if debug:
        print("base reduction is {}, height {}".format(Q3, Q3.height()))
    P21 = P1 - P2
    Q3list = [Q3, Q3 - P1, Q3 + P1, Q3 - P2, Q3 + P2, Q3 - P12, Q3 + P12, Q3 - P21, Q3 + P21]
    Q3list.sort(key=lambda P: P.height())
    if debug:
        print("candidates for reduction: {}".format(Q3list))
        print(" with heights: {}".format([Q.height() for Q in Q3list]))
        R = P3 - P1 - P2
        print(" P3-P1-P2 ={} has height {}".format(R, R.height()))
    return Q3list[0]

def mreduce_gens(gens, debug=False):
    r = len(gens)
    if r < 2 or r > 3:
        return gens
    if r == 2:
        P1, P2 = gens
        h1 = P1.height()
        h2 = P2.height()
        h12 = ((P1 + P2).height() - h1 - h2) / 2

        while True:
            x = (h12/h1).round()
            y = h12 - x * h1
            P1, P2 = P2 - x * P1, P1
            h1, h2 = h2, h1
            h1 = h1 - x * (y + h12)
            h12 = y
            if h1 > h2:
                return [P2, P1]

    # now r=3
    if check_minkowski(gens):
        return gens
    P1, P2, P3 = gens
    if debug:
        print("--------------------------------------------------------")
    while True:
        if debug:
            print("At top of loop: {}".format([P1, P2, P3]))
        P1, P2 = mreduce_gens([P1, P2]) # recursive
        if debug:
            print("After one 2D step: {}".format([P1, P2, P3]))
        P3 = reduce_mod_2d(P3, P1, P2)
        if debug:
            print("After reducing P3 mod [P1,P2]: {}".format([P1, P2, P3]))
        h3 = P3.height()
        if h3 >= P2.height():
            newgens = [P1, P2, P3]
            if not check_minkowski(newgens):
                label = gens[0].curve().label()
                print("{}: gens = {}, newgens = {} are not Minkowski-reduced!".format(label, gens, newgens))
                print("heights are {}".format([P.height() for P in newgens]))
                raise RuntimeError
            return newgens
        P1, P2, P3 = (P1, P3, P2) if P1.height() < h3 else (P3, P1, P2)
        if debug:
            print("After resorting: {}".format([P1, P2, P3]))

def reduce_gens(gens, tgens, verbose=False, label=None):
    """
    gens: list of generators mod torsion
    tgens: list of torsion generators

    (1) Reduce the torsion generators w.r.t. string length
    (2) Minkowki reduce the mod-torsion gens (or just LLL-reduce if rank>3)
    (3) Reduce the mod-torsion gens mod torsion w.r.t. string length

    """
    rtgens = reduce_tgens(tgens)
    if not gens:
        return [], rtgens
    E = gens[0].curve()
    newgens = mreduce_gens(E.lll_reduce(gens)[0]) # discard transformation matrix

    Tlist = E.torsion_points() if tgens else [E(0)]

    def reduce_one(P):
        mP = -P
        Plist = [P + T for T in Tlist] + [mP + T for T in Tlist]
        Plist.sort(key=pt_wt)
        return Plist[0]

    newgens = [reduce_one(P) for P in newgens]

    if verbose and len(gens) > 1 and newgens != gens:
        print("replacing {} generators ({}) {} with {}".format(len(gens), label, gens, newgens))

    return newgens, rtgens