1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
######################################################################
#
# Functions for Minkowski-reduction of generators, and naive reduction
# of torsion generators and of generators mod torsion.
#
######################################################################
pt_wt = lambda P: len(str(P))
def reduce_tgens(tgens, verbose=False):
"""
tgens: list of torsion generators (if two, sorted by order)
Return a new list of generators which is minimal with respect to string length.
"""
r = len(tgens)
if r == 0:
return tgens
if r == 1: # cyclic
P1 = tgens[0]
n1 = P1.order()
if n1 == 2: # no choice
return tgens
Plist = [i * P1 for i in range(1, n1) if n1.gcd(i) == 1]
Plist.sort(key=pt_wt)
Q = Plist[0]
if Q != P1 and verbose:
print("Replacing torsion [{}] generator {} with {}".format(n1, P1, Q))
return [Q]
# now r=2 and P1 has order n1=2 while n2 = 2, 4, 6, 8.
# -- we use brute force
assert r == 2
if tgens[0].order() > tgens[1].order():
tgens.reverse()
P1, P2 = tgens
n1 = P1.order() # = 2
n2 = P2.order() # = 2, 4, 6 or 8
assert n1 == 2 and n2 in [2, 4, 6, 8]
m = n2 // 2
P1a = m * P2 # other 2-torsion
P1b = P1 + P1a # points
gen_pairs = []
for j in range(n2):
jP2 = j * P2
for i in range(n1):
Q = i * P1 + jP2
if Q.order() != n2:
continue
Q2 = m * Q
for P in [P1, P1a, P1b]:
if P != Q2:
gen_pairs.append((P, Q))
pt_wt2 = lambda PQ: sum(pt_wt(P) for P in PQ)
gen_pairs.sort(key=pt_wt2)
rtgens = list(gen_pairs[0])
# for structure [2,2] we swap the two gens over so that the first has smallest x-coordinate
if n2 == 2:
rtgens.sort(key=lambda P: list(P)[0])
if rtgens != tgens and verbose:
print("Replacing torsion [{},{}] generators {} with {}".format(n1, n2, tgens, rtgens))
return rtgens
def check_minkowski(gens):
"""
Check the points are Minkowski-reduced (rank up to 3 only)
"""
r = len(gens)
if r < 2 or r > 3:
return True
if r == 2:
P1, P2 = gens
h1 = P1.height()
h2 = P2.height()
h3 = (P1 + P2).height()
return h1 < h2 and h2 < h3 and h3 < 2 * h1 + h2
# r=3
if not check_minkowski(gens[:2]):
return False
if not check_minkowski(gens[1:]):
return False
if not check_minkowski(gens[::2]):
return False
P1, P2, P3 = gens
h3 = P3.height()
P4 = P1 + P2
if h3 > (P3 + P4).height() or h3 > (P3 - P4).height():
return False
P4 = P1 - P2
return h3 < (P3 + P4).height() and h3 < (P3 - P4).height()
def reduce_mod_2d(P3, P1, P2, debug=False):
"""
Assuming [P1,P2] reduced, return P3+n1*P1+n2*P2 of minimal height
"""
if debug:
print("Reducing {} mod [{},{}]".format(P3, P1, P2))
h1 = P1.height()
h2 = P2.height()
assert h1 <= h2
P12 = P1 + P2
h12 = (P12.height() - h1 - h2) / 2
assert 2 * h12.abs() <= h1
# now the height of x*P1+y*P2 is ax^2+2bxy+cy^2
h3 = P3.height()
h13 = ((P1 + P3).height() - h1 - h3) / 2
h23 = ((P2 + P3).height() - h2 - h3) / 2
d = h1 * h2 - h12 * h12
y1 = (h2 * h13 - h12 * h23) / d
y2 = (h1 * h23 - h12 * h13) / d
# now y1*P1+y2*p2 is the orthogonal projection of P3 onto the P1,P2-plane
n1 = y1.round()
n2 = y2.round()
if debug:
print("orthog proj has coords ({},{}), rounded to ({},{})".format(y1, y2, n1, n2))
Q3 = P3 - (n1 * P1 + n2 * P2) # approximate answer
if debug:
print("base reduction is {}, height {}".format(Q3, Q3.height()))
P21 = P1 - P2
Q3list = [Q3, Q3 - P1, Q3 + P1, Q3 - P2, Q3 + P2, Q3 - P12, Q3 + P12, Q3 - P21, Q3 + P21]
Q3list.sort(key=lambda P: P.height())
if debug:
print("candidates for reduction: {}".format(Q3list))
print(" with heights: {}".format([Q.height() for Q in Q3list]))
R = P3 - P1 - P2
print(" P3-P1-P2 ={} has height {}".format(R, R.height()))
return Q3list[0]
def mreduce_gens(gens, debug=False):
r = len(gens)
if r < 2 or r > 3:
return gens
if r == 2:
P1, P2 = gens
h1 = P1.height()
h2 = P2.height()
h12 = ((P1 + P2).height() - h1 - h2) / 2
while True:
x = (h12/h1).round()
y = h12 - x * h1
P1, P2 = P2 - x * P1, P1
h1, h2 = h2, h1
h1 = h1 - x * (y + h12)
h12 = y
if h1 > h2:
return [P2, P1]
# now r=3
if check_minkowski(gens):
return gens
P1, P2, P3 = gens
if debug:
print("--------------------------------------------------------")
while True:
if debug:
print("At top of loop: {}".format([P1, P2, P3]))
P1, P2 = mreduce_gens([P1, P2]) # recursive
if debug:
print("After one 2D step: {}".format([P1, P2, P3]))
P3 = reduce_mod_2d(P3, P1, P2)
if debug:
print("After reducing P3 mod [P1,P2]: {}".format([P1, P2, P3]))
h3 = P3.height()
if h3 >= P2.height():
newgens = [P1, P2, P3]
if not check_minkowski(newgens):
label = gens[0].curve().label()
print("{}: gens = {}, newgens = {} are not Minkowski-reduced!".format(label, gens, newgens))
print("heights are {}".format([P.height() for P in newgens]))
raise RuntimeError
return newgens
P1, P2, P3 = (P1, P3, P2) if P1.height() < h3 else (P3, P1, P2)
if debug:
print("After resorting: {}".format([P1, P2, P3]))
def reduce_gens(gens, tgens, verbose=False, label=None):
"""
gens: list of generators mod torsion
tgens: list of torsion generators
(1) Reduce the torsion generators w.r.t. string length
(2) Minkowki reduce the mod-torsion gens (or just LLL-reduce if rank>3)
(3) Reduce the mod-torsion gens mod torsion w.r.t. string length
"""
rtgens = reduce_tgens(tgens)
if not gens:
return [], rtgens
E = gens[0].curve()
newgens = mreduce_gens(E.lll_reduce(gens)[0]) # discard transformation matrix
Tlist = E.torsion_points() if tgens else [E(0)]
def reduce_one(P):
mP = -P
Plist = [P + T for T in Tlist] + [mP + T for T in Tlist]
Plist.sort(key=pt_wt)
return Plist[0]
newgens = [reduce_one(P) for P in newgens]
if verbose and len(gens) > 1 and newgens != gens:
print("replacing {} generators ({}) {} with {}".format(len(gens), label, gens, newgens))
return newgens, rtgens
|