File: lcalc.py

package info (click to toggle)
sagemath 7.4-9
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 108,312 kB
  • ctags: 72,147
  • sloc: python: 800,328; sh: 10,775; cpp: 7,154; ansic: 2,301; objc: 1,372; makefile: 889; lisp: 1
file content (395 lines) | stat: -rw-r--r-- 11,605 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
r"""
Rubinstein's `L`-function Calculator

This interface provides complete
access to Rubinstein's lcalc calculator with extra PARI
functionality compiled in
and is a standard part of Sage.

.. note::

   Each call to ``lcalc`` runs a complete
   ``lcalc`` process. On a typical Linux system, this
   entails about 0.3 seconds overhead.

AUTHORS:

- Michael Rubinstein (2005): released under GPL the C++ program lcalc

- William Stein (2006-03-05): wrote Sage interface to lcalc
"""

########################################################################
#       Copyright (C) 2006 William Stein <wstein@gmail.com>
#
#  Distributed under the terms of the GNU General Public License (GPL)
#
#                  http://www.gnu.org/licenses/
########################################################################
from __future__ import absolute_import, print_function

import os

from sage.structure.sage_object import SageObject
from sage.misc.all import pager
import sage.rings.all
import sage.schemes.elliptic_curves.ell_generic

prec = 32

class LCalc(SageObject):
    r"""
    Rubinstein's `L`-functions Calculator

    Type ``lcalc.[tab]`` for a list of useful commands that
    are implemented using the command line interface, but return
    objects that make sense in Sage. For each command the possible
    inputs for the L-function are:


    -  ``"`` - (default) the Riemann zeta function

    -  ``'tau'`` - the L function of the Ramanujan delta
       function

    -  elliptic curve E - where E is an elliptic curve over
       `\mathbb{Q}`; defines `L(E,s)`


    You can also use the complete command-line interface of
    Rubinstein's `L`-functions calculations program via this
    class. Type ``lcalc.help()`` for a list of commands and
    how to call them.
    """
    def _repr_(self):
        return "Rubinsteins L-function Calculator"

    def __call__(self, args):
        cmd = 'lcalc %s'%args
        return os.popen(cmd).read().strip()

    def _compute_L(self, L):
        if isinstance(L, str):
            if L == 'tau':
                return '--tau'
            return L
        import sage.schemes.all
        if sage.schemes.elliptic_curves.ell_generic.is_EllipticCurve(L):
            if L.base_ring() == sage.rings.all.RationalField():
                L = L.minimal_model()
                return '-e --a1 %s --a2 %s --a3 %s --a4 %s --a6 %s'%tuple(L.a_invariants())
        raise TypeError("$L$-function of %s not known"%L)

    def help(self):
        try:
            h = self.__help
        except AttributeError:
            h = "-"*70 + '\n'
            h += "   Call lcalc with one argument, e.g., \n"
            h += "      sage: lcalc('--tau -z 1000')\n"
            h += "   is translated into the command line\n"
            h += "      $ lcalc --tau -z 1000\n"
            h += "-"*70 + '\n'
            h += '\n' + self('--help')
            self.__help = h
        pager()(h)

    def zeros(self, n, L=''):
        """
        Return the imaginary parts of the first `n` nontrivial
        zeros of the `L`-function in the upper half plane, as
        32-bit reals.

        INPUT:


        -  ``n`` - integer

        -  ``L`` - defines `L`-function (default:
           Riemann zeta function)


        This function also checks the Riemann Hypothesis and makes sure no
        zeros are missed. This means it looks for several dozen zeros to
        make sure none have been missed before outputting any zeros at all,
        so takes longer than
        ``self.zeros_of_zeta_in_interval(...)``.

        EXAMPLES::

            sage: lcalc.zeros(4)                           # long time
            [14.1347251, 21.0220396, 25.0108576, 30.4248761]
            sage: lcalc.zeros(5, L='--tau')                # long time
            [9.22237940, 13.9075499, 17.4427770, 19.6565131, 22.3361036]
            sage: lcalc.zeros(3, EllipticCurve('37a'))     # long time
              ***   Warning: increasing stack size to...
            [0.000000000, 5.00317001, 6.87039122]
        """
        L = self._compute_L(L)
        RR = sage.rings.all.RealField(prec)
        X = self('-z %s %s'%(int(n), L))
        return [RR(z) for z in X.split()]

    def zeros_in_interval(self, x, y, stepsize, L=''):
        r"""
        Return the imaginary parts of (most of) the nontrivial zeros of the
        `L`-function on the line `\Re(s)=1/2` with positive
        imaginary part between `x` and `y`, along with a
        technical quantity for each.

        INPUT:


        -  ``x, y, stepsize`` - positive floating point
           numbers

        -  ``L`` - defines `L`-function (default:
           Riemann zeta function)


        OUTPUT: list of pairs (zero, S(T)).

        Rubinstein writes: The first column outputs the imaginary part of
        the zero, the second column a quantity related to `S(T)`
        (it increases roughly by 2 whenever a sign change, i.e. pair of
        zeros, is missed). Higher up the critical strip you should use a
        smaller stepsize so as not to miss zeros.

        EXAMPLES::

            sage: lcalc.zeros_in_interval(10, 30, 0.1)
            [(14.1347251, 0.184672916), (21.0220396, -0.0677893290), (25.0108576, -0.0555872781)]
        """
        L = self._compute_L(L)
        RR = sage.rings.all.RealField(prec)
        X = self('--zeros-interval -x %s -y %s --stepsize=%s %s'%(
            float(x), float(y), float(stepsize), L))
        return [tuple([RR(z) for z in t.split()]) for t in X.split('\n')]

    def value(self, s, L=''):
        r"""
        Return `L(s)` for `s` a complex number.

        INPUT:


        -  ``s`` - complex number

        -  ``L`` - defines `L`-function (default:
           Riemann zeta function)


        EXAMPLES::

            sage: I = CC.0
            sage: lcalc.value(0.5 + 100*I)
            2.69261989 - 0.0203860296*I

        Note, Sage can also compute zeta at complex numbers (using the PARI
        C library)::

            sage: (0.5 + 100*I).zeta()
            2.69261988568132 - 0.0203860296025982*I
        """
        L = self._compute_L(L)
        CC = sage.rings.all.ComplexField(prec)
        s = CC(s)
        x, y = self('-v -x %s -y %s %s'%(s.real(), s.imag(), L)).split()
        return CC((float(x), float(y)))

    def values_along_line(self, s0, s1, number_samples, L=''):
        r"""
        Return values of `L(s)` at ``number_samples``
        equally-spaced sample points along the line from `s_0` to
        `s_1` in the complex plane.

        INPUT:


        -  ``s0, s1`` - complex numbers

        -  ``number_samples`` - integer

        -  ``L`` - defines `L`-function (default:
           Riemann zeta function)


        OUTPUT:


        -  ``list`` - list of pairs (s, zeta(s)), where the s
           are equally spaced sampled points on the line from s0 to s1.


        EXAMPLES::

            sage: I = CC.0
            sage: lcalc.values_along_line(0.5, 0.5+20*I, 5)
            [(0.500000000, -1.46035451), (0.500000000 + 4.00000000*I, 0.606783764 + 0.0911121400*I), (0.500000000 + 8.00000000*I, 1.24161511 + 0.360047588*I), (0.500000000 + 12.0000000*I, 1.01593665 - 0.745112472*I), (0.500000000 + 16.0000000*I, 0.938545408 + 1.21658782*I)]

        Sometimes warnings are printed (by lcalc) when this command is
        run::

            sage: E = EllipticCurve('389a')
            sage: E.lseries().values_along_line(0.5, 3, 5)
              ***   Warning: increasing stack size to...
            [(0.000000000, 0.209951303),
             (0.500000000, -...e-16),
             (1.00000000, 0.133768433),
             (1.50000000, 0.360092864),
             (2.00000000, 0.552975867)]
        """
        L = self._compute_L(L)
        CC = sage.rings.all.ComplexField(prec)
        s0 = CC(s0)
        s1 = CC(s1)
        v = self('--value-line-segment -x %s -y %s -X %s -Y %s --number-samples %s %s'%(
            (s0.real(), s0.imag(), s1.real(), s1.imag(), int(number_samples), L)))
        w = []
        for a in v.split('\n'):
            try:
                x0,y0,x1,y1 = a.split()
                w.append((CC(x0,y0), CC(x1,y1)))
            except ValueError:
                print('lcalc: {}'.format(a))
        return w

    def twist_values(self, s, dmin, dmax, L=''):
        r"""
        Return values of `L(s, \chi_k)` for each quadratic
        character `\chi_k` whose discriminant `d` satisfies
        `d_{\min} \leq d \leq d_{\max}`.

        INPUT:


        -  ``s`` - complex numbers

        -  ``dmin`` - integer

        -  ``dmax`` - integer

        -  ``L`` - defines `L`-function (default:
           Riemann zeta function)


        OUTPUT:


        -  ``list`` - list of pairs (d, L(s,chi_d))


        EXAMPLES::

            sage: lcalc.twist_values(0.5, -10, 10)
            [(-8, 1.10042141), (-7, 1.14658567), (-4, 0.667691457), (-3, 0.480867558), (5, 0.231750947), (8, 0.373691713)]
        """
        L = self._compute_L(L)
        CC = sage.rings.all.ComplexField(prec)
        Z = sage.rings.all.Integer
        s = CC(s)
        typ = '--twist-quadratic'
        dmin = int(dmin)
        dmax = int(dmax)
        v = self('-v -x %s -y %s %s --start %s --finish %s %s'%(
            (s.real(), s.imag(), typ, dmin, dmax, L)))
        w = []
        if len(v) == 0:
            return w
        if len(v) == 0:
            return w
        for a in v.split('\n'):
            d,x,y = a.split()
            w.append((Z(d), CC(x,y)))
        return w

    def twist_zeros(self, n, dmin, dmax, L=''):
        r"""
        Return first `n` real parts of nontrivial zeros for each
        quadratic character `\chi_k` whose discriminant `d` satisfies
        `d_{\min} \leq d \leq d_{\max}`.

        INPUT:


        -  ``n`` - integer

        -  ``dmin`` - integer

        -  ``dmax`` - integer

        -  ``L`` - defines `L`-function (default:
           Riemann zeta function)


        OUTPUT:


        -  ``dict`` - keys are the discriminants `d`,
           and values are list of corresponding zeros.


        EXAMPLES::

            sage: lcalc.twist_zeros(3, -3, 6)
            {-3: [8.03973716, 11.2492062, 15.7046192], 5: [6.64845335, 9.83144443, 11.9588456]}
        """
        L = self._compute_L(L)
        RR = sage.rings.all.RealField(prec)
        Z = sage.rings.all.Integer
        typ = '--twist-quadratic'
        n = int(n)
        v = self('-z %s %s --start %s --finish %s %s'%(
            (n, typ, dmin, dmax, L)))
        w = {}
        if len(v) == 0:
            return w
        for a in v.split('\n'):
            d, x = a.split()
            x = RR(x)
            d = Z(d)
            if d in w:
                w[d].append(x)
            else:
                w[d] = [x]
        return w

    def analytic_rank(self, L=''):
        r"""
        Return the analytic rank of the `L`-function at the central
        critical point.

        INPUT:


        -  ``L`` - defines `L`-function (default:
           Riemann zeta function)


        OUTPUT: integer

        .. note::

           Of course this is not provably correct in general, since it
           is an open problem to compute analytic ranks provably
           correctly in general.

        EXAMPLES::

            sage: E = EllipticCurve('37a')
            sage: lcalc.analytic_rank(E)
              ***   Warning: increasing stack size to...
            1
        """
        L = self._compute_L(L)
        Z = sage.rings.all.Integer
        s = self('--rank-compute %s'%L)
        i = s.find('equals')
        return Z(s[i+6:])



# An instance
lcalc = LCalc()