File: heegner.py

package info (click to toggle)
sagemath 7.4-9
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 108,312 kB
  • ctags: 72,147
  • sloc: python: 800,328; sh: 10,775; cpp: 7,154; ansic: 2,301; objc: 1,372; makefile: 889; lisp: 1
file content (7113 lines) | stat: -rw-r--r-- 249,716 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
# -*- coding: utf-8 -*-
r"""
Heegner points on elliptic curves over the rational numbers

AUTHORS:

    - William Stein (August 2009)-- most of the initial version

    - Robert Bradshaw (July 2009) -- an early version of some specific code

EXAMPLES::

    sage: E = EllipticCurve('433a')
    sage: P = E.heegner_point(-8,3)
    sage: z = P.point_exact(201); z
    (-4/3 : 1/27*a - 4/27 : 1)
    sage: parent(z)
    Abelian group of points on Elliptic Curve defined by y^2 + x*y = x^3 + 1 over Number Field in a with defining polynomial x^2 - 44*x + 1159
    sage: parent(z[0]).discriminant()
    -3
    sage: E.quadratic_twist(-3).rank()
    1
    sage: K.<a> = QuadraticField(-8)
    sage: K.factor(3)
    (Fractional ideal (1/2*a + 1)) * (Fractional ideal (-1/2*a + 1))

Next try an inert prime::

    sage: K.factor(5)
    Fractional ideal (5)
    sage: P = E.heegner_point(-8,5)
    sage: z = P.point_exact(300)
    sage: z[0].charpoly().factor()
    (x^6 + x^5 - 1/4*x^4 + 19/10*x^3 + 31/20*x^2 - 7/10*x + 49/100)^2
    sage: z[1].charpoly().factor()
    x^12 - x^11 + 6/5*x^10 - 33/40*x^9 - 89/320*x^8 + 3287/800*x^7 - 5273/1600*x^6 + 993/4000*x^5 + 823/320*x^4 - 2424/625*x^3 + 12059/12500*x^2 + 3329/25000*x + 123251/250000
    sage: f = P.x_poly_exact(300); f
    x^6 + x^5 - 1/4*x^4 + 19/10*x^3 + 31/20*x^2 - 7/10*x + 49/100
    sage: f.discriminant().factor()
    -1 * 2^-9 * 5^-9 * 7^2 * 281^2 * 1021^2

We find some Mordell-Weil generators in the rank 1 case using Heegner points::

    sage: E = EllipticCurve('43a'); P = E.heegner_point(-7)
    sage: P.x_poly_exact()
    x
    sage: P.point_exact()
    (0 : 0 : 1)

    sage: E = EllipticCurve('997a')
    sage: E.rank()
    1
    sage: E.heegner_discriminants_list(10)
    [-19, -23, -31, -35, -39, -40, -52, -55, -56, -59]
    sage: P = E.heegner_point(-19)
    sage: P.x_poly_exact()
    x - 141/49
    sage: P.point_exact()
    (141/49 : -162/343 : 1)

Here we find that the Heegner point generates a subgroup of index 3::

    sage: E = EllipticCurve('92b1')
    sage: E.heegner_discriminants_list(1)
    [-7]
    sage: P = E.heegner_point(-7); z = P.point_exact(); z
    (0 : 1 : 1)
    sage: E.regulator()
    0.0498083972980648
    sage: z.height()
    0.448275575682583
    sage: P = E(1,1); P # a generator
    (1 : 1 : 1)
    sage: -3*P
    (0 : 1 : 1)
    sage: E.tamagawa_product()
    3

The above is consistent with the following analytic computation::

    sage: E.heegner_index(-7)
    3.0000?
"""

#*****************************************************************************
#       Copyright (C) 2005-2009 William Stein <wstein@gmail.com>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#                  http://www.gnu.org/licenses/
#*****************************************************************************
from __future__ import print_function, absolute_import
from six.moves import range

from sage.misc.all import verbose, prod
from sage.misc.cachefunc import cached_method

from sage.structure.sage_object import SageObject

import sage.rings.number_field.number_field_element
import sage.rings.number_field.number_field as number_field
import sage.rings.all as rings
from sage.rings.all import (ZZ, GF, QQ, CDF,
                            Integers, RealField, ComplexField, QuadraticField,
                            is_fundamental_discriminant)
from sage.arith.all import (gcd, xgcd, lcm, prime_divisors, factorial,
        binomial)
from sage.quadratic_forms.all import (BinaryQF,
                                      BinaryQF_reduced_representatives)
from sage.matrix.all import MatrixSpace, matrix

from sage.modular.modsym.p1list import P1List


##################################################################################
#
# The exported functions, which are in most cases enough to get the
# user going working with Heegner points:
#
#    heegner_points -- all of them with given level, discriminant, conducto
#    heegner_point -- a specific one
#
##################################################################################

def heegner_points(N, D=None, c=None):
    """
    Return all Heegner points of given level `N`.  Can also restrict
    to Heegner points with specified discriminant `D` and optionally
    conductor `c`.

    INPUT:

        - `N` -- level (positive integer)

        - `D` -- discriminant (negative integer)

        - `c` -- conductor (positive integer)

    EXAMPLES::

        sage: heegner_points(389,-7)
        Set of all Heegner points on X_0(389) associated to QQ[sqrt(-7)]
        sage: heegner_points(389,-7,1)
        All Heegner points of conductor 1 on X_0(389) associated to QQ[sqrt(-7)]
        sage: heegner_points(389,-7,5)
        All Heegner points of conductor 5 on X_0(389) associated to QQ[sqrt(-7)]
    """
    if D is None and c is None:
        return HeegnerPoints_level(N)
    if D is not None and c is None:
        return HeegnerPoints_level_disc(N, D)
    if D is not None and c is not None:
        return HeegnerPoints_level_disc_cond(N,D,c)
    raise TypeError

def heegner_point(N, D=None, c=1):
    """
    Return a specific Heegner point of level `N` with given
    discriminant and conductor.  If `D` is not specified, then the
    first valid Heegner discriminant is used.  If `c` is not given,
    then `c=1` is used.

    INPUT:

        - `N` -- level (positive integer)

        - `D` -- discriminant (optional: default first valid `D`)

        - `c` -- conductor (positive integer, optional, default: 1)

    EXAMPLES::

        sage: heegner_point(389)
        Heegner point 1/778*sqrt(-7) - 185/778 of discriminant -7 on X_0(389)
        sage: heegner_point(389,-7)
        Heegner point 1/778*sqrt(-7) - 185/778 of discriminant -7 on X_0(389)
        sage: heegner_point(389,-7,5)
        Heegner point 5/778*sqrt(-7) - 147/778 of discriminant -7 and conductor 5 on X_0(389)
        sage: heegner_point(389,-20)
        Heegner point 1/778*sqrt(-20) - 165/389 of discriminant -20 on X_0(389)
    """
    if D is not None:
        return heegner_points(N,D,c)[0]
    H = heegner_points(N)
    D = H.discriminants(1)[0]
    return heegner_points(N,D,c)[0]


##################################################################################
#
# Ring class fields, represented as abstract objects.  These do not
# derive from number fields, since we do not need to work with their
# elements, and explicitly representing them as number fields would be
# far too difficult.
#
##################################################################################

class RingClassField(SageObject):
    """
    A Ring class field of a quadratic imaginary field of given conductor.

    .. NOTE::

        This is a *ring* class field, not a ray class field. In
        general, the ring class field of given conductor is a subfield
        of the ray class field of the same conductor.

    EXAMPLES::

        sage: heegner_point(37,-7).ring_class_field()
        Hilbert class field of QQ[sqrt(-7)]
        sage: heegner_point(37,-7,5).ring_class_field()
        Ring class field extension of QQ[sqrt(-7)] of conductor 5
        sage: heegner_point(37,-7,55).ring_class_field()
        Ring class field extension of QQ[sqrt(-7)] of conductor 55

    TESTS::

        sage: K_c = heegner_point(37,-7).ring_class_field()
        sage: type(K_c)
        <class 'sage.schemes.elliptic_curves.heegner.RingClassField'>
        sage: loads(dumps(K_c)) == K_c
        True
    """
    def __init__(self, D, c, check=True):
        """
        INPUT:

            - `D` -- discriminant of quadratic imaginary field

            - `c` -- conductor (positive integer coprime to `D`)

            - ``check`` -- bool (default: ``True``); whether to check
              validity of input

        EXAMPLES::

            sage: sage.schemes.elliptic_curves.heegner.RingClassField(-7,5, False)
            Ring class field extension of QQ[sqrt(-7)] of conductor 5

        """
        if check:
            D = ZZ(D); c = ZZ(c)
        self.__D = D
        self.__c = c

    def __eq__(self, other):
        """
        Used for equality testing.

        EXAMPLES::

            sage: E = EllipticCurve('389a'); K5 = E.heegner_point(-7,5).ring_class_field()
            sage: K11 = E.heegner_point(-7,11).ring_class_field()
            sage: K5 == K11
            False
            sage: K5 == K5
            True
            sage: K11 == 11
            False
        """
        return isinstance(other, RingClassField) and self.__D == other.__D and self.__c == other.__c

    def __hash__(self):
        """
        Used for computing hash of ``self``.

        .. NOTE::

            The hash is equal to the hash of the pair
            ``(discriminant, conductor)``.

        EXAMPLES::

            sage: E = EllipticCurve('389a'); K5 = E.heegner_point(-7,5).ring_class_field()
            sage: hash(K5) == hash((-7,5))
            True
        """
        return hash((self.__D, self.__c))

    def conductor(self):
        """
        Return the conductor of this ring class field.

        EXAMPLES::

            sage: E = EllipticCurve('389a'); K5 = E.heegner_point(-7,5).ring_class_field()
            sage: K5.conductor()
            5
        """
        return self.__c

    def discriminant_of_K(self):
        """
        Return the discriminant of the quadratic imaginary field `K` contained in ``self``.

        EXAMPLES::

            sage: E = EllipticCurve('389a'); K5 = E.heegner_point(-7,5).ring_class_field()
            sage: K5.discriminant_of_K()
            -7
        """
        return self.__D

    @cached_method
    def ramified_primes(self):
        r"""
        Return the primes of `\ZZ` that ramify in this ring class field.

        EXAMPLES::

            sage: E = EllipticCurve('389a'); K55 = E.heegner_point(-7,55).ring_class_field()
            sage: K55.ramified_primes()
            [5, 7, 11]
            sage: E.heegner_point(-7).ring_class_field().ramified_primes()
            [7]
        """
        return prime_divisors(self.__D * self.__c)

    def _repr_(self):
        """
        EXAMPLES::

            sage: heegner_point(37,-7,55).ring_class_field()._repr_()
            'Ring class field extension of QQ[sqrt(-7)] of conductor 55'
            sage: heegner_point(37,-7).ring_class_field()._repr_()
            'Hilbert class field of QQ[sqrt(-7)]'
        """
        c = self.__c
        if c == 1:
            return "Hilbert class field of QQ[sqrt(%s)]"%self.__D
        else:
            return "Ring class field extension of QQ[sqrt(%s)] of conductor %s"%(self.__D, self.__c)

    @cached_method
    def degree_over_K(self):
        """
        Return the relative degree of this ring class field over the
        quadratic imaginary field `K`.

        EXAMPLES::

            sage: E = EllipticCurve('389a'); P = E.heegner_point(-7,5)
            sage: K5 = P.ring_class_field(); K5
            Ring class field extension of QQ[sqrt(-7)] of conductor 5
            sage: K5.degree_over_K()
            6
            sage: type(K5.degree_over_K())
            <type 'sage.rings.integer.Integer'>

            sage: E = EllipticCurve('389a'); E.heegner_point(-20).ring_class_field().degree_over_K()
            2
            sage: E.heegner_point(-20,3).ring_class_field().degree_over_K()
            4
            sage: kronecker(-20,11)
            -1
            sage: E.heegner_point(-20,11).ring_class_field().degree_over_K()
            24
        """
        K = self.quadratic_field()

        # Multiply class number by relative degree of the Hilbert class field H over K.
        return K.class_number() * self.degree_over_H()

    @cached_method
    def degree_over_H(self):
        """
        Return the degree of this field over the Hilbert class field `H` of `K`.

        EXAMPLES::

            sage: E = EllipticCurve('389a')
            sage: E.heegner_point(-59).ring_class_field().degree_over_H()
            1
            sage: E.heegner_point(-59).ring_class_field().degree_over_K()
            3
            sage: QuadraticField(-59,'a').class_number()
            3

        Some examples in which prime dividing c is inert::

            sage: heegner_point(37,-7,3).ring_class_field().degree_over_H()
            4
            sage: heegner_point(37,-7,3^2).ring_class_field().degree_over_H()
            12
            sage: heegner_point(37,-7,3^3).ring_class_field().degree_over_H()
            36

        The prime dividing c is split.  For example, in the first case
        `O_K/cO_K` is isomorphic to a direct sum of two copies of
        ``GF(2)``, so the units are trivial::

            sage: heegner_point(37,-7,2).ring_class_field().degree_over_H()
            1
            sage: heegner_point(37,-7,4).ring_class_field().degree_over_H()
            2
            sage: heegner_point(37,-7,8).ring_class_field().degree_over_H()
            4

        Now c is ramified::

            sage: heegner_point(37,-7,7).ring_class_field().degree_over_H()
            7
            sage: heegner_point(37,-7,7^2).ring_class_field().degree_over_H()
            49

        Check that :trac:`15218` is solved::

            sage: E = EllipticCurve("19a");
            sage: s = E.heegner_point(-3,2).ring_class_field().galois_group().complex_conjugation()
            sage: H = s.domain(); H.absolute_degree()
            2
        """
        c = self.__c
        if c == 1:
            return ZZ(1)

        # Let K_c be the ring class field.  We have by class field theory that
        #           Gal(K_c / H) = (O_K / c O_K)^* / ((Z/cZ)^* M),
        # where M is the image of the roots of unity of K in (O_K / c O_K)^*.
        #
        # To compute the cardinality of the above Galois group, we
        # first reduce to the case that c = p^e is a prime power
        # (since the expression is multiplicative in c).
        # Of course, note also that #(Z/cZ)^* = phi(c)
        #
        # Case 1: p splits in O_K.  Then
        #         #(O_K/p^e*O_K)^* = (#(Z/p^eZ)^*)^2 = phi(p^e)^2, so
        #           #(O_K/p^e*O_K)^*/(Z/p^eZ)^* = phi(p^e) = p^e - p^(e-1)
        #
        # Case 2: p is inert in O_K.  Then
        #         #(O_K/p^e O_K)^* = p^(2*e)-p^(2*(e-1))
        #         so #(O_K/p^e*O_K)^*/(Z/p^eZ)^*
        #              = (p^(2*e)-p^(2*(e-1)))/(p^e-p^(e-1)) = p^e + p^(e-1).
        #
        # Case 3: p ramified in O_K. Then
        #         #(O_K/p^e O_K)^* = p^(2*e) - p^(2*e-1),
        #         so #(O_K/p^e O_K)^*/#(Z/p^eZ)^* = p^e.
        #
        # Section 4.2 of Cohen's "Advanced Computational Algebraic
        # Number Theory" GTM is also relevant, though Cohen is working
        # with *ray* class fields and here we want the cardinality
        # of the *ring* class field, which is a subfield.

        K = self.quadratic_field()

        n = ZZ(1)
        for p, e in c.factor():
            F = K.factor(p)
            if len(F) == 2:
                # split case
                n *= p**e - p**(e-1)
            else:
                if F[0][1] > 1:
                    # ramified case
                    n *= p**e
                else:
                    # inert case
                    n *= p**e + p**(e-1)
        return (n * ZZ(2)) // K.number_of_roots_of_unity()

    @cached_method
    def absolute_degree(self):
        r"""
        Return the absolute degree of this field over `\QQ`.

        EXAMPLES::

            sage: E = EllipticCurve('389a'); K = E.heegner_point(-7,5).ring_class_field()
            sage: K.absolute_degree()
            12
            sage: K.degree_over_K()
            6
        """
        return 2*self.degree_over_K()

    degree_over_Q = absolute_degree

    @cached_method
    def quadratic_field(self):
        r"""
        Return the quadratic imaginary field `K = \QQ(\sqrt{D})`.

        EXAMPLES::

            sage: E = EllipticCurve('389a'); K = E.heegner_point(-7,5).ring_class_field()
            sage: K.quadratic_field()
            Number Field in sqrt_minus_7 with defining polynomial x^2 + 7
        """
        D   = self.__D
        var = 'sqrt_minus_%s'%(-D)
        return number_field.QuadraticField(D,var)

    @cached_method
    def galois_group(self, base=QQ):
        """
        Return the Galois group of ``self`` over base.

        INPUT:

            - ``base`` -- (default: `\QQ`) a subfield of ``self`` or `\QQ`

        EXAMPLES::

            sage: E = EllipticCurve('389a')
            sage: A = E.heegner_point(-7,5).ring_class_field()
            sage: A.galois_group()
            Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5
            sage: B = E.heegner_point(-7).ring_class_field()
            sage: C = E.heegner_point(-7,15).ring_class_field()
            sage: A.galois_group()
            Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5
            sage: A.galois_group(B)
            Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5 over Hilbert class field of QQ[sqrt(-7)]
            sage: A.galois_group().cardinality()
            12
            sage: A.galois_group(B).cardinality()
            6
            sage: C.galois_group(A)
            Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 15 over Ring class field extension of QQ[sqrt(-7)] of conductor 5
            sage: C.galois_group(A).cardinality()
            4

        """
        return GaloisGroup(self, base)

    def is_subfield(self, M):
        """
        Return ``True`` if this ring class field is a subfield of the ring class field `M`.
        If `M` is not a ring class field, then a TypeError is raised.

        EXAMPLES::

            sage: E = EllipticCurve('389a')
            sage: A = E.heegner_point(-7,5).ring_class_field()
            sage: B = E.heegner_point(-7).ring_class_field()
            sage: C = E.heegner_point(-20).ring_class_field()
            sage: D = E.heegner_point(-7,15).ring_class_field()
            sage: B.is_subfield(A)
            True
            sage: B.is_subfield(B)
            True
            sage: B.is_subfield(D)
            True
            sage: B.is_subfield(C)
            False
            sage: A.is_subfield(B)
            False
            sage: A.is_subfield(D)
            True
        """
        if not isinstance(M, RingClassField):
            raise TypeError("M must be a ring class field")
        return self.quadratic_field() == M.quadratic_field() and \
               M.conductor() % self.conductor() == 0

##################################################################################
#
# Galois groups of ring class fields
#
##################################################################################

class GaloisGroup(SageObject):
    """
    A Galois group of a ring class field.

    EXAMPLES::

        sage: E = EllipticCurve('389a')
        sage: G = E.heegner_point(-7,5).ring_class_field().galois_group(); G
        Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5
        sage: G.field()
        Ring class field extension of QQ[sqrt(-7)] of conductor 5
        sage: G.cardinality()
        12
        sage: G.complex_conjugation()
        Complex conjugation automorphism of Ring class field extension of QQ[sqrt(-7)] of conductor 5

    TESTS::

        sage: G = heegner_point(37,-7).ring_class_field().galois_group()
        sage: loads(dumps(G)) == G
        True
        sage: type(G)
        <class 'sage.schemes.elliptic_curves.heegner.GaloisGroup'>
    """
    def __init__(self, field, base=QQ):
        r"""
        INPUT:

           - ``field`` -- a ring class field

           - ``base`` -- subfield of field (default: `\QQ`)

        EXAMPLES::

            sage: K5 = heegner_points(389,-7,5).ring_class_field()
            sage: K1 = heegner_points(389,-7,1).ring_class_field()
            sage: sage.schemes.elliptic_curves.heegner.GaloisGroup(K5,K1)
            Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5 over Hilbert class field of QQ[sqrt(-7)]
            sage: K5.galois_group(K1)
            Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5 over Hilbert class field of QQ[sqrt(-7)]
        """
        if not isinstance(field, RingClassField):
            raise TypeError("field must be of type RingClassField")
        if base != QQ and base != field.quadratic_field():
            if not isinstance(base, RingClassField):
                raise TypeError("base must be of type RingClassField or QQ or quadratic field")
            if not base.is_subfield(field):
                raise TypeError("base must be a subfield of field")
        self.__field = field
        self.__base = base

    def __eq__(self, G):
        """
        EXAMPLES::

            sage: G = EllipticCurve('389a').heegner_point(-7,5).ring_class_field().galois_group()
            sage: G == G
            True
            sage: G == 0
            False
            sage: H = EllipticCurve('389a').heegner_point(-7,11).ring_class_field().galois_group()
            sage: G == H
            False
        """
        return isinstance(G, GaloisGroup) and (G.__field,G.__base) == (self.__field,self.__base)

    def __hash__(self):
        """
        Return hash of this Galois group, which is the same as the
        hash of the pair, the field and its base.

        EXAMPLES::

            sage: G = EllipticCurve('389a').heegner_point(-7,5).ring_class_field().galois_group()
            sage: hash(G) == hash((G.field(), G.base_field()))
            True

        """
        return hash((self.__field, self.__base))

    def __call__(self, x):
        """
        Coerce `x` into ``self``, where `x` is a Galois group element, or
        in case ``self`` has base field the Hilbert class field, `x` can
        also be an element of the ring of integers.

        INPUT:

            - `x` -- automorphism or quadratic field element

        OUTPUT:

            - automorphism (or TypeError)

        EXAMPLES::

            sage: K5 = heegner_points(389,-52,5).ring_class_field()
            sage: K1 = heegner_points(389,-52,1).ring_class_field()
            sage: G = K5.galois_group(K1)
            sage: G(1)
            Class field automorphism defined by x^2 + 325*y^2
            sage: G(G[0])
            Class field automorphism defined by x^2 + 325*y^2
            sage: alpha = 2 + K1.quadratic_field().gen(); alpha
            sqrt_minus_52 + 2
            sage: G(alpha)
            Class field automorphism defined by 14*x^2 - 10*x*y + 25*y^2

        A TypeError is raised when the coercion is not possible::

            sage: G(0)
            Traceback (most recent call last):
            ...
            TypeError: x does not define element of (O_K/c*O_K)^*

        """
        if isinstance(x, GaloisAutomorphism) and x.parent() == self:
            return x
        try:
            return self._alpha_to_automorphism(x)
        except (ZeroDivisionError, TypeError):
            raise TypeError("x does not define element of (O_K/c*O_K)^*")

    def _repr_(self):
        """
        Return string representation of this Galois group.

        EXAMPLES::

            sage: E = EllipticCurve('389a')
            sage: G = E.heegner_point(-7,5).ring_class_field().galois_group()
            sage: G._repr_()
            'Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5'
        """
        if self.base_field() != QQ:
            s = " over %s"%self.base_field()
        else:
            s = ''
        return "Galois group of %s%s"%(self.field(), s)

    def field(self):
        """
        Return the ring class field that this Galois group acts on.

        EXAMPLES::

            sage: G = heegner_point(389,-7,5).ring_class_field().galois_group()
            sage: G.field()
            Ring class field extension of QQ[sqrt(-7)] of conductor 5
        """
        return self.__field

    def base_field(self):
        """
        Return the base field, which the field fixed by all the
        automorphisms in this Galois group.

        EXAMPLES::

            sage: x = heegner_point(37,-7,5)
            sage: Kc = x.ring_class_field(); Kc
            Ring class field extension of QQ[sqrt(-7)] of conductor 5
            sage: K = x.quadratic_field()
            sage: G = Kc.galois_group(); G
            Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5
            sage: G.base_field()
            Rational Field
            sage: G.cardinality()
            12
            sage: Kc.absolute_degree()
            12
            sage: G = Kc.galois_group(K); G
            Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5 over Number Field in sqrt_minus_7 with defining polynomial x^2 + 7
            sage: G.cardinality()
            6
            sage: G.base_field()
            Number Field in sqrt_minus_7 with defining polynomial x^2 + 7
            sage: G = Kc.galois_group(Kc); G
            Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5 over Ring class field extension of QQ[sqrt(-7)] of conductor 5
            sage: G.cardinality()
            1
            sage: G.base_field()
            Ring class field extension of QQ[sqrt(-7)] of conductor 5
        """
        return self.__base

    @cached_method
    def kolyvagin_generators(self):
        r"""
        Assuming this Galois group `G` is of the form
        `G=\textrm{Gal}(K_c/K_1)`, with `c=p_1\dots p_n` satisfying the
        Kolyvagin hypothesis, this function returns noncanonical
        choices of lifts of generators for each of the cyclic factors
        of `G` corresponding to the primes dividing `c`.  Thus the
        `i`-th returned valued is an element of `G` that maps to the
        identity element of `\textrm{Gal}(K_p/K_1)` for all `p \neq p_i` and
        to a choice of generator of `\textrm{Gal}(K_{p_i}/K_1)`.

        OUTPUT:

            - list of elements of ``self``

        EXAMPLES::

            sage: K3 = heegner_points(389,-52,3).ring_class_field()
            sage: K1 = heegner_points(389,-52,1).ring_class_field()
            sage: G = K3.galois_group(K1)
            sage: G.kolyvagin_generators()
            (Class field automorphism defined by 9*x^2 - 6*x*y + 14*y^2,)

            sage: K5 = heegner_points(389,-52,5).ring_class_field()
            sage: K1 = heegner_points(389,-52,1).ring_class_field()
            sage: G = K5.galois_group(K1)
            sage: G.kolyvagin_generators()
            (Class field automorphism defined by 17*x^2 - 14*x*y + 22*y^2,)
        """
        M = self.field()
        c = M.conductor()
        if not (self._base_is_hilbert_class_field() and self.is_kolyvagin()):
            raise ValueError("field must be of the form Gal(K_c/K_1)")
        if not c.is_prime():
            raise NotImplementedError("only implemented when c is prime")

        # Since c satisfies Kolyvagin and is prime, the group is cyclic,
        # so we just find a generator.
        for sigma in self:
            if sigma.order() == self.cardinality():
                return tuple([sigma])

        raise NotImplementedError

    @cached_method
    def lift_of_hilbert_class_field_galois_group(self):
        r"""
        Assuming this Galois group `G` is of the form `G=\textrm{Gal}(K_c/K)`,
        this function returns noncanonical choices of lifts of the
        elements of the quotient group `\textrm{Gal}(K_1/K)`.

        OUTPUT:

            - tuple of elements of self

        EXAMPLES::

            sage: K5 = heegner_points(389,-52,5).ring_class_field()
            sage: G = K5.galois_group(K5.quadratic_field())
            sage: G.lift_of_hilbert_class_field_galois_group()
            (Class field automorphism defined by x^2 + 325*y^2, Class field automorphism defined by 2*x^2 + 2*x*y + 163*y^2)
            sage: G.cardinality()
            12
            sage: K5.quadratic_field().class_number()
            2
        """
        if not self._base_is_quad_imag_field():
            raise ValueError("Galois group must be of the form Gal(K_c/K)")
        K = self.base_field()
        C = K.class_group()
        v = []
        lifts = []
        for sigma in self:
            I = sigma.ideal()
            g = C(I)
            if g not in v:
                v.append(g)
                lifts.append(sigma)
        return tuple(lifts)

    @cached_method
    def _list(self):
        r"""
        Enumerate the elements of ``self``.

        EXAMPLES::

        Example with order 1 (a special case)::

            sage: E = EllipticCurve('389a'); F= E.heegner_point(-7,1).ring_class_field()
            sage: G = F.galois_group(F.quadratic_field())
            sage: G._list()
            (Class field automorphism defined by x^2 + x*y + 2*y^2,)

        Example over quadratic imaginary field::

            sage: E = EllipticCurve('389a'); F= E.heegner_point(-7,5).ring_class_field()
            sage: G = F.galois_group(F.quadratic_field())
            sage: G._list()
            (Class field automorphism defined by x^2 + x*y + 44*y^2, Class field automorphism defined by 2*x^2 - x*y + 22*y^2, Class field automorphism defined by 2*x^2 + x*y + 22*y^2, Class field automorphism defined by 4*x^2 - x*y + 11*y^2, Class field automorphism defined by 4*x^2 + x*y + 11*y^2, Class field automorphism defined by 7*x^2 + 7*x*y + 8*y^2)

        Example over `\QQ` (it is not implemented yet)::

            sage: K3 = heegner_points(389,-52,3).ring_class_field()
            sage: K3.galois_group()._list()
            Traceback (most recent call last):
            ...
            NotImplementedError: Galois group over QQ not yet implemented

        Example over Hilbert class field::

            sage: K3 = heegner_points(389,-52,3).ring_class_field(); K1 = heegner_points(389,-52,1).ring_class_field()
            sage: G = K3.galois_group(K1)
            sage: G._list()
            (Class field automorphism defined by x^2 + 117*y^2, Class field automorphism defined by 9*x^2 - 6*x*y + 14*y^2, Class field automorphism defined by 9*x^2 + 13*y^2, Class field automorphism defined by 9*x^2 + 6*x*y + 14*y^2)
        """
        if self._base_is_QQ():
            raise NotImplementedError("Galois group over QQ not yet implemented")
        elif self._base_is_quad_imag_field():
            # Over the quadratic imaginary field, so straightforward
            # enumeration of all reduced primitive binary quadratic
            # forms of discriminant D*c^2.
            D = self.base_field().discriminant()
            c = self.field().conductor()
            Q = [f for f in BinaryQF_reduced_representatives(D*c*c) if f.is_primitive()]
            v = [GaloisAutomorphismQuadraticForm(self, f) for f in Q]

        elif self._base_is_hilbert_class_field() and self.is_kolyvagin():
            # Take only the automorphisms in the quad imag case that map to
            # a principal ideal.
            M = self.field()
            K = M.quadratic_field()
            v = []
            self.__p1_to_automorphism = {}
            for sigma in M.galois_group(K)._list():
                I = sigma.ideal()
                if I.is_principal():
                    # sigma does define an element of our Galois subgroup.
                    alpha = sigma.ideal().gens_reduced()[0]
                    t = GaloisAutomorphismQuadraticForm(self, sigma.quadratic_form(), alpha=alpha)
                    self.__p1_to_automorphism[t.p1_element()] = t
                    v.append(t)
        else:
            raise NotImplementedError("general Galois group not yet implemented")

        v.sort()
        assert len(v) == self.cardinality(), "bug enumerating Galois group elements"
        return tuple(v)

    def _quadratic_form_to_alpha(self, f):
        """
        INPUT:

           - `f` -- a binary quadratic form with discriminant `c^2 D`

        OUTPUT:

           - an element of the ring of integers of the quadratic
             imaginary field

        EXAMPLES::

            sage: K3 = heegner_points(389,-52,3).ring_class_field(); K1 = heegner_points(389,-52,1).ring_class_field()
            sage: G = K3.galois_group(K1)
            sage: [G._quadratic_form_to_alpha(s.quadratic_form()) for s in G]
            [3/2*sqrt_minus_52, 1/6*sqrt_minus_52 + 1/3, 1/6*sqrt_minus_52, 1/6*sqrt_minus_52 - 1/3]

        What happens when we input a quadratic form that has nothing
        to do with `G`::

            sage: G._quadratic_form_to_alpha(BinaryQF([1,2,3]))
            Traceback (most recent call last):
            ...
            ValueError: quadratic form has the wrong discriminant
        """
        A,B,C = f
        K = self.field().quadratic_field()
        if f.discriminant() != self.field().conductor()**2 * K.discriminant():
            raise ValueError("quadratic form has the wrong discriminant")

        R = K['X']
        v = R([C,B,A]).roots()[0][0]
        return v

    def _alpha_to_automorphism(self, alpha):
        r"""
        Assuming ``self`` has base field the Hilbert class field, make an
        automorphism from the element `\alpha` of the ring of integers
        into ``self``.

        INPUT:

            - `\alpha` -- element of quadratic imaginary field coprime to conductor

        EXAMPLES::

            sage: K3 = heegner_points(389,-52,3).ring_class_field()
            sage: K1 = heegner_points(389,-52,1).ring_class_field()
            sage: G = K3.galois_group(K1)
            sage: G._alpha_to_automorphism(1)
            Class field automorphism defined by x^2 + 117*y^2
            sage: [G._alpha_to_automorphism(s.alpha()) for s in G] == list(G)
            True
        """
        if not self._base_is_hilbert_class_field() and self.is_kolyvagin():
            raise TypeError("base must be Hilbert class field with Kolyvagin condition on conductor")
        R = self.field().quadratic_field().maximal_order()
        uv = self._alpha_to_p1_element(R(alpha))
        try:
            d = self.__p1_to_automorphism
        except AttributeError:
            self._list()  # computes attribute as side-effect
            d = self.__p1_to_automorphism
        return d[uv]


    def _alpha_to_p1_element(self, alpha):
        r"""
        Given an element of the ring of integers that is nonzero
        modulo c, return canonical (after our fixed choice of basis)
        element of the project line corresponding to it.

        INPUT:

            - `\alpha` -- element of the ring of integers of the
              quadratic imaginary field

        OUTPUT:

            - 2-tuple of integers

        EXAMPLES::

            sage: K3 = heegner_points(389,-52,3).ring_class_field()
            sage: K1 = heegner_points(389,-52,1).ring_class_field()
            sage: G = K3.galois_group(K1)
            sage: G._alpha_to_p1_element(1)
            (1, 0)
            sage: sorted([G._alpha_to_p1_element(s.alpha()) for s in G])
            [(0, 1), (1, 0), (1, 1), (1, 2)]
        """
        try:
            A, P1 = self.__alpha_to_p1_element
        except AttributeError:
            # todo (optimize) -- this whole function can be massively optimized:
            M = self.field()
            A = M.quadratic_field().maximal_order().free_module()
            P1 = P1List(M.conductor())
            self.__alpha_to_p1_element = A, P1
        alpha = self.field().quadratic_field()(alpha)
        w = A.coordinate_vector(alpha.vector())
        w *= w.denominator()
        w = w.change_ring(ZZ)
        n = gcd(w)
        w /= n
        c = P1.N()
        w = P1.normalize(ZZ(w[0])%c, ZZ(w[1])%c)
        if w == (0,0):
            w = (1,0)
        return w

    def _p1_element_to_alpha(self, uv):
        """
        Convert a normalized pair ``uv=(u,v)`` of integers to the
        corresponding element of the ring of integers got by taking `u
        b_0 + v b_1` where `b_0, b_1` are the basis for the ring of
        integers.

        INPUT:

            - ``uv`` -- pair of integers

        OUTPUT:

            - element of maximal order of quadratic field

        EXAMPLES::

            sage: K5 = heegner_points(389,-52,5).ring_class_field()
            sage: K1 = heegner_points(389,-52,1).ring_class_field()
            sage: G = K5.galois_group(K1)
            sage: v = [G._alpha_to_p1_element(s.alpha()) for s in G]
            sage: [G._p1_element_to_alpha(z) for z in v]
            [1, 1/2*sqrt_minus_52, 1/2*sqrt_minus_52 + 1, 2*sqrt_minus_52 + 1, sqrt_minus_52 + 1, 3/2*sqrt_minus_52 + 1]
            sage: [G(G._p1_element_to_alpha(z)) for z in v] == list(G)
            True
        """
        B = self.field().quadratic_field().maximal_order().basis()
        return uv[0]*B[0] + uv[1]*B[1]


    def _base_is_QQ(self):
        r"""
        Return ``True`` if the base field of this ring class field is `\QQ`.

        EXAMPLES::

            sage: H = heegner_points(389,-20,3); M = H.ring_class_field()
            sage: M.galois_group(H.quadratic_field())._base_is_QQ()
            False
            sage: M.galois_group(QQ)._base_is_QQ()
            True
            sage: M.galois_group(heegner_points(389,-20,1).ring_class_field())._base_is_QQ()
            False
        """
        return self.__base == QQ

    def _base_is_quad_imag_field(self):
        """
        Return ``True`` if the base field of this ring class field is the
        quadratic imaginary field `K`.

        EXAMPLES::

            sage: H = heegner_points(389,-20,3); M = H.ring_class_field()
            sage: M.galois_group(H.quadratic_field())._base_is_quad_imag_field()
            True
            sage: M.galois_group(QQ)._base_is_quad_imag_field()
            False
            sage: M.galois_group(heegner_points(389,-20,1).ring_class_field())._base_is_quad_imag_field()
            False
        """
        return number_field.is_QuadraticField(self.__base)

    def is_kolyvagin(self):
        """
        Return ``True`` if conductor `c` is prime to the discriminant of the
        quadratic field, `c` is squarefree and each prime dividing `c`
        is inert.

        EXAMPLES::

            sage: K5 = heegner_points(389,-52,5).ring_class_field()
            sage: K1 = heegner_points(389,-52,1).ring_class_field()
            sage: K5.galois_group(K1).is_kolyvagin()
            True
            sage: K7 = heegner_points(389,-52,7).ring_class_field()
            sage: K7.galois_group(K1).is_kolyvagin()
            False
            sage: K25 = heegner_points(389,-52,25).ring_class_field()
            sage: K25.galois_group(K1).is_kolyvagin()
            False
        """
        M = self.field()
        c = M.conductor()
        D = M.quadratic_field().discriminant()
        if c.gcd(D) != 1: return False
        if not c.is_squarefree(): return False
        for p in c.prime_divisors():
            if not is_inert(D,p):
                return False
        return True

    def _base_is_hilbert_class_field(self):
        """
        Return ``True`` if the base field of this ring class field is the
        Hilbert class field of `K` viewed as a ring class field (so
        not of data type QuadraticField).

        EXAMPLES::

            sage: H = heegner_points(389,-20,3); M = H.ring_class_field()
            sage: M.galois_group(H.quadratic_field())._base_is_hilbert_class_field()
            False
            sage: M.galois_group(QQ)._base_is_hilbert_class_field()
            False
            sage: M.galois_group(heegner_points(389,-20,1).ring_class_field())._base_is_hilbert_class_field()
            True
        """
        M = self.__base
        return isinstance(M, RingClassField) and M.conductor() == 1


    def __getitem__(self, i):
        """
        EXAMPLES::

            sage: E = EllipticCurve('389a'); F= E.heegner_point(-7,5).ring_class_field()
            sage: G = F.galois_group(F.quadratic_field())
            sage: G[0]
            Class field automorphism defined by x^2 + x*y + 44*y^2
        """
        return self._list()[i]


    def __len__(self):
        """
        EXAMPLES::

            sage: K5 = heegner_points(389,-52,5).ring_class_field()
            sage: K1 = heegner_points(389,-52,1).ring_class_field()
            sage: G = K5.galois_group(K1)
            sage: G.cardinality()
            6
            sage: len(G)
            6
        """
        return self.cardinality()

    @cached_method
    def cardinality(self):
        """
        Return the cardinality of this Galois group.

        EXAMPLES::

            sage: E = EllipticCurve('389a')
            sage: G = E.heegner_point(-7,5).ring_class_field().galois_group(); G
            Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5
            sage: G.cardinality()
            12
            sage: G = E.heegner_point(-7).ring_class_field().galois_group()
            sage: G.cardinality()
            2
            sage: G = E.heegner_point(-7,55).ring_class_field().galois_group()
            sage: G.cardinality()
            120
        """
        return self.__field.absolute_degree() // self.__base.absolute_degree()

    @cached_method
    def complex_conjugation(self):
        """
        Return the automorphism of ``self`` determined by complex
        conjugation.  The base field must be the rational numbers.

        EXAMPLES::

            sage: E = EllipticCurve('389a')
            sage: G = E.heegner_point(-7,5).ring_class_field().galois_group()
            sage: G.complex_conjugation()
            Complex conjugation automorphism of Ring class field extension of QQ[sqrt(-7)] of conductor 5
        """
        if self.base_field() != QQ:
            raise ValueError("the base field must be fixed by complex conjugation")
        return GaloisAutomorphismComplexConjugation(self)


##################################################################################
#
# Elements of Galois groups
#
##################################################################################

class GaloisAutomorphism(SageObject):
    """
    An abstract automorphism of a ring class field.

    .. TODO::

        make :class:`GaloisAutomorphism` derive from GroupElement, so
        that one gets powers for free, etc.
    """
    def __init__(self, parent):
        """
        INPUT:

            - ``parent`` -- a group of automorphisms of a ring class field

        EXAMPLES::

            sage: G = heegner_points(389,-7,5).ring_class_field().galois_group(); G
            Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5
            sage: sage.schemes.elliptic_curves.heegner.GaloisAutomorphism(G)
            <class 'sage.schemes.elliptic_curves.heegner.GaloisAutomorphism'>
        """
        self.__parent = parent

    def parent(self):
        """
        Return the parent of this automorphism, which is a Galois
        group of a ring class field.

        EXAMPLES::

            sage: E = EllipticCurve('389a')
            sage: s = E.heegner_point(-7,5).ring_class_field().galois_group().complex_conjugation()
            sage: s.parent()
            Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5
        """
        return self.__parent

    def domain(self):
        """
        Return the domain of this automorphism.

        EXAMPLES::

            sage: E = EllipticCurve('389a')
            sage: s = E.heegner_point(-7,5).ring_class_field().galois_group().complex_conjugation()
            sage: s.domain()
            Ring class field extension of QQ[sqrt(-7)] of conductor 5
        """
        return self.parent().field()

class GaloisAutomorphismComplexConjugation(GaloisAutomorphism):
    """
    The complex conjugation automorphism of a ring class field.

    EXAMPLES::

        sage: conj = heegner_point(37,-7,5).ring_class_field().galois_group().complex_conjugation()
        sage: conj
        Complex conjugation automorphism of Ring class field extension of QQ[sqrt(-7)] of conductor 5
        sage: conj.domain()
        Ring class field extension of QQ[sqrt(-7)] of conductor 5

    TESTS::

        sage: type(conj)
        <class 'sage.schemes.elliptic_curves.heegner.GaloisAutomorphismComplexConjugation'>
        sage: loads(dumps(conj)) == conj
        True
    """
    def __init__(self, parent):
        """
        INPUT:

            - ``parent`` -- a group of automorphisms of a ring class field

        EXAMPLES::

            sage: G = heegner_point(37,-7,5).ring_class_field().galois_group()
            sage: sage.schemes.elliptic_curves.heegner.GaloisAutomorphismComplexConjugation(G)
            Complex conjugation automorphism of Ring class field extension of QQ[sqrt(-7)] of conductor 5
        """
        GaloisAutomorphism.__init__(self, parent)

    def __hash__(self):
        """
        The hash value is the same as the hash value of the
        pair ``(self.parent(), 1)``.

        EXAMPLES::

            sage: G = EllipticCurve('389a').heegner_point(-7,5).ring_class_field().galois_group()
            sage: conj = G.complex_conjugation()
            sage: hash(conj) == hash((conj.parent(), 1))
            True
        """
        return hash((self.parent(), 1))

    def __eq__(self, right):
        """
        EXAMPLES::

            sage: G = EllipticCurve('389a').heegner_point(-7,5).ring_class_field().galois_group()
            sage: conj = G.complex_conjugation()
            sage: conj2 = sage.schemes.elliptic_curves.heegner.GaloisAutomorphismComplexConjugation(G)
            sage: conj is conj2
            False
            sage: conj == conj2
            True
        """
        return isinstance(right, GaloisAutomorphismComplexConjugation) and \
               self.parent() == right.parent()

    def _repr_(self):
        """
        Return print representation of the complex conjugation automorphism.

        EXAMPLES::

            sage: conj = heegner_point(37,-7,5).ring_class_field().galois_group().complex_conjugation()
            sage: conj._repr_()
            'Complex conjugation automorphism of Ring class field extension of QQ[sqrt(-7)] of conductor 5'
        """
        return "Complex conjugation automorphism of %s"%self.domain()

##     def __mul__(self, right):
##         """
##         Return the composition of two automorphisms.

##         EXAMPLES::

##             sage: ?
##         """
##         if self.parent() != right.__parent():
##             raise TypeError, "automorphisms must be of the same class field"
##         raise NotImplementedError

    def __invert__(self):
        """
        Return the inverse of ``self``, which is just ``self`` again.

        EXAMPLES::

            sage: conj = heegner_point(37,-7,5).ring_class_field().galois_group().complex_conjugation()
            sage: ~conj
            Complex conjugation automorphism of Ring class field extension of QQ[sqrt(-7)] of conductor 5
        """
        return self

    def order(self):
        """
        EXAMPLES::

            sage: conj = heegner_point(37,-7,5).ring_class_field().galois_group().complex_conjugation()
            sage: conj.order()
            2
        """
        return ZZ(2)

class GaloisAutomorphismQuadraticForm(GaloisAutomorphism):
    """
    An automorphism of a ring class field defined by a quadratic form.

    EXAMPLES::

        sage: H = heegner_points(389,-20,3)
        sage: sigma = H.ring_class_field().galois_group(H.quadratic_field())[0]; sigma
        Class field automorphism defined by x^2 + 45*y^2
        sage: type(sigma)
        <class 'sage.schemes.elliptic_curves.heegner.GaloisAutomorphismQuadraticForm'>
        sage: loads(dumps(sigma)) == sigma
        True
    """
    def __init__(self, parent, quadratic_form, alpha=None):
        r"""
        INPUT:

            - ``parent`` -- a group of automorphisms of a ring class field

            - ``quadratic_form`` -- a binary quadratic form that
              defines an element of the Galois group of `K_c` over `K`.

            - ``\alpha`` -- (default: ``None``) optional data that specified
              element corresponding element of `(\mathcal{O}_K /
              c\mathcal{O}_K)^* / (\ZZ/c\ZZ)^*`, via class field
              theory.

        EXAMPLES::

            sage: H = heegner_points(389,-20,3); G = H.ring_class_field().galois_group(H.quadratic_field())
            sage: f = BinaryQF_reduced_representatives(-20*9)[0]
            sage: sage.schemes.elliptic_curves.heegner.GaloisAutomorphismQuadraticForm(G, f)
            Class field automorphism defined by x^2 + 45*y^2
        """
        self.__quadratic_form = quadratic_form.reduced_form()
        self.__alpha = alpha
        GaloisAutomorphism.__init__(self, parent)

    @cached_method
    def order(self):
        """
        Return the multiplicative order of this Galois group automorphism.

        EXAMPLES::

            sage: K3 = heegner_points(389,-52,3).ring_class_field()
            sage: K1 = heegner_points(389,-52,1).ring_class_field()
            sage: G = K3.galois_group(K1)
            sage: sorted([g.order() for g in G])
            [1, 2, 4, 4]
            sage: K5 = heegner_points(389,-52,5).ring_class_field()
            sage: K1 = heegner_points(389,-52,1).ring_class_field()
            sage: G = K5.galois_group(K1)
            sage: sorted([g.order() for g in G])
            [1, 2, 3, 3, 6, 6]
        """
        alpha = self.__alpha
        if alpha is None:
            raise NotImplementedError("order only currently implemented when alpha given in construction")
        G = self.parent()
        one = G(1).p1_element()
        ans = ZZ(1)
        z = alpha
        for i in range(G.cardinality()):
            if G._alpha_to_p1_element(z) == one:
                return ans
            ans += 1
            z *= alpha
        assert False, "bug in order"

    def alpha(self):
        r"""
        Optional data that specified element corresponding element of
        `(\mathcal{O}_K / c\mathcal{O}_K)^* / (\ZZ/c\ZZ)^*`, via class
        field theory.

        This is a generator of the ideal corresponding to this
        automorphism.

        EXAMPLES::

            sage: K3 = heegner_points(389,-52,3).ring_class_field()
            sage: K1 = heegner_points(389,-52,1).ring_class_field()
            sage: G = K3.galois_group(K1)
            sage: orb = sorted([g.alpha() for g in G]); orb # random (the sign depends on the database being installed or not)
            [1, 1/2*sqrt_minus_52 + 1, -1/2*sqrt_minus_52, 1/2*sqrt_minus_52 - 1]
            sage: sorted([x^2 for x in orb]) # this is just for testing
            [-13, -sqrt_minus_52 - 12, sqrt_minus_52 - 12, 1]

            sage: K5 = heegner_points(389,-52,5).ring_class_field()
            sage: K1 = heegner_points(389,-52,1).ring_class_field()
            sage: G = K5.galois_group(K1)
            sage: orb = sorted([g.alpha() for g in G]); orb # random (the sign depends on the database being installed or not)
            [1, -1/2*sqrt_minus_52, 1/2*sqrt_minus_52 + 1, 1/2*sqrt_minus_52 - 1, 1/2*sqrt_minus_52 - 2, -1/2*sqrt_minus_52 - 2]
            sage: sorted([x^2 for x in orb]) # just for testing
            [-13, -sqrt_minus_52 - 12, sqrt_minus_52 - 12, -2*sqrt_minus_52 - 9, 2*sqrt_minus_52 - 9, 1]

        """
        if self.__alpha is None:
            raise ValueError("alpha data not defined")
        return self.__alpha

    @cached_method
    def p1_element(self):
        r"""
        Return element of the projective line corresponding to this
        automorphism.

        This only makes sense if this automorphism is in the Galois
        group `\textrm{Gal}(K_c/K_1)`.

        EXAMPLES::

            sage: K3 = heegner_points(389,-52,3).ring_class_field()
            sage: K1 = heegner_points(389,-52,1).ring_class_field()
            sage: G = K3.galois_group(K1)
            sage: sorted([g.p1_element() for g in G])
            [(0, 1), (1, 0), (1, 1), (1, 2)]

            sage: K5 = heegner_points(389,-52,5).ring_class_field()
            sage: K1 = heegner_points(389,-52,1).ring_class_field()
            sage: G = K5.galois_group(K1)
            sage: sorted([g.p1_element() for g in G])
            [(0, 1), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4)]
        """
        return self.parent()._alpha_to_p1_element(self.__alpha)

    def __hash__(self):
        """
        The hash value is the hash of the pair formed by the parent
        and the quadratic form read as tuple.

        EXAMPLES::

            sage: H = heegner_points(389,-20,3)
            sage: s = H.ring_class_field().galois_group(H.quadratic_field())[0]
            sage: hash(s) == hash((s.parent(), tuple(s.quadratic_form())))
            True
        """
        return hash((self.parent(), tuple(self.__quadratic_form)))

    def __eq__(self, right):
        """
        EXAMPLES::

            sage: H = heegner_points(389,-7,5); s = H.ring_class_field().galois_group(H.quadratic_field())[1]
            sage: s == s
            True
            sage: s == s*s
            False
            sage: s == s*s*s*s*s
            False
            sage: s == s*s*s*s*s*s*s
            True
        """
        return isinstance(right, GaloisAutomorphismQuadraticForm) and \
               self.parent() == right.parent() and \
               self.quadratic_form().is_equivalent(right.quadratic_form())

    def __cmp__(self, right):
        """
        Compare ``self`` and right.  Used mainly so that lists of
        automorphisms are sorted consistently between runs.

        EXAMPLES::

            sage: H = heegner_points(389,-20,3); s = H.ring_class_field().galois_group(H.quadratic_field())[0]
            sage: s.__cmp__(s)
            0
            sage: s.__cmp__(0) != 0
            True
        """
        if not isinstance(right, GaloisAutomorphismQuadraticForm):
            return cmp(type(self), type(right))
        c = cmp(self.parent(), right.parent())
        if c: return c
        if self.quadratic_form().is_equivalent(right.quadratic_form()):
            return 0
        return cmp(self.quadratic_form(), right.quadratic_form())

    def _repr_(self):
        """
        Return string representation of this automorphism.

        EXAMPLES::

            sage: H = heegner_points(389,-20,3); s = H.ring_class_field().galois_group(H.quadratic_field())[0]
            sage: s._repr_()
            'Class field automorphism defined by x^2 + 45*y^2'

        """
        return "Class field automorphism defined by %s"%self.__quadratic_form

    def __mul__(self, right):
        """
        Return the composition of two automorphisms.

        EXAMPLES::

            sage: H = heegner_points(389,-20,3); s = H.ring_class_field().galois_group(H.quadratic_field())[0]
            sage: s * s
            Class field automorphism defined by x^2 + 45*y^2
            sage: G = s.parent(); list(G)
            [Class field automorphism defined by x^2 + 45*y^2, Class field automorphism defined by 2*x^2 + 2*x*y + 23*y^2, Class field automorphism defined by 5*x^2 + 9*y^2, Class field automorphism defined by 7*x^2 + 4*x*y + 7*y^2]
            sage: G[0]*G[0]
            Class field automorphism defined by x^2 + 45*y^2
            sage: G[1]*G[2] == G[3]
            True
        """
        if self.parent() != right.parent():
            raise TypeError("automorphisms must be of the same class field")
        if not isinstance(right, GaloisAutomorphismQuadraticForm):
            # TODO: special case when right is complex conjugation
            raise NotImplementedError
        Q = (self.__quadratic_form * right.__quadratic_form).reduced_form()
        if self.__alpha and right.__alpha:
            alpha = self.__alpha * right.__alpha
        else:
            alpha = None
        return GaloisAutomorphismQuadraticForm(self.parent(), Q, alpha=alpha)

    def quadratic_form(self):
        """
        Return reduced quadratic form corresponding to this Galois
        automorphism.


        EXAMPLES::

            sage: H = heegner_points(389,-20,3); s = H.ring_class_field().galois_group(H.quadratic_field())[0]
            sage: s.quadratic_form()
            x^2 + 45*y^2
        """
        return self.__quadratic_form

    @cached_method
    def ideal(self):
        r"""
        Return ideal of ring of integers of quadratic imaginary field
        corresponding to this quadratic form.  This is the ideal

         `I = \left(A, \frac{-B+ c\sqrt{D}}{2}\right) \mathcal{O}_K`.

        EXAMPLES::

            sage: E = EllipticCurve('389a'); F= E.heegner_point(-20,3).ring_class_field()
            sage: G = F.galois_group(F.quadratic_field())
            sage: G[1].ideal()
            Fractional ideal (2, 1/2*sqrt_minus_20 + 1)
            sage: [s.ideal().gens() for s in G]
            [(1, 3/2*sqrt_minus_20), (2, 3/2*sqrt_minus_20 - 1), (5, 3/2*sqrt_minus_20), (7, 3/2*sqrt_minus_20 - 2)]
        """
        M = self.parent().field()
        K = M.quadratic_field()
        f = self.quadratic_form()
        c = M.conductor()
        sqrtD = K.gen()
        (A,B,C) = f
        if A%c == 0:
            A, C = C, A
        return K.maximal_order().ideal([A, (-B+c*sqrtD)/2])

##     def __call__(self, z):
##         """
##         Return image of the Heegner point `z` under this automorphism.
##
##         INPUT:
##
##             - `z` -- a Heegner point on `X_0(N)` or an elliptic curve
##
##         OUTPUT:
##
##             - a Heegner point
##
##         EXAMPLES::
##
##             sage: x = heegner_point(389,-20,3); F = x.ring_class_field()
##             sage: sigma = F.galois_group(F.quadratic_field())[1]; sigma
##             Class field automorphism defined by 2*x^2 + 2*x*y + 23*y^2
##             sage: sigma(x)
##             Heegner point 3/1556*sqrt(-20) - 495/778 of discriminant -20 and conductor 3 on X_0(389)
##         """
##         if isinstance(z, HeegnerPointOnX0N):
##             if z.ring_class_field() != self.domain():
##                 raise NotImplementedError, "class fields must be the same"
##             # TODO -- check more compatibilities?
##             # TODO -- this is surely backwards -- something must be inverted?
##             f = z.quadratic_form() * self.quadratic_form()
##             # TODO -- put f into the correct form with A divisible by N, etc.?
##             # That could be done by looking up reduced form of f in a canonical
##             # list of best reps.
##             N,D,c = z.level(),z.discriminant(),z.conductor()
##             return HeegnerPointOnX0N(N,D,c, f = f)
##         else:
##             raise NotImplementedError

##################################################################################
#
# Specific Heegner points
#
##################################################################################


class HeegnerPoint(SageObject):
    r"""
    A Heegner point of level `N`, discriminant `D` and conductor `c`
    is any point on a modular curve or elliptic curve that is
    concocted in some way from a quadratic imaginary `\tau` in the upper
    half plane with `\Delta(\tau) = D c = \Delta(N \tau)`.

    EXAMPLES::

        sage: x = sage.schemes.elliptic_curves.heegner.HeegnerPoint(389,-7,13); x
        Heegner point of level 389, discriminant -7, and conductor 13
        sage: type(x)
        <class 'sage.schemes.elliptic_curves.heegner.HeegnerPoint'>
        sage: loads(dumps(x)) == x
        True
    """
    def __init__(self, N, D, c):
        """
        INPUT:

            - `N` -- (positive integer) the level

            - `D` -- (negative integer) fundamental discriminant

            - `c` -- (positive integer) conductor

        Since this is an abstract base class, no type or compatibility
        checks are done, as those are all assumed to be done in the
        derived class.

        EXAMPLES::

            sage: H = sage.schemes.elliptic_curves.heegner.HeegnerPoint(389,-7,5)
            sage: type(H)
            <class 'sage.schemes.elliptic_curves.heegner.HeegnerPoint'>
        """
        self.__N = N
        self.__D = D
        self.__c = c

    def __cmp__(self, x):
        """
        Compare two Heegner points.

        EXAMPLES::

            sage: H = sage.schemes.elliptic_curves.heegner.HeegnerPoint(389,-7,5)
            sage: H.__cmp__(H)
            0
        """
        if not isinstance(x, HeegnerPoint):
            raise NotImplementedError
        return cmp((self.__N, self.__D, self.__c), (x.__N, x.__D, x.__c))

    def _repr_(self):
        """
        EXAMPLES::

            sage: H = sage.schemes.elliptic_curves.heegner.HeegnerPoint(389,-7,5)
            sage: type(H)
            <class 'sage.schemes.elliptic_curves.heegner.HeegnerPoint'>
            sage: H._repr_()
            'Heegner point of level 389, discriminant -7, and conductor 5'
        """
        return "Heegner point of level %s, discriminant %s, and conductor %s"%(
            self.__N, self.__D, self.__c)

    def __hash__(self):
        """
        The hash value is obtained from level, discriminant, and conductor.

        EXAMPLES::

            sage: H = sage.schemes.elliptic_curves.heegner.HeegnerPoint(389,-7,5); type(H)
            <class 'sage.schemes.elliptic_curves.heegner.HeegnerPoint'>
            sage: hash(H)  == hash((H.level(), H.discriminant(), H.conductor()))
            True
        """
        return hash((self.__N, self.__D, self.__c))

    def __eq__(self, right):
        """
        EXAMPLES::

            sage: H = sage.schemes.elliptic_curves.heegner.HeegnerPoint(389,-7,5); type(H)
            <class 'sage.schemes.elliptic_curves.heegner.HeegnerPoint'>
            sage: J = sage.schemes.elliptic_curves.heegner.HeegnerPoint(389,-7,11)
            sage: H == H
            True
            sage: H == J
            False
            sage: J == H
            False
            sage: H == 0
            False
        """
        if not isinstance(right, HeegnerPoint): return False
        return (self.__N, self.__D, self.__c) == (right.__N, right.__D, right.__c)

    def level(self):
        """
        Return the level of this Heegner point, which is the level of the
        modular curve `X_0(N)` on which this is a Heegner point.

        EXAMPLES::

            sage: heegner_point(389,-7,5).level()
            389
        """
        return self.__N

    def conductor(self):
        """
        Return the conductor of this Heegner point.

        EXAMPLES::

            sage: heegner_point(389,-7,5).conductor()
            5
            sage: E = EllipticCurve('37a1'); P = E.kolyvagin_point(-67,7); P
            Kolyvagin point of discriminant -67 and conductor 7 on elliptic curve of conductor 37
            sage: P.conductor()
            7
            sage: E = EllipticCurve('389a'); P = E.heegner_point(-7, 5); P.conductor()
            5
        """
        return self.__c

    def discriminant(self):
        """
        Return the discriminant of the quadratic imaginary field
        associated to this Heegner point.

        EXAMPLES::

            sage: heegner_point(389,-7,5).discriminant()
            -7
            sage: E = EllipticCurve('37a1'); P = E.kolyvagin_point(-67,7); P
            Kolyvagin point of discriminant -67 and conductor 7 on elliptic curve of conductor 37
            sage: P.discriminant()
            -67
            sage: E = EllipticCurve('389a'); P = E.heegner_point(-7, 5); P.discriminant()
            -7
        """
        return self.__D

    @cached_method
    def quadratic_field(self):
        """
        Return the quadratic number field of discriminant `D`.

        EXAMPLES::

            sage: x = heegner_point(37,-7,5)
            sage: x.quadratic_field()
            Number Field in sqrt_minus_7 with defining polynomial x^2 + 7


            sage: E = EllipticCurve('37a'); P = E.heegner_point(-40)
            sage: P.quadratic_field()
            Number Field in sqrt_minus_40 with defining polynomial x^2 + 40
            sage: P.quadratic_field() is P.quadratic_field()
            True
            sage: type(P.quadratic_field())
            <class 'sage.rings.number_field.number_field.NumberField_quadratic_with_category'>
        """
        return self.ring_class_field().quadratic_field()

    @cached_method
    def quadratic_order(self):
        """
        Return the order in the quadratic imaginary field of conductor
        `c`, where `c` is the conductor of this Heegner point.

        EXAMPLES::

            sage: heegner_point(389,-7,5).quadratic_order()
            Order in Number Field in sqrt_minus_7 with defining polynomial x^2 + 7
            sage: heegner_point(389,-7,5).quadratic_order().basis()
            [1, 5*sqrt_minus_7]

            sage: E = EllipticCurve('37a'); P = E.heegner_point(-40,11)
            sage: P.quadratic_order()
            Order in Number Field in sqrt_minus_40 with defining polynomial x^2 + 40
            sage: P.quadratic_order().basis()
            [1, 11*sqrt_minus_40]

        """
        K = self.quadratic_field()
        return K.order([1,self.conductor()*K.gen()])

    @cached_method
    def ring_class_field(self):
        """
        Return the ring class field associated to this Heegner point.
        This is an extension `K_c` over `K`, where `K` is the
        quadratic imaginary field and `c` is the conductor associated
        to this Heegner point.  This Heegner point is defined over
        `K_c` and the Galois group `Gal(K_c/K)` acts transitively on
        the Galois conjugates of this Heegner point.

        EXAMPLES::

            sage: E = EllipticCurve('389a'); K.<a> = QuadraticField(-5)
            sage: len(K.factor(5))
            1
            sage: len(K.factor(23))
            2
            sage: E.heegner_point(-7, 5).ring_class_field().degree_over_K()
            6
            sage: E.heegner_point(-7, 23).ring_class_field().degree_over_K()
            22
            sage: E.heegner_point(-7, 5*23).ring_class_field().degree_over_K()
            132
            sage: E.heegner_point(-7, 5^2).ring_class_field().degree_over_K()
            30
            sage: E.heegner_point(-7, 7).ring_class_field().degree_over_K()
            7
        """
        return RingClassField(self.discriminant(), self.conductor())


##################################################################################
#
# Sets of Heegner points
#
##################################################################################

class HeegnerPoints(SageObject):
    """
    The set of Heegner points with given parameters.

    EXAMPLES::

        sage: H = heegner_points(389); H
        Set of all Heegner points on X_0(389)
        sage: type(H)
        <class 'sage.schemes.elliptic_curves.heegner.HeegnerPoints_level'>
        sage: isinstance(H, sage.schemes.elliptic_curves.heegner.HeegnerPoints)
        True
    """
    def __init__(self, N):
        """
        INPUT:

            - `N` -- level, a positive integer

        EXAMPLES::

            sage: heegner_points(37)
            Set of all Heegner points on X_0(37)
            sage: heegner_points(0)
            Traceback (most recent call last):
            ...
            ValueError: N must a positive integer
        """
        self.__N = ZZ(N)
        if self.__N <= 0:
            raise ValueError("N must a positive integer")

    def level(self):
        """
        Return the level `N` of the modular curve `X_0(N)`.

        EXAMPLES::

            sage: heegner_points(389).level()
            389
        """
        return self.__N


class HeegnerPoints_level(HeegnerPoints):
    """
    Return the infinite set of all Heegner points on `X_0(N)` for all
    quadratic imaginary fields.

    EXAMPLES::

        sage: H = heegner_points(11); H
        Set of all Heegner points on X_0(11)
        sage: type(H)
        <class 'sage.schemes.elliptic_curves.heegner.HeegnerPoints_level'>
        sage: loads(dumps(H)) == H
        True
    """
    def __eq__(self, other):
        """
        EXAMPLES::

            sage: H = heegner_points(11)
            sage: H == heegner_points(13)
            False
            sage: H == heegner_points(11)
            True
            sage: H == 0
            False
        """
        return isinstance(other, HeegnerPoints_level) and self.level() == other.level()

    def _repr_(self):
        """
        Return string representation of the set of Heegner points.

        EXAMPLES::

            sage: heegner_points(389)._repr_()
            'Set of all Heegner points on X_0(389)'
        """
        return "Set of all Heegner points on X_0(%s)"%self.level()

    def reduce_mod(self, ell):
        r"""
        Return object that allows for computation with Heegner points
        of level `N` modulo the prime `\ell`, represented using
        quaternion algebras.

        INPUT:

            - `\ell` -- prime

        EXAMPLES::

            sage: heegner_points(389).reduce_mod(7).quaternion_algebra()
            Quaternion Algebra (-1, -7) with base ring Rational Field
        """
        return HeegnerQuatAlg(self.level(), ell)

    def discriminants(self, n=10, weak=False):
        r"""
        Return the first `n` quadratic imaginary discriminants that
        satisfy the Heegner hypothesis for `N`.

        INPUT:

            - `n` -- nonnegative integer

            - ``weak`` -- bool (default: ``False``); if ``True`` only require
              weak Heegner hypothesis, which is the same as usual but
              without the condition that `\gcd(D,N)=1`.

        EXAMPLES::

            sage: X = heegner_points(37)
            sage: X.discriminants(5)
            [-7, -11, -40, -47, -67]

        The default is 10::

            sage: X.discriminants()
            [-7, -11, -40, -47, -67, -71, -83, -84, -95, -104]
            sage: X.discriminants(15)
            [-7, -11, -40, -47, -67, -71, -83, -84, -95, -104, -107, -115, -120, -123, -127]

        The discriminant -111 satisfies only the weak Heegner hypothesis, since it
        is divisible by 37::

            sage: X.discriminants(15,weak=True)
            [-7, -11, -40, -47, -67, -71, -83, -84, -95, -104, -107, -111, -115, -120, -123]
        """
        N = self.level()
        n = ZZ(n)
        v = []
        D = ZZ(-4)
        while len(v) < n:
            D -= 1
            if satisfies_weak_heegner_hypothesis(N,D):
                # if not weak, then also require gcd(D,N)=1
                if not weak and D.gcd(N) != 1:
                    continue
                v.append(D)
        return v

class HeegnerPoints_level_disc(HeegnerPoints):
    """
    Set of Heegner points of given level and all conductors associated
    to a quadratic imaginary field.

    EXAMPLES::

        sage: H = heegner_points(389,-7); H
        Set of all Heegner points on X_0(389) associated to QQ[sqrt(-7)]
        sage: type(H)
        <class 'sage.schemes.elliptic_curves.heegner.HeegnerPoints_level_disc'>
        sage: H._repr_()
        'Set of all Heegner points on X_0(389) associated to QQ[sqrt(-7)]'
        sage: H.discriminant()
        -7
        sage: H.quadratic_field()
        Number Field in sqrt_minus_7 with defining polynomial x^2 + 7
        sage: H.kolyvagin_conductors()
        [1, 3, 5, 13, 15, 17, 19, 31, 39, 41]

        sage: loads(dumps(H)) == H
        True
    """
    def __init__(self, N, D):
        """
        INPUT:

           - `N` -- positive integer

           - `D` -- negative fundamental discriminant

        EXAMPLES::

            sage: sage.schemes.elliptic_curves.heegner.HeegnerPoints_level_disc(37,-7)
            Set of all Heegner points on X_0(37) associated to QQ[sqrt(-7)]
        """
        HeegnerPoints.__init__(self, N)
        D = ZZ(D)
        if not satisfies_weak_heegner_hypothesis(N,D):
            raise ValueError("D (=%s) must satisfy the weak Heegner hypothesis for N (=%s)"%(D,N))
        self.__D = D

    def __eq__(self, other):
        """
        EXAMPLES::

            sage: H = heegner_points(389,-7)
            sage: H == heegner_points(389,-7)
            True
            sage: H == 0
            False
            sage: H == heegner_points(389,-11)
            False
        """
        return isinstance(other, HeegnerPoints_level_disc) and \
               self.level() == other.level() and self.__D == other.__D

    def _repr_(self):
        """
        Return string representation of the set of Heegner points for a given
        quadratic field.

        EXAMPLES::

            sage: heegner_points(389,-7)._repr_()
            'Set of all Heegner points on X_0(389) associated to QQ[sqrt(-7)]'
        """
        return "Set of all Heegner points on X_0(%s) associated to QQ[sqrt(%s)]"%(
            self.level(), self.discriminant())


    def discriminant(self):
        r"""
        Return the discriminant of the quadratic imaginary extension `K`.

        EXAMPLES::

            sage: heegner_points(389,-7).discriminant()
            -7
        """
        return self.__D

    @cached_method
    def quadratic_field(self):
        r"""
        Return the quadratic imaginary field `K = \QQ(\sqrt{D})`.

        EXAMPLES::

            sage: E = EllipticCurve('389a'); K = E.heegner_point(-7,5).ring_class_field()
            sage: K.quadratic_field()
            Number Field in sqrt_minus_7 with defining polynomial x^2 + 7
        """
        D   = self.__D
        var = 'sqrt_minus_%s'%(-D)
        return number_field.QuadraticField(D,var)

    def kolyvagin_conductors(self, r=None, n=10, E=None, m=None):
        r"""
        Return the first `n` conductors that are squarefree products
        of distinct primes inert in the quadratic imaginary field
        `K = \QQ(\sqrt{D})`.  If `r` is specified, return only
        conductors that are a product of `r` distinct primes all inert
        in `K`.  If `r = 0`, always return the list ``[1]``,
        no matter what.

        If the optional elliptic curve `E` and integer `m` are given,
        then only include conductors `c` such that for each prime
        divisor `p` of `c` we have `m \mid \gcd(a_p(E), p+1)`.

        INPUT:

            - `r` -- (default: ``None``) nonnegative integer or ``None``

            - `n` -- positive integer

            - `E` -- an elliptic curve

            - `m` -- a positive integer

        EXAMPLES::

            sage: H = heegner_points(389,-7)
            sage: H.kolyvagin_conductors(0)
            [1]
            sage: H.kolyvagin_conductors(1)
            [3, 5, 13, 17, 19, 31, 41, 47, 59, 61]
            sage: H.kolyvagin_conductors(1,15)
            [3, 5, 13, 17, 19, 31, 41, 47, 59, 61, 73, 83, 89, 97, 101]
            sage: H.kolyvagin_conductors(1,5)
            [3, 5, 13, 17, 19]
            sage: H.kolyvagin_conductors(1,5,EllipticCurve('389a'),3)
            [5, 17, 41, 59, 83]
            sage: H.kolyvagin_conductors(2,5,EllipticCurve('389a'),3)
            [85, 205, 295, 415, 697]
        """
        D = self.__D
        if not satisfies_weak_heegner_hypothesis(self.level(),D):
            raise ValueError("D must satisfy the weak Heegner hypothesis")
        n = ZZ(n)
        if n <= 0:
            raise ValueError("n must be a positive integer")
        if r is not None:
            r = ZZ(r)
            if r < 0:
                raise ValueError("n must be a nonnegative integer")
        if r == 0:
            return [ZZ(1)]

        c = ZZ(1)
        v = []
        N = self.level()

        if E is not None:
            m = ZZ(m)

        while len(v) < n:
            if is_kolyvagin_conductor(N, E, D, r, m, c):
                v.append(c)
            c += 1

        return v


def is_kolyvagin_conductor(N, E, D, r, n, c):
    r"""
    Return ``True`` if `c` is a Kolyvagin conductor for level `N`,
    discriminant `D`, mod `n`, etc., i.e., `c` is divisible by exactly
    `r` prime factors, is coprime to `ND`, each prime dividing `c` is
    inert, and if `E` is not ``None`` then `n | \gcd(p+1, a_p(E))`
    for each prime `p` dividing `c`.

    INPUT:

        - `N` -- level (positive integer)

        - `E` -- elliptic curve or ``None``

        - `D` -- negative fundamental discriminant

        - `r` -- number of prime factors (nonnegative integer) or ``None``

        - `n` -- torsion order (i.e., do we get class in `(E(K_c)/n E(K_c))^{Gal(K_c/K)}`?)

        - `c` -- conductor (positive integer)

    EXAMPLES::

        sage: from sage.schemes.elliptic_curves.heegner import is_kolyvagin_conductor
        sage: is_kolyvagin_conductor(389,None,-7,1,None,5)
        True
        sage: is_kolyvagin_conductor(389,None,-7,1,None,7)
        False
        sage: is_kolyvagin_conductor(389,None,-7,1,None,11)
        False
        sage: is_kolyvagin_conductor(389,EllipticCurve('389a'),-7,1,3,5)
        True
        sage: is_kolyvagin_conductor(389,EllipticCurve('389a'),-7,1,11,5)
        False
    """
    ND = N*D
    if ND.gcd(c) != 1: return False
    if not c.is_squarefree(): return False
    P = c.prime_factors()
    if r is not None and len(P) != r:
        return False
    # check that each prime in P is inert in K
    for p in P:
        if D.kronecker(p) != -1:
            return False
    if E is not None and n is not None:
        for p in P:
            if (p+1).gcd(E.ap(p)) % n != 0:
                return False
    return True


class HeegnerPoints_level_disc_cond(HeegnerPoints_level, HeegnerPoints_level_disc):
    """
    The set of Heegner points of given level, discriminant, and conductor.

    EXAMPLES::

        sage: H = heegner_points(389,-7,5); H
        All Heegner points of conductor 5 on X_0(389) associated to QQ[sqrt(-7)]
        sage: type(H)
        <class 'sage.schemes.elliptic_curves.heegner.HeegnerPoints_level_disc_cond'>
        sage: H.discriminant()
        -7
        sage: H.level()
        389

        sage: len(H.points())
        12
        sage: H.points()[0]
        Heegner point 5/778*sqrt(-7) - 147/778 of discriminant -7 and conductor 5 on X_0(389)
        sage: H.betas()
        (147, 631)

        sage: H.quadratic_field()
        Number Field in sqrt_minus_7 with defining polynomial x^2 + 7
        sage: H.ring_class_field()
        Ring class field extension of QQ[sqrt(-7)] of conductor 5

        sage: H.kolyvagin_conductors()
        [1, 3, 5, 13, 15, 17, 19, 31, 39, 41]
        sage: H.satisfies_kolyvagin_hypothesis()
        True

        sage: H = heegner_points(389,-7,5)
        sage: loads(dumps(H)) == H
        True
    """
    def __init__(self, N, D, c=ZZ(1)):
        """
        Create set of Heegner points.

        INPUT:

            - `N` -- positive integer (the level)

            - `D` -- negative fundamental discriminant

            - `c` -- conductor (default: 1)

        EXAMPLES::

            sage: H = heegner_points(389,-7,5); H
            All Heegner points of conductor 5 on X_0(389) associated to QQ[sqrt(-7)]
            sage: type(H)
            <class 'sage.schemes.elliptic_curves.heegner.HeegnerPoints_level_disc_cond'>
        """
        HeegnerPoints_level.__init__(self, N)
        HeegnerPoints_level_disc.__init__(self, N, D)
        self.__c = ZZ(c)

    def __eq__(self, other):
        """
        EXAMPLES::

            sage: H = heegner_points(389,-7, 3)
            sage: H == heegner_points(389,-7, 3)
            True
            sage: H == heegner_points(389,-7, 1)
            False
            sage: H == 0
            False
        """
        return isinstance(other, HeegnerPoints_level_disc_cond) and \
               self.level() == other.level() and self.discriminant() == other.discriminant() \
               and self.conductor() == other.conductor()

    def _repr_(self):
        """
        Return string representation of this set of Heegner points.

        EXAMPLES::

            sage: H = heegner_points(37,-7,5); H._repr_()
            'All Heegner points of conductor 5 on X_0(37) associated to QQ[sqrt(-7)]'
        """
        return "All Heegner points of conductor %s on X_0(%s) associated to QQ[sqrt(%s)]"%(
            self.conductor(), self.level(), self.discriminant())

    def conductor(self):
        """
        Return the level of the conductor.

        EXAMPLES::

            sage: heegner_points(389,-7,5).conductor()
            5
        """
        return self.__c

    @cached_method
    def satisfies_kolyvagin_hypothesis(self):
        """
        Return ``True`` if ``self`` satisfies the Kolyvagin hypothesis, i.e.,
        that each prime dividing the conductor `c` of ``self`` is inert in
        `K` and coprime to `ND`.

        EXAMPLES:

        The prime 5 is inert, but the prime 11 is not::

            sage: heegner_points(389,-7,5).satisfies_kolyvagin_hypothesis()
            True
            sage: heegner_points(389,-7,11).satisfies_kolyvagin_hypothesis()
            False
        """
        return is_kolyvagin_conductor(N=self.level(), E=None, D=self.discriminant(),
                                      r=None, n=None, c=self.conductor())

    @cached_method
    def ring_class_field(self):
        """
        Return the ring class field associated to this set of Heegner
        points.  This is an extension `K_c` over `K`, where `K` is the
        quadratic imaginary field and `c` the conductor associated to
        this Heegner point.  This Heegner point is defined over `K_c`
        and the Galois group `Gal(K_c/K)` acts transitively on the
        Galois conjugates of this Heegner point.

        EXAMPLES::

            sage: heegner_points(389,-7,5).ring_class_field()
            Ring class field extension of QQ[sqrt(-7)] of conductor 5
        """
        return RingClassField(self.discriminant(), self.conductor())

    def __getitem__(self, i):
        """
        Return the `i`-th Heegner point.

        EXAMPLES::

            sage: H = heegner_points(389,-7,5)
            sage: len(H)
            12
            sage: H[0]
            Heegner point 5/778*sqrt(-7) - 147/778 of discriminant -7 and conductor 5 on X_0(389)
            sage: H[-1]
            Heegner point 5/5446*sqrt(-7) - 757/778 of discriminant -7 and conductor 5 on X_0(389)
        """
        return self.points()[i]

    def __len__(self):
        """
        Return the number of Heegner points.

        EXAMPLES::

            sage: len(heegner_points(389,-7,5))
            12

        When the conductor is 1 the length is a power of 2 (number of
        square roots of `D` mod `4N` reduced mod `2N`) times the class
        number::

            sage: len(heegner_points(389,-20,1))
            4
            sage: QQ[sqrt(-20)].class_number()
            2
        """
        return len(self.points())

    @cached_method
    def betas(self):
        """
        Return the square roots of `D c^2` modulo `4 N` all reduced
        mod `2 N`, without multiplicity.

        EXAMPLES::

            sage: X = heegner_points(45,-11,1); X
            All Heegner points of conductor 1 on X_0(45) associated to QQ[sqrt(-11)]
            sage: [x.quadratic_form() for x in X]
            [45*x^2 + 13*x*y + y^2,
             45*x^2 + 23*x*y + 3*y^2,
             45*x^2 + 67*x*y + 25*y^2,
             45*x^2 + 77*x*y + 33*y^2]
            sage: X.betas()
            (13, 23, 67, 77)
            sage: X.points(13)
            (Heegner point 1/90*sqrt(-11) - 13/90 of discriminant -11 on X_0(45),)
            sage: [x.quadratic_form() for x in X.points(13)]
            [45*x^2 + 13*x*y + y^2]
        """
        c = self.__c
        D = self.discriminant()*c*c
        N = self.level()
        R = Integers(4*N)
        m = 2*N
        return tuple(sorted( set([a%m for a in R(D).sqrt(all=True)]) ))


    @cached_method
    def points(self, beta=None):
        r"""
        Return the Heegner points in ``self``.  If `\beta` is given,
        return only those Heegner points with given `\beta`, i.e.,
        whose quadratic form has `B` congruent to `\beta` modulo `2 N`.

        Use ``self.beta()`` to get a list of betas.

        EXAMPLES::

            sage: H = heegner_points(389,-7,5); H
            All Heegner points of conductor 5 on X_0(389) associated to QQ[sqrt(-7)]
            sage: H.points()
            (Heegner point 5/778*sqrt(-7) - 147/778 of discriminant -7 and conductor 5 on X_0(389), ..., Heegner point 5/5446*sqrt(-7) - 757/778 of discriminant -7 and conductor 5 on X_0(389))
            sage: H.betas()
            (147, 631)
            sage: [x.tau() for x in H.points(147)]
            [5/778*sqrt_minus_7 - 147/778, 5/1556*sqrt_minus_7 - 147/1556, 5/1556*sqrt_minus_7 - 925/1556, 5/3112*sqrt_minus_7 - 1703/3112, 5/3112*sqrt_minus_7 - 2481/3112, 5/5446*sqrt_minus_7 - 21/778]

            sage: [x.tau() for x in H.points(631)]
            [5/778*sqrt_minus_7 - 631/778, 5/1556*sqrt_minus_7 - 631/1556, 5/1556*sqrt_minus_7 - 1409/1556, 5/3112*sqrt_minus_7 - 631/3112, 5/3112*sqrt_minus_7 - 1409/3112, 5/5446*sqrt_minus_7 - 757/778]

        The result is cached and is a tuple (since it is immutable)::

            sage: H.points() is H.points()
            True
            sage: type(H.points())
            <type 'tuple'>
        """
        if beta is None:
            SDN = self.betas()
            return tuple(sorted(sum([list(self.points(b)) for b in SDN], [])))

        c = self.conductor()
        N = self.level()
        D = self.discriminant()
        b = ZZ(beta) % (2*N)

        disc = D*c*c

        U = []
        R = []
        h = self.ring_class_field().degree_over_K()
        a = 1
        while len(U) < h:
            if c.gcd(a) != 1:
                a += 1
                continue
            # todo (optimize) -- replace for over all s with for over solution set
            y = ZZ((b*b - disc)/(4*N))
            for s in Integers(a):
                if N*s*s + b*s + y == 0:
                    s = s.lift()
                    f = (a*N, b+2*N*s, ZZ( ((b + 2*N*s)**2 - disc)/(4*a*N)) )
                    g = BinaryQF(f).reduced_form()
                    assert g.discriminant() == disc
                    if g not in U:
                        U.append(g)
                        R.append(HeegnerPointOnX0N(N,D,c,f))
                        if len(U) >= h: break
            a += 1
        return tuple(sorted(R))

    def plot(self, *args, **kwds):
        """
        Returns plot of all the representatives in the upper half
        plane of the Heegner points in this set of Heegner points.

        The inputs to this function get passed onto the point command.

        EXAMPLES::

            sage: heegner_points(389,-7,5).plot(pointsize=50, rgbcolor='red')
            Graphics object consisting of 12 graphics primitives
            sage: heegner_points(53,-7,15).plot(pointsize=50, rgbcolor='purple')
            Graphics object consisting of 48 graphics primitives
        """
        return sum(z.plot(*args, **kwds) for z in self)


class HeegnerPointOnX0N(HeegnerPoint):
    r"""
    A Heegner point as a point on the modular curve `X_0(N)`, which we
    view as the upper half plane modulo the action of `\Gamma_0(N)`.

    EXAMPLES::

        sage: x = heegner_point(37,-7,5); x
        Heegner point 5/74*sqrt(-7) - 11/74 of discriminant -7 and conductor 5 on X_0(37)
        sage: type(x)
        <class 'sage.schemes.elliptic_curves.heegner.HeegnerPointOnX0N'>
        sage: x.level()
        37
        sage: x.conductor()
        5
        sage: x.discriminant()
        -7
        sage: x.quadratic_field()
        Number Field in sqrt_minus_7 with defining polynomial x^2 + 7
        sage: x.quadratic_form()
        37*x^2 + 11*x*y + 2*y^2
        sage: x.quadratic_order()
        Order in Number Field in sqrt_minus_7 with defining polynomial x^2 + 7
        sage: x.tau()
        5/74*sqrt_minus_7 - 11/74
        sage: loads(dumps(x)) == x
        True
    """
    def __init__(self, N, D, c=ZZ(1), f=None, check=True):
        r"""
        INPUT:

           - `N` -- positive integer

           - `D` -- fundamental discriminant, a negative integer

           - `c` -- conductor, a positive integer coprime to `N`

           - `f` -- binary quadratic form, 3-tuple `(A,B,C)` of coefficients
                    of `AX^2 + BXY + CY^2`, or element of quadratic imaginary
                    field `\QQ(\sqrt{D})` in the upper half plan.

           - ``check`` -- bool, default: ``True``.  should not be used
                    except internally.


        EXAMPLES::

            sage: x = heegner_point(389, -7, 5); x
            Heegner point 5/778*sqrt(-7) - 147/778 of discriminant -7 and conductor 5 on X_0(389)
            sage: type(x)
            <class 'sage.schemes.elliptic_curves.heegner.HeegnerPointOnX0N'>
            sage: sage.schemes.elliptic_curves.heegner.HeegnerPointOnX0N(389, -7, 5, None, check=False)
            Heegner point 5/778*sqrt(-7) - 147/778 of discriminant -7 and conductor 5 on X_0(389)
        """
        if check:
            N = ZZ(N); D = ZZ(D); c = ZZ(c)
            if c.gcd(N) != 1:
                raise ValueError("conductor c (=%s) must be coprime to N (=%s)" % (c, N))
            if not satisfies_weak_heegner_hypothesis(N, D):
                raise ValueError("N (=%s) and D (=%s) must satisfy the Heegner hypothesis"%(N, D))
            if f is not None:
                if isinstance(f, tuple):
                    if len(f) != 3:
                        raise ValueError("if f is a tuple, it must have length 3")
                    f = tuple(ZZ(a) for a in f)
                elif isinstance(f, BinaryQF):
                    # convert from BinaryQF
                    f = tuple(f)
                elif sage.rings.number_field.number_field_element.is_NumberFieldElement(f):
                    # tau = number field element
                    g = f.minpoly()
                    if g.degree() != 2:
                        raise TypeError("number field element f must have degree 2")
                    g *= g.denominator()  # make integral
                    f = (ZZ(g[2]), ZZ(g[1]), ZZ(g[0]))
                else:
                    raise TypeError("f must be a 3-tuple, quadratic form, or element of the upper half plane")
                A, B, C = f
                if B*B - 4*A*C != D*c*c:
                    raise ValueError("f (=%s) must have discriminant %s"%(f, D*c*c))
        HeegnerPoint.__init__(self, N, D, c)
        if f is None:
            # We know that N|A, so A = N is optimal.
            A = N
            B = ZZ(Integers(4*N)(D*c*c).sqrt(extend=False) % (2*N))
            C = ZZ((B*B - D*c*c)/(4*A))
            f = (A,B,C)
        self.__f = f


    def __hash__(self):
        """
        The hash is obtained from the hash provided by :class:`HeegnerPoint`,
        together with the reduced quadratic form.

        EXAMPLES::

            sage: x = heegner_point(37,-7,5)
            sage: from sage.schemes.elliptic_curves.heegner import HeegnerPoint
            sage: hash(x) == hash( (HeegnerPoint.__hash__(x), x.reduced_quadratic_form()) )
            True
        """
        return hash((HeegnerPoint.__hash__(self), self.reduced_quadratic_form()))

    def __eq__(self, right):
        """
        EXAMPLES::

            sage: x1 = EllipticCurve('389a').heegner_point(-7).heegner_point_on_X0N()
            sage: x5 = EllipticCurve('389a').heegner_point(-7,5).heegner_point_on_X0N()
            sage: x1 == x1
            True
            sage: x5 == x5
            True
            sage: x1 == x5
            False
            sage: x1 == 10
            False
        """
        return isinstance(right, HeegnerPointOnX0N) and \
               HeegnerPoint.__eq__(self,right) and \
               self.reduced_quadratic_form() == right.reduced_quadratic_form()

    def __cmp__(self, x):
        """
        Compare two Heegner points with character.

        EXAMPLES::

            sage: x1 = EllipticCurve('389a').heegner_point(-7).heegner_point_on_X0N()
            sage: x5 = EllipticCurve('389a').heegner_point(-7,5).heegner_point_on_X0N()
            sage: x1.__cmp__(x1)
            0
            sage: x1.__cmp__(x5)
            -1
            sage: x5.__cmp__(x1)
            1
        """
        c = HeegnerPoint.__cmp__(self, x)
        if c: return c
        return cmp(self.__f, x.__f)

    def _repr_(self):
        """
        Return string representation of this Heegner point.

        EXAMPLES::

            sage: x = heegner_point(37,-7,5); x._repr_()
            'Heegner point 5/74*sqrt(-7) - 11/74 of discriminant -7 and conductor 5 on X_0(37)'
        """
        c = self.conductor()
        s = " and conductor %s"%c if c != 1 else ""
        N = self.level()
        D = self.discriminant()
        tau = repr(self.tau()).replace('sqrt_minus_%s'%(-D),'sqrt(%s)'%D)
        return "Heegner point %s of discriminant %s%s on X_0(%s)"%(tau, D, s, N)

    def atkin_lehner_act(self, Q=None):
        r"""
        Given an integer Q dividing the level N such that `\gcd(Q, N/Q) = 1`, returns the
        image of this Heegner point under the Atkin-Lehner operator `W_Q`.

        INPUT:

            - `Q` -- positive divisor of `N`; if not given, default to `N`

        EXAMPLES::

            sage: x = heegner_point(389,-7,5)
            sage: x.atkin_lehner_act()
            Heegner point 5/199168*sqrt(-7) - 631/199168 of discriminant -7 and conductor 5 on X_0(389)

            sage: x = heegner_point(45,D=-11,c=1); x
            Heegner point 1/90*sqrt(-11) - 13/90 of discriminant -11 on X_0(45)
            sage: x.atkin_lehner_act(5)
            Heegner point 1/90*sqrt(-11) + 23/90 of discriminant -11 on X_0(45)
            sage: y = x.atkin_lehner_act(9); y
            Heegner point 1/90*sqrt(-11) - 23/90 of discriminant -11 on X_0(45)
            sage: z = y.atkin_lehner_act(9); z
            Heegner point 1/90*sqrt(-11) - 13/90 of discriminant -11 on X_0(45)
            sage: z == x
            True
        """
        N = self.level()
        if Q is None:
             Q = N
        if Q == 1:
            return self  # trivial special case
        g, u, v = xgcd(Q*Q, -N)
        if g != Q:
            raise ValueError("Q must divide N and be coprime to N/Q")
        tau = self.tau()
        WQ_tau = ((u*Q*tau + v) / (N*tau + Q))
        return HeegnerPointOnX0N(N, self.discriminant(), self.conductor(), f=WQ_tau, check=True)


    @cached_method
    def quadratic_form(self):
        """
        Return the integral primitive positive-definite binary
        quadratic form associated to this Heegner point.

        EXAMPLES::

            sage: heegner_point(389,-7,5).quadratic_form()
            389*x^2 + 147*x*y + 14*y^2
        """
        # It is good/important that this return a copy, since
        # BinaryQF's stupidly are mutable and cannot be made immutable.
        # In particular, they have a stupid reduce method that changes
        # them in place.
        return BinaryQF(self.__f)

    def reduced_quadratic_form(self):
        """
        Return reduced binary quadratic corresponding to this Heegner point.

        EXAMPLES::

            sage: x = heegner_point(389,-7,5)
            sage: x.quadratic_form()
            389*x^2 + 147*x*y + 14*y^2
            sage: x.reduced_quadratic_form()
            4*x^2 - x*y + 11*y^2
        """
        return self.quadratic_form().reduced_form()

    @cached_method
    def tau(self):
        """
        Return an element tau in the upper half plane that corresponds
        to this particular Heegner point (actually, tau is in the
        quadratic imagqinary field K associated to this Heegner point).

        EXAMPLES::

            sage: x = heegner_point(37,-7,5); tau = x.tau(); tau
            5/74*sqrt_minus_7 - 11/74
            sage: 37 * tau.minpoly()
            37*x^2 + 11*x + 2
            sage: x.quadratic_form()
            37*x^2 + 11*x*y + 2*y^2
        """
        K = self.quadratic_field()
        c = self.conductor()
        d = K.gen()*c
        A,B,_ = self.__f
        return (-B + d)/(2*A)

    def map_to_curve(self, E):
        """
        Return the image of this Heegner point on the elliptic curve
        `E`, which must also have conductor `N`, where `N` is the
        level of ``self``.

        EXAMPLES::

            sage: x = heegner_point(389,-7,5); x
            Heegner point 5/778*sqrt(-7) - 147/778 of discriminant -7 and conductor 5 on X_0(389)
            sage: y = x.map_to_curve(EllipticCurve('389a')); y
            Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor 389
            sage: y.curve().cremona_label()
            '389a1'
            sage: y.heegner_point_on_X0N()
            Heegner point 5/778*sqrt(-7) - 147/778 of discriminant -7 and conductor 5 on X_0(389)

        You can also directly apply the modular parametrization of the elliptic curve::

            sage: x = heegner_point(37,-7); x
            Heegner point 1/74*sqrt(-7) - 17/74 of discriminant -7 on X_0(37)
            sage: E = EllipticCurve('37a'); phi = E.modular_parametrization()
            sage: phi(x)
            Heegner point of discriminant -7 on elliptic curve of conductor 37
        """
        return HeegnerPointOnEllipticCurve(E, self)

    @cached_method
    def galois_orbit_over_K(self):
        r"""
        Return the `Gal(K_c/K)`-orbit of this Heegner point.

        EXAMPLES::

            sage: x = heegner_point(389,-7,3); x
            Heegner point 3/778*sqrt(-7) - 223/778 of discriminant -7 and conductor 3 on X_0(389)
            sage: x.galois_orbit_over_K()
            [Heegner point 3/778*sqrt(-7) - 223/778 of discriminant -7 and conductor 3 on X_0(389), Heegner point 3/1556*sqrt(-7) - 223/1556 of discriminant -7 and conductor 3 on X_0(389), Heegner point 3/1556*sqrt(-7) - 1001/1556 of discriminant -7 and conductor 3 on X_0(389), Heegner point 3/3112*sqrt(-7) - 223/3112 of discriminant -7 and conductor 3 on X_0(389)]
        """
        c = self.conductor()
        N = self.level()
        D = self.discriminant()
        b = self.__f[1] % (2*N)  # B

        disc = D*c*c

        U = []
        R = []
        h = self.ring_class_field().degree_over_K()
        a = 1
        while len(U) < h:
            if c.gcd(a) != 1:
                a += 1
                continue
            # todo (optimize) -- replace for over all s with for over solution set
            y = ZZ((b*b - disc)/(4*N))
            for s in Integers(a):
                if N*s*s + b*s + y == 0:
                    s = s.lift()
                    f = (a*N, b+2*N*s, ZZ( ((b + 2*N*s)**2 - disc)/(4*a*N)) )
                    g = BinaryQF(f).reduced_form()
                    assert g.discriminant() == disc
                    if g not in U:
                        U.append(g)
                        R.append(HeegnerPointOnX0N(N,D,c,f))
            a += 1
        return R

    def plot(self, **kwds):
        r"""
        Draw a point at `(x,y)` where this Heegner point is
        represented by the point `\tau = x + i y` in the upper half
        plane.

        The ``kwds`` get passed onto the point plotting command.

        EXAMPLES::

            sage: heegner_point(389,-7,1).plot(pointsize=50)
            Graphics object consisting of 1 graphics primitive
        """
        from sage.plot.all import point
        return point(CDF(self.tau()), **kwds)

class HeegnerPointOnEllipticCurve(HeegnerPoint):
    """
    A Heegner point on a curve associated to an order in a quadratic
    imaginary field.

    EXAMPLES::

        sage: E = EllipticCurve('37a'); P = E.heegner_point(-7,5); P
        Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor 37
        sage: type(P)
        <class 'sage.schemes.elliptic_curves.heegner.HeegnerPointOnEllipticCurve'>
    """
    def __init__(self, E, x, check=True):
        r"""
        INPUT:

           - `E` -- an elliptic curve over the rational numbers

           - `x` -- Heegner point on `X_0(N)`

           - ``check`` -- bool (default: ``True``); if ``True``, ensure that `D`,
                      `c` are of type Integer and define a Heegner point
                      on `E`

        EXAMPLES::

            sage: x = heegner_point(389,-7,5)
            sage: E = EllipticCurve('389a')
            sage: sage.schemes.elliptic_curves.heegner.HeegnerPointOnEllipticCurve(E, x)
            Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor 389
        """
        if check:
            if E.conductor() != x.level():
                raise ValueError("conductor of curve must equal level of Heegner point")
        self.__E = E
        self.__x = x
        HeegnerPoint.__init__(self, x.level(), x.discriminant(), x.conductor())

    @cached_method
    def satisfies_kolyvagin_hypothesis(self, n=None):
        """
        Return ``True`` if this Heegner point and `n` satisfy the
        Kolyvagin hypothesis, i.e., that each prime dividing the
        conductor `c` of ``self`` is inert in K and coprime to `ND`.
        Moreover, if `n` is not ``None``, also check that for each prime
        `p` dividing `c` we have that `n | \gcd(a_p(E), p+1)`.

        INPUT:

            `n` -- positive integer

        EXAMPLES::

            sage: EllipticCurve('389a').heegner_point(-7).satisfies_kolyvagin_hypothesis()
            True
            sage: EllipticCurve('389a').heegner_point(-7,5).satisfies_kolyvagin_hypothesis()
            True
            sage: EllipticCurve('389a').heegner_point(-7,11).satisfies_kolyvagin_hypothesis()
            False
        """
        if n is not None:
            n = ZZ(n)
            if n <= 0: raise ValueError("n must be a positive integer")
        return is_kolyvagin_conductor(N=self.level(), E=self.__E, D=self.discriminant(),
                                      r=None, n=n, c=self.conductor())

    def __hash__(self):
        """
        The hash value is obtained from the elliptic curve and the Heegner
        point on `X_0(N)`.

        EXAMPLES::

            sage: x = EllipticCurve('389a').heegner_point(-7,5)
            sage: hash(x) == hash( (x.curve(), x.heegner_point_on_X0N()) )
            True
        """
        return hash((self.__E, self.__x))

    def __eq__(self, right):
        """
        EXAMPLES::

            sage: y1 = EllipticCurve('389a').heegner_point(-7)
            sage: y5 = EllipticCurve('389a').heegner_point(-7,5)
            sage: y1 == y1
            True
            sage: y5 == y5
            True
            sage: y1 == y5
            False
            sage: y1 == 10
            False
        """
        return isinstance(right, HeegnerPointOnEllipticCurve) and \
               (self.__E, self.__x) == (right.__E, right.__x)

    def _repr_(self):
        """
        Return string representation of this Heegner point.

        EXAMPLES::

            sage: E = EllipticCurve('389a'); P = E.heegner_point(-7, 97)
            sage: P._repr_()
            'Heegner point of discriminant -7 and conductor 97 on elliptic curve of conductor 389'
        """
        s = " and conductor %s"%self.conductor() if self.conductor() != 1 else ""
        N = self.__E.conductor()
        return "Heegner point of discriminant %s%s on elliptic curve of conductor %s"%(self.discriminant(), s, N)

    def heegner_point_on_X0N(self):
        r"""
        Return Heegner point on `X_0(N)` that maps to this Heegner point on `E`.

        EXAMPLES::

            sage: E = EllipticCurve('37a'); P = E.heegner_point(-7,5); P
            Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor 37
            sage: P.heegner_point_on_X0N()
            Heegner point 5/74*sqrt(-7) - 11/74 of discriminant -7 and conductor 5 on X_0(37)
        """
        return self.__x

    def map_to_complex_numbers(self, prec=53):
        """
        Return the point in the subfield `M` of the complex numbers
        (well defined only modulo the period lattice) corresponding to
        this Heegner point.

        EXAMPLES:

        We compute a nonzero Heegner point over a ring class field on
        a curve of rank 2::

            sage: E = EllipticCurve('389a'); y = E.heegner_point(-7,5)
            sage: y.map_to_complex_numbers()
            1.49979679635196 + 0.369156204821526*I
            sage: y.map_to_complex_numbers(100)
            1.4997967963519640592142411892 + 0.36915620482152626830089145962*I
            sage: y.map_to_complex_numbers(10)
            1.5 + 0.37*I

        Here we see that the Heegner point is 0 since it lies in the
        lattice::

            sage: E = EllipticCurve('389a'); y = E.heegner_point(-7)
            sage: y.map_to_complex_numbers(10)
            0.0034 - 3.9*I
            sage: y.map_to_complex_numbers()
            4.71844785465692e-15 - 3.94347540310330*I
            sage: E.period_lattice().basis()
            (2.49021256085505, 1.97173770155165*I)
            sage: 2*E.period_lattice().basis()[1]
            3.94347540310330*I

        You can also directly coerce to the complex field::

            sage: E = EllipticCurve('389a'); y = E.heegner_point(-7)
            sage: z = ComplexField(100)(y); z # real part approx. 0
            -... - 3.9434754031032964088448153963*I
            sage: E.period_lattice().elliptic_exponential(z)
            (0.00000000000000000000000000000 : 1.0000000000000000000000000000 : 0.00000000000000000000000000000)
"""
        phi = self.__E.modular_parametrization()
        tau = self.heegner_point_on_X0N().tau()
        return phi.map_to_complex_numbers(tau, prec)

    def _complex_mpfr_field_(self, C):
        """
        Used internally for coercing Heegner point to a complex field.

        EXAMPLES::

            sage: E = EllipticCurve('37a'); y = E.heegner_point(-7)
            sage: CC(y)                          # indirect doctest
            0.929592715285395 - 1.22569469099340*I
            sage: ComplexField(100)(y)
            0.92959271528539567440519934446 - 1.2256946909933950304271124159*I
        """
        phi = self.__E.modular_parametrization()
        tau = C(self.heegner_point_on_X0N().tau())
        return phi.map_to_complex_numbers(tau)

    @cached_method
    def kolyvagin_point(self):
        """
        Return the Kolyvagin point corresponding to this Heegner
        point.  This is the point obtained by applying the Kolyvagin
        operator `J_c I_c` in the group ring of the Galois group to
        this Heegner point.   It is a point that defines an element
        of `H^1(K, E[n])`, under certain hypotheses on `n`.

        EXAMPLES::

            sage: E = EllipticCurve('37a1'); y = E.heegner_point(-7); y
            Heegner point of discriminant -7 on elliptic curve of conductor 37
            sage: P = y.kolyvagin_point(); P
            Kolyvagin point of discriminant -7 on elliptic curve of conductor 37
            sage: PP = P.numerical_approx() # approximately (0 : 0 : 1)
            sage: all([c.abs() < 1e-15 for c in PP.xy()])
            True
        """
        return KolyvaginPoint(self)

    @cached_method
    def _trace_index(self, *args, **kwds):
        """
        Return index of the trace of this Heegner point down to `K` in
        the group of `K`-rational points.

        IMPORTANT: See the help for ``E=self.curve(); E.index?`` for
        the inputs to this function and more details about what is
        computed.  In particular, the returned index can be off at 2.

        OUTPUT:

            - ``Integer`` -- returns an integer

        EXAMPLES::

            sage: E = EllipticCurve('77a1')
            sage: P = E.heegner_point(-19); y = P._trace_numerical_conductor_1(); [c.real() for c in y]
            [-1.2...e-16, -1.00000000000000, 1.00000000000000]
            sage: -2*E.gens()[0]
            (0 : -1 : 1)
            sage: P._trace_index()
            2

            sage: P = E.heegner_point(-68); P
            Heegner point of discriminant -68 on elliptic curve of conductor 77
            sage: N(P)
            (0.219223593595584 - 1.87443160153148*I : -1.34232921921325 - 1.52356748877889*I : 1.00000000000000)
            sage: P._trace_index()
            0
        """
        if self.conductor() != 1:
            raise ValueError("conductor of Heegner point must be 1")
        i = self.__E.heegner_index(self.discriminant(), *args, **kwds)
        lower = i.lower().round()
        upper = i.upper().round()
        if lower == upper:
            return lower
        # here we would say raise precision somehow.
        raise NotImplementedError("unable to compute index")

    def curve(self):
        """
        Return the elliptic curve on which this is a Heegner point.

        EXAMPLES::

            sage: E = EllipticCurve('389a'); P = E.heegner_point(-7, 5)
            sage: P.curve()
            Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field
            sage: P.curve() is E
            True
        """
        return self.__E

    @cached_method
    def quadratic_form(self):
        """
        Return the integral primitive positive definite binary
        quadratic form associated to this Heegner point.


        EXAMPLES::

            sage: EllipticCurve('389a').heegner_point(-7, 5).quadratic_form()
            389*x^2 + 147*x*y + 14*y^2

            sage: P = EllipticCurve('389a').heegner_point(-7, 5, (778,925,275)); P
            Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor 389
            sage: P.quadratic_form()
            778*x^2 + 925*x*y + 275*y^2
        """
        return self.__x.quadratic_form()

    @cached_method
    def numerical_approx(self, prec=53, algorithm=None):
        """
        Return a numerical approximation to this Heegner point
        computed using a working precision of prec bits.

        .. WARNING::

            The answer is *not* provably correct to prec bits!  A
            priori, due to rounding and other errors, it is possible that
            not a single digit is correct.

        INPUT:

            - prec     -- (default: ``None``) the working precision

        EXAMPLES::

            sage: E = EllipticCurve('37a'); P = E.heegner_point(-7); P
            Heegner point of discriminant -7 on elliptic curve of conductor 37
            sage: all([c.abs()< 1e-15 for c in P.numerical_approx().xy()])
            True
            sage: P.numerical_approx(10)  # expect random digits
            (0.0030 - 0.0028*I : -0.0030 + 0.0028*I : 1.0)
            sage: P.numerical_approx(100)[0]  # expect random digits
            8.4...e-31 + 6.0...e-31*I
            sage: E = EllipticCurve('37a'); P = E.heegner_point(-40); P
            Heegner point of discriminant -40 on elliptic curve of conductor 37
            sage: P.numerical_approx()  # abs tol 1e-15
            (-3.15940603400359e-16 + 1.41421356237309*I : 1.00000000000000 - 1.41421356237309*I : 1.00000000000000)

        A rank 2 curve, where all Heegner points of conductor 1 are 0::

            sage: E = EllipticCurve('389a'); E.rank()
            2
            sage: P = E.heegner_point(-7); P
            Heegner point of discriminant -7 on elliptic curve of conductor 389
            sage: P.numerical_approx()
            (0.000000000000000 : 1.00000000000000 : 0.000000000000000)

        However, Heegner points of bigger conductor are often nonzero::

            sage: E = EllipticCurve('389a'); P = E.heegner_point(-7, 5); P
            Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor 389
            sage: numerical_approx(P)
            (0.675507556926806 + 0.344749649302635*I : -0.377142931401887 + 0.843366227137146*I : 1.00000000000000)
            sage: P.numerical_approx()
            (0.6755075569268... + 0.3447496493026...*I : -0.3771429314018... + 0.8433662271371...*I : 1.00000000000000)
            sage: E.heegner_point(-7, 11).numerical_approx()
            (0.1795583794118... + 0.02035501750912...*I : -0.5573941377055... + 0.2738940831635...*I : 1.00000000000000)
            sage: E.heegner_point(-7, 13).numerical_approx()
            (1.034302915374... - 3.302744319777...*I : 1.323937875767... + 6.908264226850...*I : 1.00000000000000)

        We find (probably) the definining polynomial of the
        `x`-coordinate of `P`, which defines a class field.  The shape of
        the discriminant below is strong confirmation -- but not proof
        -- that this polynomial is correct::

            sage: f = P.numerical_approx(70)[0].algdep(6); f
            1225*x^6 + 1750*x^5 - 21675*x^4 - 380*x^3 + 110180*x^2 - 129720*x + 48771
            sage: f.discriminant().factor()
            2^6 * 3^2 * 5^11 * 7^4 * 13^2 * 19^6 * 199^2 * 719^2 * 26161^2
        """
        tau = ComplexField(prec)(self.tau())
        E = self.curve()
        return E.modular_parametrization()(tau)

    def tau(self):
        r"""
        Return `\tau` in the upper half plane that maps via the
        modular parametrization to this Heegner point.

        EXAMPLES::

            sage: E = EllipticCurve('389a'); P = E.heegner_point(-7, 5)
            sage: P.tau()
            5/778*sqrt_minus_7 - 147/778
        """
        return self.heegner_point_on_X0N().tau()

    @cached_method
    def x_poly_exact(self, prec=53, algorithm='lll'):
        """
        Return irreducible polynomial over the rational numbers
        satisfied by the `x` coordinate of this Heegner point.  A
        ValueError is raised if the precision is clearly insignificant
        to define a point on the curve.

        .. WARNING::

            It is in theory possible for this function to not raise a
            ValueError, find a polynomial, but via some very unlikely
            coincidence that point is not actually this Heegner point.

        INPUT:

            - ``prec`` -- integer (default: 53)

            - ``algorithm`` -- 'conjugates' or 'lll' (default); if
                   'conjugates', compute numerically all the
                   conjugates ``y[i]`` of the Heegner point and construct
                   the characteristic polynomial as the product
                   `f(X)=(X-y[i])`.  If 'lll', compute only one of the
                   conjugates ``y[0]``, then uses the LLL algorithm to
                   guess `f(X)`.


        EXAMPLES:

        We compute some `x`-coordinate polynomials of some conductor 1
        Heegner points::

            sage: E = EllipticCurve('37a')
            sage: v = E.heegner_discriminants_list(10)
            sage: [E.heegner_point(D).x_poly_exact() for D in v]
            [x, x, x^2 + 2, x^5 - x^4 + x^3 + x^2 - 2*x + 1, x - 6, x^7 - 2*x^6 + 9*x^5 - 10*x^4 - x^3 + 8*x^2 - 5*x + 1, x^3 + 5*x^2 + 10*x + 4, x^4 - 10*x^3 + 10*x^2 + 12*x - 12, x^8 - 5*x^7 + 7*x^6 + 13*x^5 - 10*x^4 - 4*x^3 + x^2 - 5*x + 7, x^6 - 2*x^5 + 11*x^4 - 24*x^3 + 30*x^2 - 16*x + 4]


        We compute `x`-coordinate polynomials for some Heegner points
        of conductor bigger than 1 on a rank 2 curve::

            sage: E = EllipticCurve('389a'); P = E.heegner_point(-7, 5); P
            Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor 389
            sage: P.x_poly_exact()
            Traceback (most recent call last):
            ...
            ValueError: insufficient precision to determine Heegner point (fails discriminant test)
            sage: P.x_poly_exact(75)
            x^6 + 10/7*x^5 - 867/49*x^4 - 76/245*x^3 + 3148/35*x^2 - 25944/245*x + 48771/1225
            sage: E.heegner_point(-7,11).x_poly_exact(300)
            x^10 + 282527/52441*x^9 + 27049007420/2750058481*x^8 - 22058564794/2750058481*x^7 - 140054237301/2750058481*x^6 + 696429998952/30250643291*x^5 + 2791387923058/30250643291*x^4 - 3148473886134/30250643291*x^3 + 1359454055022/30250643291*x^2 - 250620385365/30250643291*x + 181599685425/332757076201

        Here we compute a Heegner point of conductor 5 on a rank 3 curve::

            sage: E = EllipticCurve('5077a'); P = E.heegner_point(-7,5); P
            Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor 5077
            sage: P.x_poly_exact(300)
            x^6 + 1108754853727159228/72351048803252547*x^5 + 88875505551184048168/1953478317687818769*x^4 - 2216200271166098662132/3255797196146364615*x^3 + 14941627504168839449851/9767391588439093845*x^2 - 3456417460183342963918/3255797196146364615*x + 1306572835857500500459/5426328660243941025
        """
        n = self.ring_class_field().degree_over_K()

        if algorithm == 'lll':
            P = self.numerical_approx(prec)
            g = None
            for e in [1,2]:   # is there a condition under which we should not bother trying e=1?
                f = P[0].algdep(e*n)

                # If f is correct, then disc(f) = m^2 * (a product of primes dividing D*c).
                # To check this, we divide out the primes dividing D*c, then
                # check that the resulting cofactor is a perfect square.
                F = f.factor()
                if len(F) == 1:
                    f = F[0][0]
                    if self._check_poly_discriminant(f):
                        g = f
                        break

            if g is None:
                raise ValueError("insufficient precision to determine Heegner point (fails discriminant test)")
            f = g
            f = f/f.leading_coefficient()

        elif algorithm == 'conjugates':

            raise NotImplementedError

        return f

    def _check_poly_discriminant(self, f):
        """
        Return ``True`` if the prime to `Dc` part of the discriminant of
        each factor of the polynomial `f` is plus or minus a square.
        This is used for verifying that a polynomial is likely to
        define a subfield of a specific ring class field.

        INPUT:

            - `f` -- a polynomial

        EXAMPLES::

            sage: E = EllipticCurve('389a'); P = E.heegner_point(-7, 5); P
            Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor 389
            sage: R.<x> = QQ[]
            sage: P._check_poly_discriminant(x^2 - 5)
            True
            sage: P._check_poly_discriminant(x^2 - 19)
            False
            sage: P._check_poly_discriminant((x^2 - 19)*(x^2-5))
            False
        """
        if f.is_irreducible():
            disc = f.discriminant()
            (D, c) = (self.discriminant(), self.conductor())
            for p in D.prime_divisors() + c.prime_divisors():
                disc = disc // (p**disc.valuation(p))
            if disc < 0: disc = -disc
            return disc.is_square()
        else:
            for g,_ in f.factor():
                if not self._check_poly_discriminant(g):
                    return False
            return True


    def point_exact(self, prec=53, algorithm='lll', var='a', optimize=False):
        """
        Return exact point on the elliptic curve over a number field
        defined by computing this Heegner point to the given number of
        bits of precision.   A ValueError is raised if the precision
        is clearly insignificant to define a point on the curve.

        .. WARNING::

            It is in theory possible for this function to not raise a
            ValueError, find a point on the curve, but via some very
            unlikely coincidence that point is not actually this Heegner
            point.

        .. WARNING::

            Currently we make an arbitrary choice of `y`-coordinate for
            the lift of the `x`-coordinate.

        INPUT:

            - ``prec`` -- integer (default: 53)

            - ``algorithm`` -- see the description of the algorithm
              parameter for the ``x_poly_exact`` method.

            - ``var`` -- string (default: 'a')

            - ``optimize`` -- book (default; False) if ``True``, try to
              optimize defining polynomial for the number field that
              the point is defined over.  Off by default, since this
              can be very expensive.

        EXAMPLES::

            sage: E = EllipticCurve('389a'); P = E.heegner_point(-7, 5); P
            Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor 389
            sage: z = P.point_exact(100, optimize=True)
            sage: z[1].charpoly()
            x^12 + 6*x^11 + 90089/1715*x^10 + 71224/343*x^9 + 52563964/588245*x^8 - 483814934/588245*x^7 - 156744579/16807*x^6 - 2041518032/84035*x^5 + 1259355443184/14706125*x^4 + 3094420220918/14706125*x^3 + 123060442043827/367653125*x^2 + 82963044474852/367653125*x + 211679465261391/1838265625
            sage: f = P.numerical_approx(500)[1].algdep(12); f / f.leading_coefficient()
            x^12 + 6*x^11 + 90089/1715*x^10 + 71224/343*x^9 + 52563964/588245*x^8 - 483814934/588245*x^7 - 156744579/16807*x^6 - 2041518032/84035*x^5 + 1259355443184/14706125*x^4 + 3094420220918/14706125*x^3 + 123060442043827/367653125*x^2 + 82963044474852/367653125*x + 211679465261391/1838265625

            sage: E = EllipticCurve('5077a')
            sage: P = E.heegner_point(-7)
            sage: P.point_exact(prec=100)
            (0 : 1 : 0)
        """
        E = self.__E
        if self.numerical_approx(prec)[-1] == 0:
            return E(0)
        f = self.x_poly_exact(prec, algorithm=algorithm)
        if f.degree() == 1:
            v = E.lift_x(-f[0], all=True)
            if len(v) > 0:
                return v[0]

        g, d = make_monic(f)
        K = rings.NumberField(g, var)
        x = K.gen() / d
        if optimize:
            KO, from_KO, to_KO = K.optimized_representation()
            K = KO
            x = to_KO(x)
            if K.degree() < 2 * self.ring_class_field().degree_over_K():
                M = rings.QuadraticField(self.discriminant(),'b')
                KD = K.composite_fields(M, names='a')[0]
                phi = K.embeddings(KD)[0]
                x = phi(x)
                K = KD.change_names(names=var)
            x = K.structure()[1](x)
        a1,a2,a3,a4,a6 = E.a_invariants()
        R = K['Y']; Y = R.gen()
        g = Y**2 + a1*x*Y + a3*Y - (x**3 + a2*x**2 + a4*x + a6)
        F = g.factor()   # this takes a long time
        if len(F) == 1 and F[0][0] == 2:
            # reducible -- 1 factor squared
            y = F[0][0]
            L = K
        elif len(F) == 2:
            # reducible -- 2 factors
            y0 = -F[0][0][0]
            # y1 = -F[1][0][0]
            # Figure out which of y0 or y1 is right by
            # P = self.numerical_approx(prec)
            # TODO: finish this -- have to do some thing numerical
            y = y0
            L = K
        else:
            # TODO -- is there an issue with choice of root?
            # irreducible
            gg, dd = make_monic(g)
            M = K.extension(gg, names='b')
            y = M.gen()/dd
            x = M(x)
            L = M.absolute_field(names = var)
            phi = L.structure()[1]
            x = phi(x)
            y = phi(y)

        EL = E.change_ring(L)
        P = EL.point((x,y,1), check=False)
        return P

    @cached_method
    def conjugates_over_K(self):
        r"""
        Return the `Gal(K_c/K)` conjugates of this Heegner point.

        EXAMPLES::

            sage: E = EllipticCurve('77a')
            sage: y = E.heegner_point(-52,5); y
            Heegner point of discriminant -52 and conductor 5 on elliptic curve of conductor 77
            sage: print([z.quadratic_form() for z in y.conjugates_over_K()])
            [77*x^2 + 52*x*y + 13*y^2, 154*x^2 + 206*x*y + 71*y^2, 539*x^2 + 822*x*y + 314*y^2, 847*x^2 + 1284*x*y + 487*y^2, 1001*x^2 + 52*x*y + y^2, 1078*x^2 + 822*x*y + 157*y^2, 1309*x^2 + 360*x*y + 25*y^2, 1309*x^2 + 2054*x*y + 806*y^2, 1463*x^2 + 976*x*y + 163*y^2, 2233*x^2 + 2824*x*y + 893*y^2, 2387*x^2 + 2054*x*y + 442*y^2, 3619*x^2 + 3286*x*y + 746*y^2]
            sage: y.quadratic_form()
            77*x^2 + 52*x*y + 13*y^2
        """
        H = heegner_points(self.level(), self.discriminant(), self.conductor())
        E = self.curve()
        beta = self.quadratic_form()[1]
        return tuple([z.map_to_curve(E) for z in H.points(beta)])

    def _numerical_approx_conjugates_over_QQ(self, prec=53):
        """
        Return a list v of the numerical approximations to precision
        prec of the conjugates of this Heegner point, and their
        complex conjugates.

        INPUT:

            - ``prec`` -- positive integer (default: 53)

        EXAMPLES::

            sage: E = EllipticCurve('37a')
            sage: y = E.heegner_point(-7,3); y
            Heegner point of discriminant -7 and conductor 3 on elliptic curve of conductor 37
            sage: y._numerical_approx_conjugates_over_QQ()
            [(-1.89564392373896 - 0.444771808762067*I : -1.50000000000000 + 2.13102976222246*I : 1.00000000000000), ...]
            sage: y._numerical_approx_conjugates_over_QQ(prec=10)
            [(-1.9 - 0.44*I : -1.5 + 2.1*I : 1.0), ...
             (1.4 + 0.0024*I : -1.7 - 0.0046*I : 1.0)]
        """
        v = []
        for z in self.conjugates_over_K():
            m = z.numerical_approx(prec)
            v.append(m)
            v.append(m.curve().point([w.conjugate() for w in m], check=False))
        v.sort()
        return v

    def _numerical_approx_xy_poly(self, prec=53):
        r"""
        Return polynomials with real floating point coefficients got
        by taking the real part of the product of `X - \alpha` over
        the numerical approximations `\alpha` to the conjugates of
        this Heegner point.  The first polynomial runs through the
        `x`-coordinates and the second through the `y`-coordinates.

        INPUT:

            - ``prec`` -- positive integer (default: 53)

        OUTPUT:

            - 2-tuple of polynomials with floating point coefficients

        EXAMPLES::

            sage: E = EllipticCurve('37a')
            sage: y = E.heegner_point(-7,3); y
            Heegner point of discriminant -7 and conductor 3 on elliptic curve of conductor 37
            sage: y._numerical_approx_xy_poly()  # rel tol 1e-14
            (X^8 + 6.00000000000000*X^7 + 8.99999999999998*X^6 - 12.0000000000000*X^5 - 42.0000000000000*X^4 - 17.9999999999999*X^3 + 36.0000000000001*X^2 + 35.9999999999999*X + 8.99999999999995, X^8 + 12.0000000000000*X^7 + 72.0000000000000*X^6 + 270.000000000000*X^5 + 678.000000000001*X^4 + 1152.00000000000*X^3 + 1269.00000000000*X^2 + 810.000000000002*X + 225.000000000001)
        """
        v = self._numerical_approx_conjugates_over_QQ(prec)
        R = ComplexField(prec)['X']
        S = RealField(prec)['X']
        X = R.gen()
        fx = prod(X-a[0] for a in v)
        fx = S([b.real() for b in fx])
        fy = prod(X-c[1] for c in v)
        fy = S([d.real() for d in fy])
        return fx, fy

    def _xy_poly_nearby(self, prec=53, max_error=10**(-10)):
        """
        Return polynomials with rational coefficients that for sufficiently
        tight bounds are the characteristic polynomial of the x and y
        coordinate of this Heegner point.

        INPUT:

            - ``prec`` -- positive integer (default: 53)

            - ``max_error`` -- very small floating point number

        OUTPUT:

            - 2-tuple of polynomials with rational coefficients

        EXAMPLES::

            sage: E = EllipticCurve('37a')
            sage: y = E.heegner_point(-7,3); y
            Heegner point of discriminant -7 and conductor 3 on elliptic curve of conductor 37
            sage: y._xy_poly_nearby()
            [X^8 + 6*X^7 + 9*X^6 - 12*X^5 - 42*X^4 - 18*X^3 + 36*X^2 + 36*X + 9,
            X^8 + 12*X^7 + 72*X^6 + 270*X^5 + 678*X^4 + 1152*X^3 + 1269*X^2 + 810*X + 225]


        """
        v = self._numerical_approx_xy_poly(prec)
        return [nearby_rational_poly(g, max_error=max_error) for g in v]

    def _xy_poly_simplest(self, prec=53, prec2=None):
        """
        Return polynomials with rational coefficients that for
        sufficiently tight bounds are the characteristic polynomial of
        the x and y coordinate of this Heegner point.

        INPUT:

            - ``prec`` -- positive integer (default: 53)

            - ``prec2`` -- passed into simplest_rational_poly function

        EXAMPLES::

            sage: E = EllipticCurve('37a'); y = E.heegner_point(-7,3)
            sage: y._xy_poly_simplest()
            [X^8 + 6*X^7 + 9*X^6 - 12*X^5 - 42*X^4 - 18*X^3 + 36*X^2 + 36*X + 9,
             X^8 + 12*X^7 + 72*X^6 + 270*X^5 + 678*X^4 + 1152*X^3 + 1269*X^2 + 810*X + 225]
        """
        v = self._numerical_approx_xy_poly(prec)
        if prec2 is None: prec2 = max(2, prec - 20)
        return [simplest_rational_poly(g,prec2) for g in v]

    @cached_method
    def _square_roots_mod_2N_of_D_mod_4N(self):
        """
        Return the square roots of `D` modulo `4N` all reduced mod `2N`,
        without multiplicity.

        EXAMPLES::

            sage: E = EllipticCurve('37a'); P = E.heegner_point(-40); P
            Heegner point of discriminant -40 on elliptic curve of conductor 37
            sage: P._square_roots_mod_2N_of_D_mod_4N()
            [16, 58]
            sage: parent(P._square_roots_mod_2N_of_D_mod_4N()[0])
            Ring of integers modulo 74
        """
        N = self.__E.conductor()
        R = Integers(4*N)
        m = 2*N
        return sorted( set([a%m for a in R(self.discriminant()).sqrt(all=True)]) )

    def _trace_numerical_conductor_1(self, prec=53):
        """
        Return numerical approximation using ``prec`` terms of working
        precision to the trace down to the quadratic imaginary field
        `K` of this Heegner point.

        INPUT:

           - `prec` -- bits precision (default: 53)

        EXAMPLES::

            sage: E = EllipticCurve('57a1')
            sage: P = E.heegner_point(-8); P
            Heegner point of discriminant -8 on elliptic curve of conductor 57
            sage: P._trace_numerical_conductor_1() # approx. (1 : 0 : 1)
            (1.00000000000000 + ...e-16*I : ...e-16 - ...e-16*I : 1.00000000000000)
            sage: P = E(2,1) # a generator
            sage: E([1,0]).height()
            0.150298370947295
            sage: P.height()
            0.0375745927368238
            sage: E.heegner_index(-8)
            2.0000?
            sage: E.torsion_order()
            1
            sage: 2*P
            (1 : 0 : 1)
        """
        if self.conductor() != 1:
            raise ValueError("conductor must be 1")
        R, U = self._good_tau_representatives()
        E = self.__E
        phi = E.modular_parametrization()
        C = rings.ComplexField(prec)
        F = E.change_ring(C)
        s = 0
        for u, weight in U:
            P = phi(C(self._qf_to_tau(u)))
            z = F.point(list(P),check=False)
            if abs(weight) == 2:
                t = F.point(z,check=False) + F.point(tuple([x.conjugate() for x in z]), check=False)
                if weight < 0:
                    s -= t
                else:
                    s += t
            else:
                if weight < 0:
                    s -= z
                else:
                    s += z
        return s

    @cached_method
    def _good_tau_representatives(self):
        """
        Return good upper half plane representatives for Heegner points.

        ALGORITHM: This is Algorithm 3.5 in Watkins's paper.

        EXAMPLES::

            sage: P = EllipticCurve('389a1').heegner_point(-7)
            sage: P._good_tau_representatives()
            ([(1, 1, 2)], [((389, 185, 22), 1)])
        """
        if self.conductor() != 1: raise NotImplementedError
        E = self.__E
        SDN = self._square_roots_mod_2N_of_D_mod_4N()
        beta = SDN[0]
        U = []
        R = []
        N = self.__E.conductor()
        D = self.discriminant()
        h = self.ring_class_field().degree_over_K()
        divs = D.gcd(N).divisors()
        a = 1
        while True:
            for b in SDN:
                b = b.lift()
                # todo (optimize) -- replace for over all s with for over solution
                # set that can be found quickly.
                y = ZZ((b*b - D)/(4*N))
                for s in Integers(a):
                    if N*s*s + b*s + y == 0:
                        s = s.lift()
                        f = (a*N, b+2*N*s, ZZ( ((b + 2*N*s)**2 - D)/(4*a*N)) )
                        for d in divs:
                            Q = d * prod(p**k for p,k in N.factor() if (b-beta)%(p**k)!=0)
                            g = self._qf_atkin_lehner_act(Q, f)
                            gbar = (ZZ(g[0]/N), -g[1], g[2]*N)
                            g = self._qf_reduce(g)
                            gbar = self._qf_reduce(gbar)
                            if g in R or gbar in R:
                                continue
                            R.append(g)
                            if g != gbar:
                                R.append(gbar)
                            epsilon_Q = prod([E.root_number(q) for q in Q.prime_divisors()])
                            if g == gbar:
                                # weight is epsilon_Q
                                weight = epsilon_Q
                            else:
                                # weight is 2*epsilon_Q
                                weight = 2*epsilon_Q
                            U.append((f,weight))
                            if len(R) == h:
                                return R, U
                            assert len(R) < h, "bug -- too many quadratic forms"
            a += 1

    def _qf_to_tau(self, f):
        r"""
        Function used internally that given a quadratic form
        `f=(A,B,C)`, return `\tau` in the upper half plane with
        `A\tau^2 + B \tau + C = 0`.  Here `A>0` and `\gcd(A,B,C)=1`.
        Also, `\tau` has discriminant `D=B^2-4AC`.  In fact, `\tau =
        (-B + \sqrt{D})/(2A)`.

        INPUT:

            - `f` -- binary quadratic form

        EXAMPLES::

            sage: P = EllipticCurve('57a1').heegner_point(-8)
            sage: R, U = P._good_tau_representatives()
            sage: f = U[0][0]; f
            (57, 26, 3)
            sage: P._qf_to_tau(f)
            1/114*sqrt_minus_8 - 13/57
        """
        c = self.conductor()
        A,B,_ = f
        alpha = c * self.quadratic_field().gen()   # this is sqrt(D) = sqrt(c^2*disc(K))
        return (-B + alpha)/(2*A)

    def _qf_from_tau(self, tau):
        r"""
        Return quadratic form associated to a given `\tau` in the upper
        half plane.

        INPUT:

            - `\tau` -- quadratic element of the upper half plane

        EXAMPLES::

            sage: P = EllipticCurve('57a1').heegner_point(-8)
            sage: R, U = P._good_tau_representatives()
            sage: f = U[0][0]; f
            (57, 26, 3)
            sage: tau = P._qf_to_tau(f); tau
            1/114*sqrt_minus_8 - 13/57
            sage: P._qf_from_tau(tau)
            (57, 26, 3)
        """
        g  = tau.minpoly()
        g *= g.denominator()
        return (ZZ(g[2]), ZZ(g[1]), ZZ(g[0]))


    def _qf_atkin_lehner_act(self, Q, f):
        r"""
        Given a positive integer `Q` with `Q | N` and `\gcd(Q, N/Q) =
        1`, we compute the quadratic form corresponding to the image
        of the `tau` corresponding to `f` under the Atkin-Lehner
        operator `W_Q`.

        We do this by letting `u,v` be integers such that
        `u Q^2 - v N = Q`, and using that `W_Q` sends `\tau`
        to `( (u Q \tau + v) / (N \tau + Q) ) / Q`.

        INPUT:

           - `Q` -- integer that divides the level `N`

           - `f` -- quadratic form

        OUTPUT:

           - quadratic form

        EXAMPLES::

            sage: P = EllipticCurve('57a1').heegner_point(-8)
            sage: R, U = P._good_tau_representatives()
            sage: f = U[0][0]; f
            (57, 26, 3)
            sage: P._qf_atkin_lehner_act(3, f)
            (1938, 1204, 187)
            sage: g = P._qf_atkin_lehner_act(19, f); g
            (114, -64, 9)
            sage: h = P._qf_atkin_lehner_act(19, g); h
            (7353, -4762, 771)
            sage: BinaryQF(f).reduced_form() == BinaryQF(h).reduced_form()
            True
        """
        N = self.__E.conductor()
        g, u, v = xgcd(Q*Q, -N)
        assert g == Q
        tau = self._qf_to_tau(f)
        tau2 = ((u*Q*tau + v) / (N*tau + Q))
        return self._qf_from_tau(tau2)


    def _qf_reduce(self, f):
        """
        Given a binary quadratic form `f` represented as a 3-tuple
        (A,B,C), return the reduced binary quadratic form equivalent
        to `f`, represented in the same way.

        EXAMPLES::

            sage: P = EllipticCurve('57a1').heegner_point(-8)
            sage: R, U = P._good_tau_representatives()
            sage: f = U[0][0]; f
            (57, 26, 3)
            sage: P._qf_reduce(f)
            (1, 0, 2)
        """
        return tuple(BinaryQF(f).reduced_form())

    def kolyvagin_cohomology_class(self, n=None):
        """
        Return the Kolyvagin class associated to this Heegner point.

        INPUT:

            - `n` -- positive integer that divides the gcd of `a_p`
              and `p+1` for all `p` dividing the conductor.  If `n` is
              ``None``, choose the largest valid `n`.

        EXAMPLES::

            sage: y = EllipticCurve('389a').heegner_point(-7,5)
            sage: y.kolyvagin_cohomology_class(3)
            Kolyvagin cohomology class c(5) in H^1(K,E[3])
        """
        return KolyvaginCohomologyClassEn(self.kolyvagin_point(), n)

#########################################################################################
# Kolyvagin Points P_c
#########################################################################################
class KolyvaginPoint(HeegnerPoint):
    """
    A Kolyvagin point.

    EXAMPLES:

    We create a few Kolyvagin points::

        sage: EllipticCurve('11a1').kolyvagin_point(-7)
        Kolyvagin point of discriminant -7 on elliptic curve of conductor 11
        sage: EllipticCurve('37a1').kolyvagin_point(-7)
        Kolyvagin point of discriminant -7 on elliptic curve of conductor 37
        sage: EllipticCurve('37a1').kolyvagin_point(-67)
        Kolyvagin point of discriminant -67 on elliptic curve of conductor 37
        sage: EllipticCurve('389a1').kolyvagin_point(-7, 5)
        Kolyvagin point of discriminant -7 and conductor 5 on elliptic curve of conductor 389

    One can also associated a Kolyvagin point to a Heegner point::

        sage: y = EllipticCurve('37a1').heegner_point(-7); y
        Heegner point of discriminant -7 on elliptic curve of conductor 37
        sage: y.kolyvagin_point()
        Kolyvagin point of discriminant -7 on elliptic curve of conductor 37

    TESTS::

        sage: y = EllipticCurve('37a1').heegner_point(-7)
        sage: type(y)
        <class 'sage.schemes.elliptic_curves.heegner.HeegnerPointOnEllipticCurve'>
        sage: loads(dumps(y)) == y
        True
    """
    def __init__(self, heegner_point):
        """
        Create a Kolyvagin point.

        INPUT:

            - ``heegner_point`` -- a Heegner point on some elliptic curve

        EXAMPLES:

        We directly construct a Kolyvagin point from the KolyvaginPoint class::

            sage: y = EllipticCurve('37a1').heegner_point(-7)
            sage: sage.schemes.elliptic_curves.heegner.KolyvaginPoint(y)
            Kolyvagin point of discriminant -7 on elliptic curve of conductor 37
        """
        if not heegner_point.satisfies_kolyvagin_hypothesis():
            raise ValueError("Heegner point does not satisfy Kolyvagin hypothesis")
        self.__heegner_point = heegner_point
        HeegnerPoint.__init__(self, heegner_point.level(), heegner_point.discriminant(),
                              heegner_point.conductor())

    def satisfies_kolyvagin_hypothesis(self, n=None):
        r"""
        Return ``True`` if this Kolyvagin point satisfies the Heegner
        hypothesis for `n`, so that it defines a Galois equivariant
        element of `E(K_c)/n E(K_c)`.

        EXAMPLES::

            sage: y = EllipticCurve('389a').heegner_point(-7,5); P = y.kolyvagin_point()
            sage: P.kolyvagin_cohomology_class(3)
            Kolyvagin cohomology class c(5) in H^1(K,E[3])
            sage: P.satisfies_kolyvagin_hypothesis(3)
            True
            sage: P.satisfies_kolyvagin_hypothesis(5)
            False
            sage: P.satisfies_kolyvagin_hypothesis(7)
            False
            sage: P.satisfies_kolyvagin_hypothesis(11)
            False
        """
        return self.__heegner_point.satisfies_kolyvagin_hypothesis(n)

    def curve(self):
        r"""
        Return the elliptic curve over `\QQ` on which this Kolyvagin
        point sits.

        EXAMPLES::

            sage: E = EllipticCurve('37a1'); P = E.kolyvagin_point(-67, 3)
            sage: P.curve()
            Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
        """
        return self.__heegner_point.curve()

    def heegner_point(self):
        """
        This Kolyvagin point `P_c` is associated to some Heegner point
        `y_c` via Kolyvagin's construction.  This function returns that
        point `y_c`.

        EXAMPLES::

            sage: E = EllipticCurve('37a1')
            sage: P = E.kolyvagin_point(-67); P
            Kolyvagin point of discriminant -67 on elliptic curve of conductor 37
            sage: y = P.heegner_point(); y
            Heegner point of discriminant -67 on elliptic curve of conductor 37
            sage: y.kolyvagin_point() is P
            True
        """
        return self.__heegner_point

    def _repr_(self):
        """
        Return string representation of this Kolyvagin point.

        EXAMPLES::

            sage: E = EllipticCurve('37a1'); P = E.kolyvagin_point(-67,7); P._repr_()
            'Kolyvagin point of discriminant -67 and conductor 7 on elliptic curve of conductor 37'
        """
        s = repr(self.__heegner_point)
        return s.replace('Heegner','Kolyvagin')

    def index(self, *args, **kwds):
        """
        Return index of this Kolyvagin point in the full group of
        $K_c$ rational points on $E$.

        When the conductor is 1, this is computed numerically using
        the Gross-Zagier formula and explicit point search, and it may
        be off by $2$. See the documentation for ``E.heegner_index``,
        where `E` is the curve attached to ``self``.

        EXAMPLES::

            sage: E = EllipticCurve('37a1'); P = E.kolyvagin_point(-67); P.index()
            6
        """
        if self.conductor() == 1:
            return self.__heegner_point._trace_index(*args, **kwds)
        raise NotImplementedError

    def numerical_approx(self, prec=53):
        """
        Return a numerical approximation to this Kolyvagin point using
        prec bits of working precision.

        INPUT:

            - ``prec`` -- precision in bits (default: 53)

        EXAMPLES::

            sage: P = EllipticCurve('37a1').kolyvagin_point(-7); P
            Kolyvagin point of discriminant -7 on elliptic curve of conductor 37
            sage: P.numerical_approx() # approx. (0 : 0 : 1)
            (...e-16 - ...e-16*I : ...e-16 + ...e-16*I : 1.00000000000000)
            sage: P.numerical_approx(100)[0].abs() < 2.0^-99
            True

            sage: P = EllipticCurve('389a1').kolyvagin_point(-7, 5); P
            Kolyvagin point of discriminant -7 and conductor 5 on elliptic curve of conductor 389

        Numerical approximation is only implemented for points of conductor 1::

            sage: P.numerical_approx()
            Traceback (most recent call last):
            ...
            NotImplementedError
        """
        if self.conductor() == 1:
            return self.__heegner_point._trace_numerical_conductor_1(prec)
        raise NotImplementedError

    def point_exact(self, prec=53):
        """
        INPUT:

            - ``prec`` -- precision in bits (default: 53)

        EXAMPLES:

        A rank 1 curve::

            sage: E = EllipticCurve('37a1'); P = E.kolyvagin_point(-67)
            sage: P.point_exact()
            (6 : -15 : 1)
            sage: P.point_exact(40)
            (6 : -15 : 1)
            sage: P.point_exact(20)
            Traceback (most recent call last):
            ...
            RuntimeError: insufficient precision to find exact point

        A rank 0 curve::

            sage: E = EllipticCurve('11a1'); P = E.kolyvagin_point(-7)
            sage: P.point_exact()
            (-1/2*sqrt_minus_7 + 1/2 : -2*sqrt_minus_7 - 2 : 1)

        A rank 2 curve::

            sage: E = EllipticCurve('389a1'); P = E.kolyvagin_point(-7)
            sage: P.point_exact()
            (0 : 1 : 0)

        """
        if self.conductor() == 1:
            # the result is a point defined over K in the conductor 1 case, which is easier.
            P = self.numerical_approx(prec)

            E = self.curve()
            if P[2] == 0:
                return E(0)

            if E.root_number() == -1:
                return self._recognize_point_over_QQ(P, 2*self.index())
            else:
                # root number +1.  We use algdep to recognize the x
                # coordinate, stick it in the appropriate quadratic
                # field, then make sure that we got the right
                # embedding, and if not fix things so we do.
                x = P[0]
                C = x.parent()
                f = x.algdep(2)
                K = self.quadratic_field()
                roots = [r[0] for r in f.roots(K)]
                if len(roots) == 0:
                    raise RuntimeError("insufficient precision to find exact point")
                if len(roots) == 1:
                    X = roots[0]
                else:
                    d = [abs(C(r) - x) for r in roots]
                    if d[0] == d[1]:
                        raise RuntimeError("insufficient precision to distinguish roots")
                    if d[0] < d[1]:
                        X = roots[0]
                    else:
                        X = roots[1]
                F = E.change_ring(K)
                Q = F.lift_x(X, all=True)
                if len(Q) == 1:
                    return Q[0]
                if len(Q) == 0:
                    raise RuntimeError("insufficient precision")
                y = P[1]
                d = [abs(C(r[1])-y) for r in Q]
                if d[0] == d[1]:
                    raise RuntimeError("insufficient precision to distinguish roots")
                if d[0] < d[1]:
                    return Q[0]
                else:
                    return Q[1]

        else:
            raise NotImplementedError

    def plot(self, prec=53, *args, **kwds):
        r"""
        Plot a Kolyvagin point `P_1` if it is defined over the
        rational numbers.

        EXAMPLES::

            sage: E = EllipticCurve('37a'); P = E.heegner_point(-11).kolyvagin_point()
            sage: P.plot(prec=30, pointsize=50, rgbcolor='red') + E.plot()
            Graphics object consisting of 3 graphics primitives
        """
        if self.conductor() != 1:
            raise NotImplementedError

        E = self.curve()
        if E.root_number() == -1:
            P = self.numerical_approx(prec=prec)
            from sage.plot.all import point, Graphics
            if not P:
                # point at infinity
                return Graphics()
            return point((P[0].real(), P[1].real()),*args, **kwds)
        else:
            raise NotImplementedError


    @cached_method
    def trace_to_real_numerical(self, prec=53):
        """
        Return the trace of this Kolyvagin point down to the real
        numbers, computed numerically using prec bits of working
        precision.

        EXAMPLES::

            sage: E = EllipticCurve('37a1'); P = E.kolyvagin_point(-67)
            sage: PP = P.numerical_approx()
            sage: [c.real() for c in PP]
            [6.00000000000000, -15.0000000000000, 1.00000000000000]
            sage: all([c.imag().abs() < 1e-14 for c in PP])
            True
            sage: P.trace_to_real_numerical()
            (1.61355529131986 : -2.18446840788880 : 1.00000000000000)
            sage: P.trace_to_real_numerical(prec=80)  # abs tol 1e-21
            (1.6135552913198573127230 : -2.1844684078888023289187 : 1.0000000000000000000000)

        """
        # Compute numerical approximation of P in E(K).
        P = self.numerical_approx(prec=prec)
        # Trace this numerical approximation down to E(Q) (numerically).
        E = P.curve()
        if self.curve().root_number() == -1:
            R = 2*P
        else:
            R = P + E.point([x.conjugate() for x in P],check=False)
        F = self.curve().change_ring(rings.RealField(prec))
        return F.point([x.real() for x in R], check=False)

    @cached_method
    def _trace_exact_conductor_1(self, prec=53):
        r"""
        Return the trace from `K` to `\QQ` of this Kolyvagin point in
        the case of conductor 1, computed using prec bits of
        precision, then approximated using some algorithm (e.g.,
        continued fractions).  If the precision is not enough to
        determine a point on the curve, then a RuntimeError is raised.
        Even if the precision determines a point, there is no guarantee
        that it is correct.

        EXAMPLES:

        A Kolyvagin point on a rank 1 curve::

            sage: E = EllipticCurve('37a1'); P = E.kolyvagin_point(-67)
            sage: P.trace_to_real_numerical()
            (1.61355529131986 : -2.18446840788880 : 1.00000000000000)
            sage: P._trace_exact_conductor_1()  # the actual point we're reducing
            (1357/841 : -53277/24389 : 1)
            sage: (P._trace_exact_conductor_1().height() / E.regulator()).sqrt()
            12.0000000000000
        """
        if not self.conductor() == 1:
            raise ValueError("the conductor must be 1")

        P = self.trace_to_real_numerical(prec)
        return self._recognize_point_over_QQ(P, 2*self.index())

    def _recognize_point_over_QQ(self, P, n):
        """
        Used internally when computing an exact point on an elliptic curve.

        INPUT:

             - `P` -- numerical approximation for a point on `E`

             - `n` -- upper bound on divisibility index of `P` in group `E(\QQ)`

        EXAMPLES::

            sage: E = EllipticCurve('43a'); P = E.heegner_point(-20).kolyvagin_point()
            sage: PP = P.numerical_approx(); PP
            (...e-16 : -1.00000000000000 : 1.00000000000000)
            sage: P._recognize_point_over_QQ(PP, 4)
            (0 : -1 : 1)
        """
        # Here is where we *should* implement the "method of Cremona
        # etc" mentioned in Watkins' article... which involves local
        # heights.
        E = self.curve()  # over Q
        v = sum([list(n*w) for w in E.gens()] + [list(w) for w in E.torsion_points()], [])
        # note -- we do not claim to prove anything, so making up a factor of 100 is fine.
        max_denominator = 100*max([z.denominator() for z in v])
        try:
            # the coercion below also checks if point is on elliptic curve
            return E([x.real().nearby_rational(max_denominator=max_denominator) for x in P])
        except TypeError:
            raise RuntimeError("insufficient precision to find exact point")

    def mod(self, p, prec=53):
        r"""
        Return the trace of the reduction `Q` modulo a prime over `p` of this
        Kolyvagin point as an element of `E(\GF{p})`, where
        `p` is any prime that is inert in `K` that is coprime to `NDc`.

        The point `Q` is only well defined up to an element of
        `(p+1) E(\GF{p})`, i.e., it gives a well defined element
        of the abelian group `E(\GF{p}) / (p+1) E(\GF{p})`.

        See [SteinToward]_, Proposition 5.4 for a proof of the above
        well-definedness assertion.

        EXAMPLES:

        A Kolyvagin point on a rank 1 curve::

            sage: E = EllipticCurve('37a1'); P = E.kolyvagin_point(-67)
            sage: P.mod(2)
            (1 : 1 : 1)
            sage: P.mod(3)
            (1 : 0 : 1)
            sage: P.mod(5)
            (2 : 2 : 1)
            sage: P.mod(7)
            (6 : 0 : 1)
            sage: P.trace_to_real_numerical()
            (1.61355529131986 : -2.18446840788880 : 1.00000000000000)
            sage: P._trace_exact_conductor_1()  # the actual point we're reducing
            (1357/841 : -53277/24389 : 1)
            sage: (P._trace_exact_conductor_1().height() / E.regulator()).sqrt()
            12.0000000000000

        Here the Kolyvagin point is a torsion point (since `E` has
        rank 1), and we reduce it modulo several primes.::

            sage: E = EllipticCurve('11a1'); P = E.kolyvagin_point(-7)
            sage: P.mod(3,70)  # long time (4s on sage.math, 2013)
            (1 : 2 : 1)
            sage: P.mod(5,70)
            (1 : 4 : 1)
            sage: P.mod(7,70)
            Traceback (most recent call last):
            ...
            ValueError: p must be coprime to conductors and discriminant
            sage: P.mod(11,70)
            Traceback (most recent call last):
            ...
            ValueError: p must be coprime to conductors and discriminant
            sage: P.mod(13,70)
            (3 : 4 : 1)

        REFERENCES:

        .. [SteinToward] Stein, "Toward a Generalization of the Gross-Zagier Conjecture", Int Math Res Notices (2011), :doi:`10.1093/imrn/rnq075`
        """
        # check preconditions
        p = ZZ(p)
        if not p.is_prime():
            raise ValueError("p must be prime")
        E = self.curve()
        D = self.discriminant()
        if (E.conductor() * D * self.conductor()) % p == 0:
            raise ValueError("p must be coprime to conductors and discriminant")
        K = self.heegner_point().quadratic_field()
        if len(K.factor(p)) != 1:
            raise ValueError("p must be inert")

        # do actual calculation
        if self.conductor() == 1:

            P = self._trace_exact_conductor_1(prec = prec)
            return E.change_ring(GF(p))(P)

        else:

            raise NotImplementedError

##     def congruent_rational_point(self, n, prec=53):
##         r"""
##         Let `P` be this Kolyvagin point.  Determine whether there is a
##         point `z` in `E(\QQ)` such that `z - P \in n E(K_c)`, where `K_c`
##         is the ring class field over which this Kolyvagin point is defined.
##         If `z` exists return `z`.  Otherwise return None.
##
##         INPUT:
##
##            - `n`  -- positive integer
##
##            - ``prec`` -- positive integer (default: 53)
##
##
##         EXAMPLES::
##
##         """
##         raise NotImplementedError


    def kolyvagin_cohomology_class(self, n=None):
        """
        INPUT:

            - `n` -- positive integer that divides the gcd of `a_p`
              and `p+1` for all `p` dividing the conductor.  If `n` is
              ``None``, choose the largest valid `n`.

        EXAMPLES::

            sage: y = EllipticCurve('389a').heegner_point(-7,5)
            sage: P = y.kolyvagin_point()
            sage: P.kolyvagin_cohomology_class(3)
            Kolyvagin cohomology class c(5) in H^1(K,E[3])

            sage: y = EllipticCurve('37a').heegner_point(-7,5).kolyvagin_point()
            sage: y.kolyvagin_cohomology_class()
            Kolyvagin cohomology class c(5) in H^1(K,E[2])
        """
        return KolyvaginCohomologyClassEn(self, n)


class KolyvaginCohomologyClass(SageObject):
    """
    A Kolyvagin cohomology class in `H^1(K,E[n])` or `H^1(K,E)[n]`
    attached to a Heegner point.

    EXAMPLES::

        sage: y = EllipticCurve('37a').heegner_point(-7)
        sage: c = y.kolyvagin_cohomology_class(3); c
        Kolyvagin cohomology class c(1) in H^1(K,E[3])
        sage: type(c)
        <class 'sage.schemes.elliptic_curves.heegner.KolyvaginCohomologyClassEn'>
        sage: loads(dumps(c)) == c
        True
        sage: y.kolyvagin_cohomology_class(5)
        Kolyvagin cohomology class c(1) in H^1(K,E[5])
    """
    def __init__(self, kolyvagin_point, n):
        """

        EXAMPLES::

            sage: y = EllipticCurve('389a').heegner_point(-7,5)
            sage: y.kolyvagin_cohomology_class(3)
            Kolyvagin cohomology class c(5) in H^1(K,E[3])
        """
        if n is None:
            c = kolyvagin_point.conductor()
            E = kolyvagin_point.curve()
            n = gcd([(p+1).gcd(E.ap(p)) for p in c.prime_divisors()])

        if not kolyvagin_point.satisfies_kolyvagin_hypothesis(n):
            raise ValueError("Kolyvagin point does not satisfy Kolyvagin hypothesis for %s"%n)
        self.__kolyvagin_point = kolyvagin_point
        self.__n = n

    def __eq__(self, other):
        """
        EXAMPLES:
            sage: y = EllipticCurve('37a').heegner_point(-7)
            sage: c = y.kolyvagin_cohomology_class(3)
            sage: c == y.kolyvagin_cohomology_class(3)
            True
            sage: c == y.kolyvagin_cohomology_class(5)
            False

        This does not mean that c is nonzero (!) -- it just means c is not the number 0::

            sage: c == 0
            False
        """
        return isinstance(other, KolyvaginCohomologyClass) and \
               self.__kolyvagin_point == other.__kolyvagin_point and \
               self.__n == other.__n


    def n(self):
        """
        Return the integer `n` so that this is a cohomology class in
        `H^1(K,E[n])` or `H^1(K,E)[n]`.

        EXAMPLES::

            sage: y = EllipticCurve('37a').heegner_point(-7)
            sage: t = y.kolyvagin_cohomology_class(3); t
            Kolyvagin cohomology class c(1) in H^1(K,E[3])
            sage: t.n()
            3
        """
        return self.__n

    def conductor(self):
        r"""
        Return the integer `c` such that this cohomology class is associated
        to the Heegner point `y_c`.

        EXAMPLES::

            sage: y = EllipticCurve('37a').heegner_point(-7,5)
            sage: t = y.kolyvagin_cohomology_class()
            sage: t.conductor()
            5
        """
        return self.__kolyvagin_point.conductor()

    def kolyvagin_point(self):
        """
        Return the Kolyvagin point `P_c` to which this cohomology
        class is associated.

        EXAMPLES::

            sage: y = EllipticCurve('37a').heegner_point(-7,5)
            sage: t = y.kolyvagin_cohomology_class()
            sage: t.kolyvagin_point()
            Kolyvagin point of discriminant -7 and conductor 5 on elliptic curve of conductor 37
        """
        return self.__kolyvagin_point

    def heegner_point(self):
        """
        Return the Heegner point `y_c` to which this cohomology class
        is associated.

        EXAMPLES::

            sage: y = EllipticCurve('37a').heegner_point(-7,5)
            sage: t = y.kolyvagin_cohomology_class()
            sage: t.heegner_point()
            Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor 37
        """
        return self.__kolyvagin_point.heegner_point()

class KolyvaginCohomologyClassEn(KolyvaginCohomologyClass):
    """

    EXAMPLES:

    """
    def _repr_(self):
        """

        EXAMPLES::

            sage: y = EllipticCurve('37a').heegner_point(-7,5)
            sage: t = y.kolyvagin_cohomology_class()
            sage: t._repr_()
            'Kolyvagin cohomology class c(5) in H^1(K,E[2])'
        """
        return "Kolyvagin cohomology class c(%s) in H^1(K,E[%s])"%(
            self.conductor(), self.n())


#############################################################################
# Reduction of Heegner points using Quaternion Algebras
#
# This section contains implementations of algorithms for computing
# information about reduction modulo primes of Heegner points using
# quaternion algebras.  Some of this code could later be moved to the
# quaternion algebras code, but it is too immature and not general
# enough at present for that.
#############################################################################

class HeegnerQuatAlg(SageObject):
    r"""
    Heegner points viewed as supersingular points on the modular curve
    `X_0(N)/\mathbf{F}_{\ell}`.

    EXAMPLES::

        sage: H = heegner_points(11).reduce_mod(13); H
        Heegner points on X_0(11) over F_13
        sage: type(H)
        <class 'sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg'>
        sage: loads(dumps(H)) == H
        True
    """
    def __init__(self, level, ell):
        r"""
        INPUT:

           - ``level`` -- the level (a positive integer)

           - `\ell` -- the characteristic, a prime coprime to the level

        EXAMPLES::

            sage: sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg(11, 13)
            Heegner points on X_0(11) over F_13
        """
        level = ZZ(level); ell = ZZ(ell)
        if not ell.is_prime():
            raise ValueError("ell must be prime")
        if level.gcd(ell) != 1:
            raise ValueError("level and ell must be coprime")
        self.__level = level
        self.__ell = ell

    def __eq__(self, other):
        """
        EXAMPLES::

            sage: H = heegner_points(11).reduce_mod(3)
            sage: H == heegner_points(11).reduce_mod(3)
            True
            sage: H == heegner_points(11).reduce_mod(5)
            False
            sage: H == 0
            False
        """
        return isinstance(other, HeegnerQuatAlg) and self.__level == other.__level \
               and self.__ell == other.__ell

    def _repr_(self):
        """
        Return string representation.

        EXAMPLES::

            sage: heegner_points(11).reduce_mod(13)._repr_()
            'Heegner points on X_0(11) over F_13'
        """
        return "Heegner points on X_0(%s) over F_%s"%(
            self.__level, self.__ell)

    def level(self):
        """
        Return the level.

        EXAMPLES::

            sage: heegner_points(11).reduce_mod(3).level()
            11
        """
        return self.__level

    def ell(self):
        r"""
        Return the prime `\ell` modulo which we are working.

        EXAMPLES::

            sage: heegner_points(11).reduce_mod(3).ell()
            3
        """
        return self.__ell

    def satisfies_heegner_hypothesis(self, D, c=ZZ(1)):
        r"""
        The fundamental discriminant `D` must be coprime to `N\ell`,
        and must define a quadratic imaginary field `K` in which `\ell`
        is inert.  Also, all primes dividing `N` must split in `K`,
        and `c` must be squarefree and coprime to `ND\ell`.

        INPUT:

            - `D` -- negative integer

            - `c` -- positive integer (default: 1)

        OUTPUT:

            - bool

        EXAMPLES::

            sage: H = heegner_points(11).reduce_mod(7)
            sage: H.satisfies_heegner_hypothesis(-5)
            False
            sage: H.satisfies_heegner_hypothesis(-7)
            False
            sage: H.satisfies_heegner_hypothesis(-8)
            True
            sage: [D for D in [-1,-2..-100] if H.satisfies_heegner_hypothesis(D)]
            [-8, -39, -43, -51, -79, -95]
        """
        D = ZZ(D); c = ZZ(c)
        if gcd(c*D, self.__level*self.__ell) != 1 or gcd(c,D) != 1:
            return False
        if not satisfies_weak_heegner_hypothesis(self.__level, D):
            return False
        if not is_inert(D, self.__ell):
            return False
        return True

    def heegner_discriminants(self, n=5):
        r"""
        Return the first `n` negative fundamental discriminants
        coprime to `N\ell` such that `\ell` is inert in the
        corresponding quadratic imaginary field and that field
        satisfies the Heegner hypothesis, and `N` is the level.

        INPUT:

            - `n` -- positive integer (default: 5)

        OUTPUT:

            - list

        EXAMPLES::

            sage: H = heegner_points(11).reduce_mod(3)
            sage: H.heegner_discriminants()
            [-7, -19, -40, -43, -52]
            sage: H.heegner_discriminants(10)
            [-7, -19, -40, -43, -52, -79, -127, -139, -151, -184]
        """
        v = []
        D = ZZ(-5)
        while len(v) < n:
            if self.satisfies_heegner_hypothesis(D):
                v.append(D)
            D -= 1
        return v

    def heegner_conductors(self, D, n=5):
        r"""
        Return the first `n` negative fundamental discriminants
        coprime to `N\ell` such that `\ell` is inert in the
        corresponding quadratic imaginary field and that field
        satisfies the Heegner hypothesis.

        INPUT:

            - `D` -- negative integer; a fundamental Heegner
              discriminant

            - `n` -- positive integer (default: 5)

        OUTPUT:

            - list

        EXAMPLES::

            sage: H = heegner_points(11).reduce_mod(3)
            sage: H.heegner_conductors(-7)
            [1, 2, 4, 5, 8]
            sage: H.heegner_conductors(-7, 10)
            [1, 2, 4, 5, 8, 10, 13, 16, 17, 19]
        """
        v = [ZZ(1)]
        c = ZZ(2)
        while len(v) < n:
            if self.satisfies_heegner_hypothesis(D, c):
                v.append(c)
            c += 1
        return v


    def optimal_embeddings(self, D, c, R):
        """
        INPUT:

            - `D` -- negative fundamental disriminant

            - `c` -- integer coprime

            - `R` -- Eichler order

        EXAMPLES::

            sage: H = heegner_points(11).reduce_mod(3)
            sage: R = H.left_orders()[0]
            sage: H.optimal_embeddings(-7, 1, R)
              ***   Warning: increasing stack size to...
            [Embedding sending sqrt(-7) to i - j - k,
             Embedding sending sqrt(-7) to -i + j + k]
            sage: H.optimal_embeddings(-7, 2, R)
            [Embedding sending 2*sqrt(-7) to 5*i - k,
             Embedding sending 2*sqrt(-7) to -5*i + k,
             Embedding sending 2*sqrt(-7) to 2*i - 2*j - 2*k,
             Embedding sending 2*sqrt(-7) to -2*i + 2*j + 2*k]
        """
        Q, G = R.ternary_quadratic_form(include_basis=True)
        n    = -D*c*c
        reps = Q.representation_vector_list(n+1)[-1]

        # The representatives give elements in terms of the
        # subspace's basis such that the embedding is given by
        #     phi(c*sqrt(D)) = beta
        E = []
        for r in reps:
            beta = sum(G[i]*r[i] for i in range(len(G)))
            phi = HeegnerQuatAlgEmbedding(D, c, R, beta)
            E.append(phi)
        return E

    @cached_method
    def brandt_module(self):
        """
        Return the Brandt module of right ideal classes that we
        used to represent the set of supersingular points on
        the modular curve.

        EXAMPLES::

            sage: heegner_points(11).reduce_mod(3).brandt_module()
            Brandt module of dimension 2 of level 3*11 of weight 2 over Rational Field
        """
        from sage.modular.quatalg.all import BrandtModule
        return BrandtModule(self.__ell, self.__level)

    @cached_method
    def quaternion_algebra(self):
        """
        Return the rational quaternion algebra used to implement self.

        EXAMPLES::

            sage: heegner_points(389).reduce_mod(7).quaternion_algebra()
            Quaternion Algebra (-1, -7) with base ring Rational Field
        """
        return self.brandt_module().quaternion_algebra()

    def right_ideals(self):
        """
        Return representative right ideals in the Brandt module.

        EXAMPLES::

            sage: heegner_points(11).reduce_mod(3).right_ideals()
            (Fractional ideal (2 + 2*j + 28*k, 2*i + 26*k, 4*j + 12*k, 44*k),
             Fractional ideal (2 + 2*j + 28*k, 2*i + 4*j + 38*k, 8*j + 24*k, 88*k))
        """
        return self.brandt_module().right_ideals()

    @cached_method
    def left_orders(self):
        """
        Return the left orders associated to the representative right
        ideals in the Brandt module.

        EXAMPLES::

            sage: heegner_points(11).reduce_mod(3).left_orders()
            [Order of Quaternion Algebra (-1, -3) with base ring Rational Field with basis (1/2 + 1/2*j + 7*k, 1/2*i + 13/2*k, j + 3*k, 11*k),
             Order of Quaternion Algebra (-1, -3) with base ring Rational Field with basis (1/2 + 1/2*j + 7*k, 1/4*i + 1/2*j + 63/4*k, j + 14*k, 22*k)]
        """
        return [I.left_order() for I in self.right_ideals()]

    @cached_method
    def heegner_divisor(self, D, c=ZZ(1)):
        r"""
        Return Heegner divisor as an element of the Brandt module
        corresponding to the discriminant `D` and conductor `c`, which
        both must be coprime to `N\ell`.

        More precisely, we compute the sum of the reductions of the
        `\textrm{Gal}(K_1/K)`-conjugates of each choice of `y_1`,
        where the choice comes from choosing the ideal `\mathcal{N}`.
        Then we apply the Hecke operator `T_c` to this sum.

        INPUT:

            - `D` -- discriminant (negative integer)

            - `c` -- conductor (positive integer)

        OUTPUT:

            - Brandt module element

        EXAMPLES::

            sage: H = heegner_points(11).reduce_mod(7)
            sage: H.heegner_discriminants()
            [-8, -39, -43, -51, -79]
            sage: H.heegner_divisor(-8)
            (1, 0, 0, 1, 0, 0)
            sage: H.heegner_divisor(-39)
            (1, 2, 2, 1, 2, 0)
            sage: H.heegner_divisor(-43)
            (1, 0, 0, 1, 0, 0)
            sage: H.heegner_divisor(-51)
            (1, 0, 0, 1, 0, 2)
            sage: H.heegner_divisor(-79)
            (3, 2, 2, 3, 0, 0)

            sage: sum(H.heegner_divisor(-39).element())
            8
            sage: QuadraticField(-39,'a').class_number()
            4
        """
        if not self.satisfies_heegner_hypothesis(D, c):
            raise ValueError("D and c must be coprime to N and ell")

        B = self.brandt_module()

        if c > 1:
            # Just apply T_c to divisor for c=1
            z = self.heegner_divisor(D)
            return B.hecke_operator(c)(z)

        n = -D
        v = [0]*B.degree()
        for i, R in enumerate(self.left_orders()):
            Q = R.ternary_quadratic_form()
            a = Q.theta_series(n+1)[n]
            if a > 0:
                reps = Q.representation_vector_list(n+1)[-1]
                k = len([r for r in reps if gcd(r) == 1])
                assert k%2 == 0
                v[i] += k/2
        return B(v)

    @cached_method
    def modp_splitting_data(self, p):
        r"""
        Return mod `p` splitting data for the quaternion algebra at the
        unramified prime `p`.  This is a pair of `2\times 2` matrices
        `A`, `B` over the finite field `\GF{p}` such that if the
        quaternion algebra has generators `i, j, k`, then the
        homomorphism sending `i` to `A` and `j` to `B` maps any
        maximal order homomorphically onto the ring of `2\times 2` matrices.

        Because of how the homomorphism is defined, we must assume that the
        prime `p` is odd.

        INPUT:

            - `p` -- unramified odd prime

        OUTPUT:

            - 2-tuple of matrices over finite field

        EXAMPLES::

            sage: H = heegner_points(11).reduce_mod(7)
            sage: H.quaternion_algebra()
            Quaternion Algebra (-1, -7) with base ring Rational Field
            sage: I, J = H.modp_splitting_data(13)
            sage: I
            [ 0 12]
            [ 1  0]
            sage: J
            [7 3]
            [3 6]
            sage: I^2
            [12  0]
            [ 0 12]
            sage: J^2
            [6 0]
            [0 6]
            sage: I*J == -J*I
            True

        The following is a good test because of the asserts in the code::

            sage: v = [H.modp_splitting_data(p) for p in primes(13,200)]

        Some edge cases::

            sage: H.modp_splitting_data(11)
            (
            [ 0 10]  [6 1]
            [ 1  0], [1 5]
            )

        Proper error handling::

            sage: H.modp_splitting_data(7)
            Traceback (most recent call last):
            ...
            ValueError: p (=7) must be an unramified prime

            sage: H.modp_splitting_data(2)
            Traceback (most recent call last):
            ...
            ValueError: p must be odd
        """
        p = ZZ(p)
        if not p.is_prime():
            raise ValueError("p (=%s) must be prime"%p)
        if p == 2:
            raise ValueError("p must be odd")
        Q = self.quaternion_algebra()
        if Q.discriminant() % p == 0:
            raise ValueError("p (=%s) must be an unramified prime"%p)
        i, j, k = Q.gens()
        F = GF(p)
        i2 = F(i*i)
        j2 = F(j*j)
        M = MatrixSpace(F, 2)
        I = M([0,i2,1,0])
        i2inv = 1/i2
        a = None
        #for b in reversed(list(F)):
        for b in list(F):
            if not b: continue
            c = j2 + i2inv * b*b
            if c.is_square():
                a = -c.sqrt()
                break
        assert a is not None, "bug in that no splitting solution found"
        J = M([a,b,(j2-a*a)/b, -a])
        assert I*J == -J*I, "bug in that I,J do not skew commute"
        return I, J

    def modp_splitting_map(self, p):
        r"""
        Return (algebra) map from the (`p`-integral) quaternion algebra to
        the set of `2\times 2` matrices over `\GF{p}`.

        INPUT:

            - `p` -- prime number

        EXAMPLES::

            sage: H = heegner_points(11).reduce_mod(7)
            sage: f = H.modp_splitting_map(13)
            sage: B = H.quaternion_algebra(); B
            Quaternion Algebra (-1, -7) with base ring Rational Field
            sage: i,j,k = H.quaternion_algebra().gens()
            sage: a = 2+i-j+3*k; b = 7+2*i-4*j+k
            sage: f(a*b)
            [12  3]
            [10  5]
            sage: f(a)*f(b)
            [12  3]
            [10  5]
        """
        I, J = self.modp_splitting_data(p)
        K = I*J
        F = I.base_ring()
        def phi(q):
            v = [F(a) for a in q.coefficient_tuple()]
            return v[0] + I*v[1] + J*v[2] + K*v[3]
        return phi

    def cyclic_subideal_p1(self, I, c):
        r"""
        Compute dictionary mapping 2-tuples that defined normalized
        elements of `P^1(\ZZ/c\ZZ)`

        INPUT:

            - `I` -- right ideal of Eichler order or in quaternion algebra

            - `c` -- square free integer (currently must be odd prime
                     and coprime to level, discriminant, characteristic,
                     etc.

        OUTPUT:

            - dictionary mapping 2-tuples (u,v) to ideals

        EXAMPLES::

            sage: H = heegner_points(11).reduce_mod(7)
            sage: I = H.brandt_module().right_ideals()[0]
            sage: sorted(H.cyclic_subideal_p1(I,3).iteritems())
            [((0, 1),
              Fractional ideal (2 + 2*j + 32*k, 2*i + 8*j + 82*k, 12*j + 60*k, 132*k)),
             ((1, 0),
              Fractional ideal (2 + 10*j + 28*k, 2*i + 4*j + 62*k, 12*j + 60*k, 132*k)),
             ((1, 1),
              Fractional ideal (2 + 2*j + 76*k, 2*i + 4*j + 106*k, 12*j + 60*k, 132*k)),
             ((1, 2),
              Fractional ideal (2 + 10*j + 116*k, 2*i + 8*j + 38*k, 12*j + 60*k, 132*k))]
            sage: len(H.cyclic_subideal_p1(I,17))
            18
        """
        c = ZZ(c)
        if not c.is_prime():
            raise NotImplementedError("currently c must be prime")
        if c == 2:
            raise NotImplementedError("currently c must be odd")
        phi = self.modp_splitting_map(c)
        B = self.brandt_module()
        P1 = P1List(c)
        ans = {}
        # Actually they are submodules despite the name below.
        for J in B.cyclic_submodules(I, c):
            B = J.basis()
            V = phi(B[0]).kernel()
            for i in [1,2,3]:
                V = V.intersection(phi(B[i]).kernel())
            b = V.basis()
            assert len(b) == 1, "common kernel must have dimension 1"
            uv = P1.normalize(ZZ(b[0][0])%c, ZZ(b[0][1])%c)
            ans[uv] = J
        assert len(ans) == c+1
        return ans

    @cached_method
    def galois_group_over_hilbert_class_field(self, D, c):
        """
        Return the Galois group of the extension of ring class fields
        `K_c` over the Hilbert class field `K_{1}` of the quadratic
        imaginary field of discriminant `D`.

        INPUT:

            - `D` -- fundamental discriminant

            - `c` -- conductor (square-free integer)

        EXAMPLES::

            sage: N = 37; D = -7; ell = 17; c = 41; p = 3
            sage: H = heegner_points(N).reduce_mod(ell)
            sage: H.galois_group_over_hilbert_class_field(D, c)
            Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 41 over Hilbert class field of QQ[sqrt(-7)]
        """
        Kc = heegner_points(self.level(), D, c).ring_class_field()
        K1 = heegner_points(self.level(), D, 1).ring_class_field()
        return Kc.galois_group(K1)

    @cached_method
    def galois_group_over_quadratic_field(self, D, c):
        """
        Return the Galois group of the extension of ring class fields
        `K_c` over the quadratic imaginary field `K` of discriminant `D`.

        INPUT:

            - `D` -- fundamental discriminant

            - `c` -- conductor (square-free integer)

        EXAMPLES::

            sage: N = 37; D = -7; ell = 17; c = 41; p = 3
            sage: H = heegner_points(N).reduce_mod(ell)
            sage: H.galois_group_over_quadratic_field(D, c)
            Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 41 over Number Field in sqrt_minus_7 with defining polynomial x^2 + 7

        """
        Kc = heegner_points(self.level(), D, c).ring_class_field()
        return Kc.galois_group(Kc.quadratic_field())

    @cached_method
    def quadratic_field(self, D):
        """
        Return our fixed choice of quadratic imaginary field of
        discriminant `D`.

        INPUT:

            - `D` -- fundamental discriminant

        OUTPUT:

            - a quadratic number field

        EXAMPLES::

            sage: H = heegner_points(389).reduce_mod(5)
            sage: H.quadratic_field(-7)
            Number Field in sqrt_minus_7 with defining polynomial x^2 + 7
        """
        Kc = heegner_points(self.level(), D, 1).ring_class_field()
        return Kc.quadratic_field()

    @cached_method
    def kolyvagin_cyclic_subideals(self, I, p, alpha_quaternion):
        r"""
        Return list of pairs `(J, n)` where `J` runs through the
        cyclic subideals of `I` of index `(\ZZ/p\ZZ)^2`, and `J \sim
        \alpha^n(J_0)` for some fixed choice of cyclic subideal `J_0`.

        INPUT:

            - `I` -- right ideal of the quaternion algebra

            - `p` -- prime number

            - ``alpha_quaternion`` -- image in the quaternion algebra
                of generator `\alpha` for
                `(\mathcal{O}_K / c\mathcal{O}_K)^* / (\ZZ/c\ZZ)^*`.

        OUTPUT:

            - list of 2-tuples

        EXAMPLES::

            sage: N = 37; D = -7; ell = 17; c=5
            sage: H = heegner_points(N).reduce_mod(ell)
            sage: B = H.brandt_module(); I = B.right_ideals()[32]
            sage: f = H.optimal_embeddings(D, 1, I.left_order())[1]
            sage: g = H.kolyvagin_generators(f.domain().number_field(), c)
            sage: alpha_quaternion = f(g[0]); alpha_quaternion
            1 - 5/128*i - 77/192*j + 137/384*k
            sage: H.kolyvagin_cyclic_subideals(I, 5, alpha_quaternion)
            [(Fractional ideal (2 + 874/3*j + 128356/3*k, 2*i + 932/3*j + 198806/3*k, 2560/3*j + 33280/3*k, 94720*k), 0), (Fractional ideal (2 + 462*j + 82892*k, 2*i + 932/3*j + 141974/3*k, 2560/3*j + 33280/3*k, 94720*k), 1), (Fractional ideal (2 + 2410/3*j + 261988/3*k, 2*i + 652*j + 89650*k, 2560/3*j + 33280/3*k, 94720*k), 2), (Fractional ideal (2 + 2410/3*j + 91492/3*k, 2*i + 1444/3*j + 148630/3*k, 2560/3*j + 33280/3*k, 94720*k), 3), (Fractional ideal (2 + 874/3*j + 71524/3*k, 2*i + 2468/3*j + 275606/3*k, 2560/3*j + 33280/3*k, 94720*k), 4), (Fractional ideal (2 + 462*j + 63948*k, 2*i + 2468/3*j + 218774/3*k, 2560/3*j + 33280/3*k, 94720*k), 5)]
        """
        X = I.cyclic_right_subideals(p, alpha_quaternion)
        return [(J, i) for i, J in enumerate(X)]

    @cached_method
    def kolyvagin_generator(self, K, p):
        r"""
        Return element in `K` that maps to the multiplicative generator
        for the quotient group

           `(\mathcal{O}_K / p \mathcal{O}_K)^* / (\ZZ/p\ZZ)^*`

        of the form `\sqrt{D}+n` with `n\geq 1` minimal.

        INPUT:

            - `K` -- quadratic imaginary field

            - `p` -- inert prime

        EXAMPLES::

            sage: N = 37; D = -7; ell = 17; p=5
            sage: H = heegner_points(N).reduce_mod(ell)
            sage: B = H.brandt_module(); I = B.right_ideals()[32]
            sage: f = H.optimal_embeddings(D, 1, I.left_order())[0]
            sage: H.kolyvagin_generator(f.domain().number_field(), 5)
            a + 1

        This function requires that p be prime, but kolyvagin_generators works in general::

            sage: H.kolyvagin_generator(f.domain().number_field(), 5*17)
            Traceback (most recent call last):
            ...
            NotImplementedError: p must be prime
            sage: H.kolyvagin_generators(f.domain().number_field(), 5*17)
            [-34*a + 1, 35*a + 106]
        """
        p = ZZ(p)
        if not p.is_prime():
            raise NotImplementedError("p must be prime")
        if K.discriminant() % p == 0:
            raise ValueError("p must be unramified")
        if len(K.factor(p)) != 1:
            raise ValueError("p must be inert")

        F = K.residue_field(p)
        a = F.gen()
        assert a*a == K.discriminant(), "bug: we assumed generator of finite field must be square root of discriminant, but for some reason this is not true"
        for n in range(1,p):
            if (a + n).multiplicative_order() % (p*p-1) == 0:
                return K.gen() + n
        raise RuntimeError("there is a bug in kolyvagin_generator")

    @cached_method
    def kolyvagin_generators(self, K, c):
        r"""
        Return elements in `\mathcal{O}_K` that map to multiplicative generators
        for the factors of the quotient group

           `(\mathcal{O}_K / c \mathcal{O}_K)^* / (\ZZ/c\ZZ)^*`

        corresponding to the prime divisors of c.  Each generator is
        of the form `\sqrt{D}+n` with `n\geq 1` minimal.

        INPUT:

            - `K` -- quadratic imaginary field

            - `c` -- square free product of inert prime

        EXAMPLES::

            sage: N = 37; D = -7; ell = 17; p=5
            sage: H = heegner_points(N).reduce_mod(ell)
            sage: B = H.brandt_module(); I = B.right_ideals()[32]
            sage: f = H.optimal_embeddings(D, 1, I.left_order())[0]
            sage: H.kolyvagin_generators(f.domain().number_field(), 5*17)
            [-34*a + 1, 35*a + 106]
        """
        v = []
        F = ZZ(c).factor()
        from sage.rings.integer_ring import crt_basis
        B = crt_basis([x[0] for x in F])
        for i, (p, e) in enumerate(F):
            if e > 1:
                raise ValueError("c must be square free")
            alpha = self.kolyvagin_generator(K, p)
            # Now we use the Chinese Remainder Theorem to make an element
            # of O_K that equals alpha modulo p and equals 1 modulo
            # all other prime divisors of c.
            Z = [1]*len(B)
            Z[i] = alpha[0]
            a0 = sum([Z[j]*B[j] for j in range(len(B))])
            Z = [0]*len(B)
            Z[i] = alpha[1]
            a1 = sum([Z[j]*B[j] for j in range(len(B))])
            v.append(alpha.parent()([a0,a1]))
        return v

    @cached_method
    def kolyvagin_sigma_operator(self, D, c, r, bound=None):
        """
        Return the action of the Kolyvagin sigma operator on the `r`-th
        basis vector.

        INPUT:

            - `D` -- fundamental discriminant

            - `c` -- conductor (square-free integer, need not be prime)

            - `r` -- nonnegative integer

            - ``bound`` -- (default: ``None``), if given, controls
              precision of computation of theta series, which could
              impact performance, but does not impact correctness

        EXAMPLES:

        We first try to verify Kolyvagin's conjecture for a rank 2
        curve by working modulo 5, but we are unlucky with `c=17`::

            sage: N = 389; D = -7; ell = 5; c = 17; q = 3
            sage: H = heegner_points(N).reduce_mod(ell)
            sage: E = EllipticCurve('389a')
            sage: V = H.modp_dual_elliptic_curve_factor(E, q, 5)  # long time (4s on sage.math, 2012)
            sage: k118 = H.kolyvagin_sigma_operator(D, c, 118)
            sage: k104 = H.kolyvagin_sigma_operator(D, c, 104)
            sage: [b.dot_product(k104.element().change_ring(GF(3))) for b in V.basis()]  # long time
            [0, 0]
            sage: [b.dot_product(k118.element().change_ring(GF(3))) for b in V.basis()]  # long time
            [0, 0]

        Next we try again with `c=41` and this does work, in that we
        get something nonzero, when dotting with V::

            sage: c = 41
            sage: k118 = H.kolyvagin_sigma_operator(D, c, 118)
            sage: k104 = H.kolyvagin_sigma_operator(D, c, 104)
            sage: [b.dot_product(k118.element().change_ring(GF(3))) for b in V.basis()]  # long time
            [2, 0]
            sage: [b.dot_product(k104.element().change_ring(GF(3))) for b in V.basis()]  # long time
            [1, 0]

        By the way, the above is the first ever provable verification
        of Kolyvagin's conjecture for any curve of rank at least 2.

        Another example, but where the curve has rank 1::

            sage: N = 37; D = -7; ell = 17; c = 41; q = 3
            sage: H = heegner_points(N).reduce_mod(ell)
            sage: H.heegner_divisor(D,1).element().nonzero_positions()
            [32, 51]
            sage: k32 = H.kolyvagin_sigma_operator(D, c, 32); k32
            (17, 12, 33, 33, 49, 108, 3, 0, 0, 33, 37, 49, 33, 33, 59, 54, 21, 30, 0, 0, 29, 12, 41, 38, 33, 15, 0, 0, 4, 0, 7, 0, 0, 0, 0, 34, 26, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
            sage: k51 = H.kolyvagin_sigma_operator(D, c, 51); k51
            (5, 13, 0, 0, 14, 0, 21, 0, 0, 0, 29, 0, 0, 45, 0, 6, 0, 40, 0, 61, 0, 0, 40, 32, 0, 9, 0, 0, 0, 0, 17, 0, 0, 0, 77, 40, 2, 10, 18, 0, 0, 61, 19, 45, 26, 80, 61, 35, 35, 19, 1, 0)
            sage: V = H.modp_dual_elliptic_curve_factor(EllipticCurve('37a'), q, 5); V
            Vector space of degree 52 and dimension 2 over Ring of integers modulo 3
            Basis matrix:
            2 x 52 dense matrix over Ring of integers modulo 3
            sage: [b.dot_product(k32.element().change_ring(GF(q))) for b in V.basis()]
            [2, 2]
            sage: [b.dot_product(k51.element().change_ring(GF(q))) for b in V.basis()]
            [1, 1]

        An example with `c` a product of two primes::

            sage: N = 389; D = -7; ell = 5; q = 3
            sage: H = heegner_points(N).reduce_mod(ell)
            sage: V = H.modp_dual_elliptic_curve_factor(EllipticCurve('389a'), q, 5)
            sage: k = H.kolyvagin_sigma_operator(D, 17*41, 104)     # long time
            sage: k                                                 # long time
            (990, 656, 219, ..., 246, 534, 1254)
            sage: [b.dot_product(k.element().change_ring(GF(3))) for b in V.basis()]   # long time (but only because depends on something slow)
            [0, 0]
        """
        B = self.brandt_module()
        RI = B.right_ideals()

        f = self.optimal_embeddings(D, 1, RI[r].left_order())[0]
        alphas = self.kolyvagin_generators(f.domain().number_field(), c)
        alpha_quaternions = [f(x) for x in alphas]

        if bound is None:
            bound = B.dimension() // 2 + 5
        theta_dict = B._theta_dict(bound)

        c = ZZ(c)
        J_lists = []
        F = c.factor()
        I = RI[r]
        for i, (p, e) in enumerate(F):
            if e > 1: raise ValueError("c must be square free")
            X = I.cyclic_right_subideals(p, alpha_quaternions[i])
            J_lists.append(dict(enumerate(X)))

        ans = [0]*B.dimension()
        from sage.misc.mrange import cartesian_product_iterator
        for v in cartesian_product_iterator([range(1,p+1) for p,_ in F]):
            J = J_lists[0][v[0]]
            for i in range(1,len(J_lists)):
                J = J.intersection(J_lists[i][v[i]])
            J_theta = tuple(J.theta_series_vector(bound))
            d = theta_dict[J_theta]
            j = None
            if len(d) == 1:
                j = d[0]
            else:
                for z in d:
                    if RI[z].is_equivalent(J, 0):
                        j = z
                        # we found the right j
                        break
            if j is None:
                raise RuntimeError("bug finding equivalent ideal")
            ans[j] += prod(v)
        return B(ans)

    @cached_method
    def modp_dual_elliptic_curve_factor(self, E, p, bound=10):
        """
        Return the factor of the Brandt module space modulo `p`
        corresponding to the elliptic curve `E`, cut out using
        Hecke operators up to ``bound``.

        INPUT:

            - `E` -- elliptic curve of conductor equal to the level of self

            - `p` -- prime number

            - `bound` -- positive integer (default: 10)

        EXAMPLES::

            sage: N = 37; D = -7; ell = 17; c = 41; q = 3
            sage: H = heegner_points(N).reduce_mod(ell)
            sage: V = H.modp_dual_elliptic_curve_factor(EllipticCurve('37a'), q, 5); V
            Vector space of degree 52 and dimension 2 over Ring of integers modulo 3
            Basis matrix:
            2 x 52 dense matrix over Ring of integers modulo 3
        """
        if E.conductor() != self.level():
            raise ValueError("conductor of E must equal level of self")
        p = ZZ(p)
        if not p.is_prime():
            raise ValueError("p (=%s) must be prime"%p)
        bad = self.__level * self.__ell

        V = None
        q = ZZ(2)
        B = self.brandt_module()
        F = GF(p)
        while q <= bound and (V is None or V.dimension() > 2):
            verbose("q = %s"%q)
            if bad % q != 0:
                T = B._compute_hecke_matrix_directly(q).change_ring(F).transpose()
                if V is None:
                    V = (T - E.ap(q)).kernel()
                else:
                    t = T.restrict(V)
                    W = (t - E.ap(q)).kernel()
                    V = (W.basis_matrix() * V.basis_matrix()).row_space()
            q = q.next_prime()
        return V

    @cached_method
    def rational_kolyvagin_divisor(self, D, c):
        r"""
        Return the Kolyvagin divisor as an element of the Brandt module
        corresponding to the discriminant `D` and conductor `c`, which
        both must be coprime to `N\ell`.

        INPUT:

            - `D` -- discriminant (negative integer)

            - `c` -- conductor (positive integer)


        OUTPUT:

            - Brandt module element (or tuple of them)

        EXAMPLES::

            sage: N = 389; D = -7; ell = 5; c = 17; q = 3
            sage: H = heegner_points(N).reduce_mod(ell)
            sage: k = H.rational_kolyvagin_divisor(D, c); k  # long time (5s on sage.math, 2013)
            (2, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 4, 0, 0, 9, 11, 0, 6, 0, 0, 7, 0, 0, 0, 0, 14, 12, 13, 15, 17, 0, 0, 0, 0, 8, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
            sage: V = H.modp_dual_elliptic_curve_factor(EllipticCurve('389a'), q, 2)
            sage: [b.dot_product(k.element().change_ring(GF(q))) for b in V.basis()]  # long time
            [0, 0]
            sage: k = H.rational_kolyvagin_divisor(D, 59)
            sage: [b.dot_product(k.element().change_ring(GF(q))) for b in V.basis()]
            [2, 0]
        """
        if not self.satisfies_heegner_hypothesis(D, c):
            raise ValueError("D and c must be coprime to N and ell")

        hd = self.heegner_divisor(D)
        v = hd.element()
        if class_number(D) != 1:
            raise NotImplementedError("class number greater than 1 not implemented")
        i = min(v.nonzero_positions())
        return self.kolyvagin_sigma_operator(D, c, i)

        #w = 0
        #for i, a in v.dict().iteritems():
        #    w += a * self.kolyvagin_sigma_operator(D, c, i)
        # return w

    @cached_method
    def kolyvagin_point_on_curve(self, D, c, E, p, bound=10):
        r"""
        Compute image of the Kolyvagin divisor `P_c` in
        `E(\GF{\ell^2}) / p E(\GF{\ell^2})`.  Note that
        this image is by definition only well defined up to
        scalars.   However, doing multiple computations
        will always yield the same result, and working
        modulo different `\ell` is compatible (since we
        always chose the same generator for `\textrm{Gal}(K_c/K_1)`).

        INPUT:

            - `D` -- fundamental negative discriminant

            - `c` -- conductor

            - `E` -- elliptic curve of conductor the level of self

            - `p` -- odd prime number such that we consider image in
                     `E(\GF{\ell^2}) / p E(\GF{\ell^2})`

            - ``bound`` -- integer (default: 10)

        EXAMPLES::

            sage: N = 37; D = -7; ell = 17; c = 41; p = 3
            sage: H = heegner_points(N).reduce_mod(ell)
            sage: H.kolyvagin_point_on_curve(D, c, EllipticCurve('37a'), p)
            [2, 2]
        """
        k = self.rational_kolyvagin_divisor(D, c)
        V = self.modp_dual_elliptic_curve_factor(E, p, bound)
        return [b.dot_product(k.element().change_ring(GF(p))) for b in V.basis()]

def kolyvagin_reduction_data(E, q, first_only=True):
    r"""
    Given an elliptic curve of positive rank and a prime `q`, this
    function returns data about how to use Kolyvagin's `q`-torsion
    Heegner point Euler system to do computations with this curve.
    See the precise description of the output below.

    INPUT:

        - `E` -- elliptic curve over `\QQ` of rank 1 or 2

        - `q` -- an odd prime that does not divide the order of the
           rational torsion subgroup of `E`

        - ``first_only`` -- bool (default: ``True``) whether two only return
           the first prime that one can work modulo to get data about
           the Euler system

    OUTPUT in the rank 1 case or when the default flag ``first_only=True``:

        - `\ell` -- first good odd prime satisfying the Kolyvagin
           condition that `q` divides \gcd(a_{\ell},\ell+1)` and the
           reduction map is surjective to `E(\GF{\ell}) / q
           E(\GF{\ell})`

        - `D` -- discriminant of the first quadratic imaginary field
           `K` that satisfies the Heegner hypothesis for `E` such that
           both `\ell` is inert in `K`, and the twist `E^D` has analytic
           rank `\leq 1`

        - `h_D` -- the class number of `K`

        -  the dimension of the Brandt module `B(\ell,N)`, where `N` is
           the conductor of `E`

    OUTPUT in the rank 2 case:

        - `\ell_1` -- first prime (as above in the rank 1 case) where
          reduction map is surjective

        - `\ell_2` -- second prime (as above) where reduction map is
          surjective

        - `D` -- discriminant of the first quadratic imaginary field
           `K` that satisfies the Heegner hypothesis for `E` such that
           both `\ell_1` and `\ell_2` are simultaneously inert in `K`,
           and the twist `E^D` has analytic rank `\leq 1`

        - `h_D` -- the class number of `K`

        -  the dimension of the Brandt module `B(\ell_1,N)`, where `N` is
           the conductor of `E`

        -  the dimension of the Brandt module `B(\ell_2,N)`


    EXAMPLES:

    Import this function::

        sage: from sage.schemes.elliptic_curves.heegner import kolyvagin_reduction_data

    A rank 1 example::

        sage: kolyvagin_reduction_data(EllipticCurve('37a1'),3)
        (17, -7, 1, 52)

    A rank 3 example::

        sage: kolyvagin_reduction_data(EllipticCurve('5077a1'),3)
        (11, -47, 5, 4234)
        sage: H = heegner_points(5077, -47)
        sage: [c for c in H.kolyvagin_conductors(2,10,EllipticCurve('5077a1'),3) if c%11]
        [667, 943, 1189, 2461]
        sage: factor(667)
        23 * 29


    A rank 4 example (the first Kolyvagin class that we could try to
    compute would be `P_{23\cdot 29\cdot 41}`, and would require
    working in a space of dimension 293060 (so prohibitive at
    present)::

        sage: E = elliptic_curves.rank(4)[0]
        sage: kolyvagin_reduction_data(E,3)              # long time
        (11, -71, 7, 293060)
        sage: H = heegner_points(293060, -71)
        sage: H.kolyvagin_conductors(1,4,E,3)
        [11, 17, 23, 41]

    The first rank 2 example::

        sage: kolyvagin_reduction_data(EllipticCurve('389a'),3)
        (5, -7, 1, 130)
        sage: kolyvagin_reduction_data(EllipticCurve('389a'),3, first_only=False)
        (5, 17, -7, 1, 130, 520)

    A large `q = 7`::

        sage: kolyvagin_reduction_data(EllipticCurve('1143c1'),7, first_only=False)
        (13, 83, -59, 3, 1536, 10496)

    Additive reduction::

        sage: kolyvagin_reduction_data(EllipticCurve('2350g1'),5, first_only=False)
        (19, 239, -311, 19, 6480, 85680)
    """
    from .ell_generic import is_EllipticCurve
    if not is_EllipticCurve(E):
        raise TypeError("E must be an elliptic curve")

    q = ZZ(q)
    if not q.is_prime():
        raise ValueError("q must be a prime")

    if q.gcd(E.torsion_order()) != 1:
        raise NotImplementedError("q must be coprime to torsion")

    N = E.conductor()
    r = E.rank()

    if r == 0:
        raise ValueError("E must have positive rank")

    if E.rank() == 1:
        first_only = True

    from sage.modular.quatalg.all import BrandtModule

    def twist_is_minimal(D):
        # return True if the quadratic twist E^D has analytic rank <= 1
        return E.quadratic_twist(D).analytic_rank() <= 1

    def red(P, ell):
        # reduce the point P on the elliptic curve modulo ell
        w = list(P)
        d = lcm([a.denominator() for a in w])
        return E.change_ring(GF(ell))([d*a for a in w])


    def best_heegner_D(ell_1, ell_2):
        # return the first Heegner D satisfy all hypothesis such that
        # both ell_1 and ell_2 are inert
        D = -5
        while True:
            if is_fundamental_discriminant(D) and \
               D%ell_1 and D%ell_2 and \
               E.satisfies_heegner_hypothesis(D) and \
               is_inert(D, ell_1) and is_inert(D, ell_2) and \
               twist_is_minimal(D):
                  return D
            D -= 1

    if first_only:
        # find first prime ell with various conditions
        # such that reduction is surjective to E(F_ell)/q.
        ell = ZZ(3)
        while True:
            while N % ell == 0 or gcd(ell+1,E.ap(ell)) % q != 0:
                ell = ell.next_prime()
            # determine if mod ell reduction is surjective, using
            # partly that it is a lemma that E(F_ell)/q is cyclic.
            m = ZZ(E.Np(ell) / q)
            for P in E.gens():
                if red(P,ell) * m != 0:
                    # bingo, is surjective
                    D = best_heegner_D(ell,ell)
                    return (ell, D, class_number(D), BrandtModule(ell,N).dimension())
            # end for
            ell = ell.next_prime()

    if E.rank() != 2:
        raise ValueError("if first_only is not True, then the curve E must have rank 1 or 2")

    P, Q = E.gens()
    def kernel_of_reduction(ell):
        # return list of reps for the kernel as a subgroup of the map
        # E(Q) / q E(Q)  ---->  E(F_ell) / q E(F_ell)
        m = ZZ(E.Np(ell) / q)
        A = [a*P + b*Q for a in range(q) for b in range(q)]
        return [z for z in A if red(z,ell) * m == 0]

    # compute first good odd prime
    ell_1 = ZZ(3)
    while True:
        while N % ell_1 == 0 or gcd(ell_1+1,E.ap(ell_1)) % q != 0:
            ell_1 = ell_1.next_prime()
        # compute kernel of reduction modulo ell_1
        G1 = set(kernel_of_reduction(ell_1))
        if len(G1) == q: break
        ell_1 = ell_1.next_prime()

    # compute next good odd prime with distinct kernel of order q
    ell_2 = ell_1.next_prime()
    while True:
        while N % ell_2 == 0 or gcd(ell_2+1,E.ap(ell_2)) % q != 0:
            ell_2 = ell_2.next_prime()
        G2 = set(kernel_of_reduction(ell_2))
        if G1 != G2 and len(G2) == q:
            break
        ell_2 = ell_2.next_prime()

    # Find smallest D where both ell_1 and ell_2 are inert
    D = best_heegner_D(ell_1, ell_2)
    return (ell_1, ell_2, D, class_number(D),
            BrandtModule(ell_1,N).dimension(),
            BrandtModule(ell_2,N).dimension())

class HeegnerQuatAlgEmbedding(SageObject):
    r"""
    The homomorphism `\mathcal{O} \to R`, where `\mathcal{O}` is the
    order of conductor `c` in the quadratic field of discriminant `D`,
    and `R` is an Eichler order in a quaternion algebra.

    EXAMPLES::

        sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
        sage: f = H.optimal_embeddings(-7, 2, R)[1]; f
        Embedding sending 2*sqrt(-7) to -5*i + k
        sage: type(f)
        <class 'sage.schemes.elliptic_curves.heegner.HeegnerQuatAlgEmbedding'>
        sage: loads(dumps(f)) == f
        True
    """
    def __init__(self, D, c, R, beta):
        r"""
        INPUT:

            - `D` -- negative fundamental discriminant

            - `c` -- positive integer coprime to `D`

            - `R` -- Eichler order in a rational quaternion algebra

            - `\beta` -- element of `R` such that the homomorphism
              sends `c\sqrt{D}` to `\beta`

        EXAMPLES::

            sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
            sage: i,j,k = H.quaternion_algebra().gens()
            sage: import sage.schemes.elliptic_curves.heegner as heegner
            sage: heegner.HeegnerQuatAlgEmbedding(-7, 2, R, -5*i+k)
            Embedding sending 2*sqrt(-7) to -5*i + k
        """
        self.__D = D
        self.__c = c
        self.__R = R
        self.__beta = beta

    def __eq__(self, other):
        """
        EXAMPLES::

            sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
            sage: f = H.optimal_embeddings(-7, 2, R)[0]
            sage: f == H.optimal_embeddings(-7, 2, R)[0]
            True
            sage: f == H.optimal_embeddings(-7, 2, R)[1]
            False
            sage: f == 0
            False
        """
        return isinstance(other, HeegnerQuatAlgEmbedding) and \
               self.__D == other.__D and \
               self.__c == other.__c and \
               self.__R == other.__R and \
               self.__beta == other.__beta

    def __call__(self, x):
        """
        Return image of `x` under this embedding.

        INPUT:

            - `x` -- element of the quadratic order

        EXAMPLES::

            sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
            sage: f = H.optimal_embeddings(-7, 1, R)[1]; f
            Embedding sending sqrt(-7) to -i + j + k
            sage: a = f.domain_gen(); a^2
            -7
            sage: f(2 + 3*a)
            2 - 3*i + 3*j + 3*k
            sage: 2 + 3*f(a)
            2 - 3*i + 3*j + 3*k
            sage: f(a)^2
            -7
        """
        v = self.domain().number_field()(x).vector()
        w = v * self.matrix()
        z = self.codomain().quaternion_algebra()(w)
        # There is no notion of an "element of an order" implemented
        # for quaternion algebras right now.  All elements are
        # elements of the ambient rational quaternion algebra.
        return z

    @cached_method
    def matrix(self):
        r"""
        Return matrix over `\QQ` of this morphism, with respect to the
        basis 1, `c\sqrt{D}` of the domain and the basis `1,i,j,k` of
        the ambient rational quaternion algebra (which contains the
        domain).

        EXAMPLES::

            sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
            sage: f = H.optimal_embeddings(-7, 1, R)[1]; f
            Embedding sending sqrt(-7) to -i + j + k
            sage: f.matrix()
            [ 1  0  0  0]
            [ 0 -1  1  1]
            sage: f.conjugate().matrix()
            [ 1  0  0  0]
            [ 0  1 -1 -1]
        """
        return matrix(QQ,2,4,[[1,0,0,0], self.__beta.coefficient_tuple()])

    @cached_method
    def domain(self):
        """
        Return the domain of this embedding.

        EXAMPLES::

            sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
            sage: H.optimal_embeddings(-7, 2, R)[0].domain()
            Order in Number Field in a with defining polynomial x^2 + 7
        """
        R, a = quadratic_order(self.__D, self.__c)

        # The following assumption is used, e.g., in the __call__
        # method.  I know that it is satisfied by the current
        # implementation.  But somebody might someday annoying change
        # the implementation, and we want to catch that if it were to
        # ever happen.

        assert R.basis() == [1, a], "an assumption about construction of orders is violated"
        self.__domain_gen = a
        return R

    def domain_gen(self):
        r"""
        Return the specific generator `c \sqrt{D}` for the domain
        order.

        EXAMPLES::

            sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
            sage: f = H.optimal_embeddings(-7, 2, R)[0]
            sage: f.domain_gen()
            2*a
            sage: f.domain_gen()^2
            -28
        """
        self.domain()
        return self.__domain_gen

    def domain_conductor(self):
        """
        Return the conductor of the domain.

        EXAMPLES::

            sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
            sage: H.optimal_embeddings(-7, 2, R)[0].domain_conductor()
            2
        """
        return self.__c

    def beta(self):
        r"""
        Return the element `\beta` in the quaternion algebra order
        that `c\sqrt{D}` maps to.

        EXAMPLES::

            sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
            sage: H.optimal_embeddings(-7, 2, R)[1].beta()
            -5*i + k
        """
        return self.__beta

    def codomain(self):
        """
        Return the codomain of this embedding.

        EXAMPLES::

            sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
            sage: H.optimal_embeddings(-7, 2, R)[0].codomain()
            Order of Quaternion Algebra (-1, -3) with base ring Rational Field with basis (1/2 + 1/2*j + 7*k, 1/2*i + 13/2*k, j + 3*k, 11*k)
        """
        return self.__R

    @cached_method
    def _repr_(self):
        """
        Return string representation of this embedding.

        EXAMPLES::

            sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
            sage: f = H.optimal_embeddings(-7, 2, R)[1]; f._repr_()
            'Embedding sending 2*sqrt(-7) to -5*i + k'
        """
        a = '%ssqrt(%s)'%('%s*'%self.__c if self.__c > 1 else '', self.__D)
        return "Embedding sending %s to %s"%(a, self.__beta)

    def conjugate(self):
        """
        Return the conjugate of this embedding, which is also an
        embedding.

        EXAMPLES::

            sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0]
            sage: f = H.optimal_embeddings(-7, 2, R)[1]
            sage: f.conjugate()
            Embedding sending 2*sqrt(-7) to 5*i - k
            sage: f
            Embedding sending 2*sqrt(-7) to -5*i + k
        """
        return HeegnerQuatAlgEmbedding(self.__D, self.__c,
                                       self.__R, self.__beta.conjugate())


#############################################################################
# Utility Functions
#############################################################################

def quadratic_order(D, c, names='a'):
    """
    Return order of conductor `c` in quadratic field with fundamental
    discriminant `D`.

    INPUT:

        - `D` -- fundamental discriminant

        - `c` -- conductor

        - ``names`` -- string (default: 'a')

    OUTPUT:

        - order `R` of conductor `c` in an imaginary quadratic field

        - the element `c\sqrt{D}` as an element of `R`

    The generator for the field is named 'a' by default.

    EXAMPLES::

        sage: sage.schemes.elliptic_curves.heegner.quadratic_order(-7,3)
        (Order in Number Field in a with defining polynomial x^2 + 7, 3*a)
        sage: sage.schemes.elliptic_curves.heegner.quadratic_order(-7,3,'alpha')
        (Order in Number Field in alpha with defining polynomial x^2 + 7, 3*alpha)
    """
    K = QuadraticField(D, names)
    sqrtD = K.gen(0)
    t = sqrtD * c
    R = K.order([t])
    return R, R(t)

def class_number(D):
    """
    Return the class number of the quadratic field with fundamental
    discriminant `D`.

    INPUT:

        - `D` -- integer

    EXAMPLES::

        sage: sage.schemes.elliptic_curves.heegner.class_number(-20)
        2
        sage: sage.schemes.elliptic_curves.heegner.class_number(-23)
        3
        sage: sage.schemes.elliptic_curves.heegner.class_number(-163)
        1

    A ValueError is raised when `D` is not a fundamental
    discriminant::

        sage: sage.schemes.elliptic_curves.heegner.class_number(-5)
        Traceback (most recent call last):
        ...
        ValueError: D (=-5) must be a fundamental discriminant
    """
    if not number_field.is_fundamental_discriminant(D):
        raise ValueError("D (=%s) must be a fundamental discriminant"%D)
    return QuadraticField(D,'a').class_number()

def is_inert(D, p):
    r"""
    Return ``True`` if p is an inert prime in the field `\QQ(\sqrt{D})`.

    INPUT:

        - `D` -- fundamental discriminant

        - `p` -- prime integer

    EXAMPLES::

        sage: sage.schemes.elliptic_curves.heegner.is_inert(-7,3)
        True
        sage: sage.schemes.elliptic_curves.heegner.is_inert(-7,7)
        False
        sage: sage.schemes.elliptic_curves.heegner.is_inert(-7,11)
        False
    """
    K = QuadraticField(D,'a')
    F = K.factor(p)
    return len(F) == 1 and F[0][1] == 1

def is_split(D, p):
    r"""
    Return ``True`` if p is a split prime in the field `\QQ(\sqrt{D})`.

    INPUT:

        - `D` -- fundamental discriminant

        - `p` -- prime integer

    EXAMPLES::

        sage: sage.schemes.elliptic_curves.heegner.is_split(-7,3)
        False
        sage: sage.schemes.elliptic_curves.heegner.is_split(-7,7)
        False
        sage: sage.schemes.elliptic_curves.heegner.is_split(-7,11)
        True
    """
    K = QuadraticField(D,'a')
    F = K.factor(p)
    return len(F) == 2

def is_ramified(D, p):
    r"""
    Return ``True`` if p is a ramified prime in the field `\QQ(\sqrt{D})`.

    INPUT:

        - `D` -- fundamental discriminant

        - `p` -- prime integer

    EXAMPLES::

        sage: sage.schemes.elliptic_curves.heegner.is_ramified(-7,2)
        False
        sage: sage.schemes.elliptic_curves.heegner.is_ramified(-7,7)
        True
        sage: sage.schemes.elliptic_curves.heegner.is_ramified(-1,2)
        True
    """
    return QuadraticField(D,'a').discriminant() % p == 0

def nearby_rational_poly(f, **kwds):
    r"""
    Return a polynomial whose coefficients are rational numbers close
    to the coefficients of `f`.

    INPUT:

        - `f` -- polynomial with real floating point entries

        - ``**kwds`` -- passed on to ``nearby_rational`` method

    EXAMPLES::

        sage: R.<x> = RR[]
        sage: sage.schemes.elliptic_curves.heegner.nearby_rational_poly(2.1*x^2 + 3.5*x - 1.2, max_error=10e-16)
        21/10*X^2 + 7/2*X - 6/5
        sage: sage.schemes.elliptic_curves.heegner.nearby_rational_poly(2.1*x^2 + 3.5*x - 1.2, max_error=10e-17)
        4728779608739021/2251799813685248*X^2 + 7/2*X - 5404319552844595/4503599627370496
        sage: RR(4728779608739021/2251799813685248  - 21/10)
        8.88178419700125e-17
    """
    R = QQ['X']
    return R([a.nearby_rational(**kwds) for a in f])

def simplest_rational_poly(f, prec):
    """
    Return a polynomial whose coefficients are as simple as possible
    rationals that are also close to the coefficients of f.

    INPUT:

        - `f` -- polynomial with real floating point entries

        - ``prec`` -- positive integer

    EXAMPLES::

        sage: R.<x> = RR[]
        sage: sage.schemes.elliptic_curves.heegner.simplest_rational_poly(2.1*x^2 + 3.5*x - 1.2, 53)
        21/10*X^2 + 7/2*X - 6/5
    """
    R = QQ['X']
    Z = RealField(prec)
    return R([Z(a).simplest_rational() for a in f])

def satisfies_weak_heegner_hypothesis(N, D):
    r"""
    Check that `D` satisfies the weak Heegner hypothesis relative to `N`.
    This is all that is needed to define Heegner points.

    The condition is that `D<0` is a fundamental discriminant and that
    each unramified prime dividing `N` splits in `K=\QQ(\sqrt{D})` and
    each ramified prime exactly divides `N`.  We also do not require
    that `D<-4`.

    INPUT:

        - `N` -- positive integer

        - `D` -- negative integer

    EXAMPLES::

        sage: s = sage.schemes.elliptic_curves.heegner.satisfies_weak_heegner_hypothesis
        sage: s(37,-7)
        True
        sage: s(37,-37)
        False
        sage: s(37,-37*4)
        True
        sage: s(100,-4)
        False
        sage: [D for D in [-1,-2,..,-40] if s(37,D)]
        [-3, -4, -7, -11, -40]
        sage: [D for D in [-1,-2,..,-100] if s(37,D)]
        [-3, -4, -7, -11, -40, -47, -67, -71, -83, -84, -95]
        sage: EllipticCurve('37a').heegner_discriminants_list(10)
        [-7, -11, -40, -47, -67, -71, -83, -84, -95, -104]
    """
    if not number_field.is_fundamental_discriminant(D):
        return False
    if D >= 0: return False
    for p, e in N.factor():
        if D % p == 0:
            if e > 1:
                return False
        elif D.kronecker(p) != 1:
            return False
    return True

def make_monic(f):
    r"""
    ``make_monic`` returns a monic integral polynomial `g` and an
    integer `d` such that if `\alpha` is a root of `g` then a root of
    `f` is `\alpha/d`.

    INPUT:

        - f -- polynomial over the rational numbers

    EXAMPLES::

        sage: R.<x> = QQ[]
        sage: sage.schemes.elliptic_curves.heegner.make_monic(3*x^3 + 14*x^2 - 7*x + 5)
        (x^3 + 14*x^2 - 21*x + 45, 3)

    In this example we verify that make_monic does what we claim it does::

        sage: K.<a> = NumberField(x^3 + 17*x - 3)
        sage: f = (a/7+2/3).minpoly(); f
        x^3 - 2*x^2 + 247/147*x - 4967/9261
        sage: g, d = sage.schemes.elliptic_curves.heegner.make_monic(f)
        sage: g
        x^3 - 18522*x^2 + 144110421*x - 426000323007
        sage: d
        9261
        sage: K.<b> = NumberField(g)
        sage: (b/d).minpoly()
        x^3 - 2*x^2 + 247/147*x - 4967/9261
    """
    # make f monic
    n = f.degree()
    f = f / f.leading_coefficient()
    # find lcm of denominators
    d = lcm([b.denominator() for b in f.list() if b])
    x = f.variables()[0]
    g = (d**n) * f(x/d)
    return g, d


#####################################################################
# Elliptic curve methods
# Everywhere self below is an elliptic curve over QQ.
#####################################################################

def ell_heegner_point(self, D, c=ZZ(1), f=None, check=True):
    """
    Returns the Heegner point on this curve associated to the
    quadratic imaginary field `K=\QQ(\sqrt{D})`.

    If the optional parameter `c` is given, returns the higher Heegner
    point associated to the order of conductor `c`.

    INPUT:

    - `D`        -- a Heegner discriminant

    - `c`        -- (default: 1) conductor, must be coprime to `DN`

    - `f`        -- binary quadratic form or 3-tuple `(A,B,C)` of coefficients
      of `AX^2 + BXY + CY^2`

    - ``check``  -- bool (default: ``True``)

    OUTPUT:

    The Heegner point `y_c`.

    EXAMPLES::

        sage: E = EllipticCurve('37a')
        sage: E.heegner_discriminants_list(10)
        [-7, -11, -40, -47, -67, -71, -83, -84, -95, -104]
        sage: P = E.heegner_point(-7); P                          # indirect doctest
        Heegner point of discriminant -7 on elliptic curve of conductor 37
        sage: P.point_exact()
        (0 : 0 : 1)
        sage: P.curve()
        Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
        sage: P = E.heegner_point(-40).point_exact(); P
        (a : -a + 1 : 1)
        sage: P = E.heegner_point(-47).point_exact(); P
        (a : a^4 + a - 1 : 1)
        sage: P[0].parent()
        Number Field in a with defining polynomial x^5 - x^4 + x^3 + x^2 - 2*x + 1

    Working out the details manually::

        sage: P = E.heegner_point(-47).numerical_approx(prec=200)
        sage: f = algdep(P[0], 5); f
        x^5 - x^4 + x^3 + x^2 - 2*x + 1
        sage: f.discriminant().factor()
        47^2

    The Heegner hypothesis is checked::

        sage: E = EllipticCurve('389a'); P = E.heegner_point(-5,7);
        Traceback (most recent call last):
        ...
        ValueError: N (=389) and D (=-5) must satisfy the Heegner hypothesis

    We can specify the quadratic form::

        sage: P = EllipticCurve('389a').heegner_point(-7, 5, (778,925,275)); P
        Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor 389
        sage: P.quadratic_form()
        778*x^2 + 925*x*y + 275*y^2
    """
    y = HeegnerPointOnX0N(self.conductor(), D, c, f, check=check)
    return y.map_to_curve(self)

def kolyvagin_point(self, D, c=ZZ(1), check=True):
    """
    Returns the Kolyvagin point on this curve associated to the
    quadratic imaginary field `K=\QQ(\sqrt{D})` and conductor `c`.

    INPUT:

        - `D`        -- a Heegner discriminant

        - `c`        -- (default: 1) conductor, must be coprime to `DN`

        - ``check``  -- bool (default: ``True``)


    OUTPUT:

        The Kolyvagin point `P` of conductor `c`.

    EXAMPLES::

        sage: E = EllipticCurve('37a1')
        sage: P = E.kolyvagin_point(-67); P
        Kolyvagin point of discriminant -67 on elliptic curve of conductor 37
        sage: P.numerical_approx()
        (6.00000000000000 : -15.0000000000000 : 1.00000000000000)
        sage: P.index()
        6
        sage: g = E((0,-1,1)) # a generator
        sage: E.regulator() == E.regulator_of_points([g])
        True
        sage: 6*g
        (6 : -15 : 1)

    """
    return self.heegner_point(D,c,check=check).kolyvagin_point()

def ell_heegner_discriminants(self, bound):
    """
    Return the list of self's Heegner discriminants between -1 and
    -bound.

    INPUT:


    -  ``bound (int)`` - upper bound for -discriminant


    OUTPUT: The list of Heegner discriminants between -1 and -bound for
    the given elliptic curve.

    EXAMPLES::

        sage: E=EllipticCurve('11a')
        sage: E.heegner_discriminants(30)                     # indirect doctest
        [-7, -8, -19, -24]
    """
    return [-D for D in range(1, bound)
            if self.satisfies_heegner_hypothesis(-D)]


def ell_heegner_discriminants_list(self, n):
    """
    Return the list of self's first `n` Heegner discriminants smaller
    than -5.

    INPUT:

    -  ``n (int)`` - the number of discriminants to
       compute


    OUTPUT: The list of the first n Heegner discriminants smaller than
    -5 for the given elliptic curve.

    EXAMPLE::

        sage: E=EllipticCurve('11a')
        sage: E.heegner_discriminants_list(4)                     # indirect doctest
        [-7, -8, -19, -24]
    """
    v = []
    D = -5
    while len(v) < n:
        while not self.satisfies_heegner_hypothesis(D):
            D -= 1
        v.append(D)
        D -= 1
    return v

def heegner_point_height(self, D, prec=2, check_rank=True):
    r"""
    Use the Gross-Zagier formula to compute the Neron-Tate canonical
    height over `K` of the Heegner point corresponding to `D`, as an
    interval (it is computed to some precision using `L`-functions).

    If the curve has rank at least 2, then the returned height is the
    exact Sage integer 0.

    INPUT:


    -  ``D (int)`` - fundamental discriminant (=/= -3, -4)

    - ``prec (int)`` - (default: 2), use `prec \cdot \sqrt(N) + 20`
       terms of `L`-series in computations, where `N` is the
       conductor.

    - ``check_rank`` - whether to check if the rank is at least 2 by
      computing the Mordell-Weil rank directly.


    OUTPUT: Interval that contains the height of the Heegner point.

    EXAMPLE::

        sage: E = EllipticCurve('11a')
        sage: E.heegner_point_height(-7)
        0.22227?

    Some higher rank examples::

        sage: E = EllipticCurve('389a')
        sage: E.heegner_point_height(-7)
        0
        sage: E = EllipticCurve('5077a')
        sage: E.heegner_point_height(-7)
        0
        sage: E.heegner_point_height(-7,check_rank=False)
        0.0000?
    """

    if not self.satisfies_heegner_hypothesis(D):
        raise ArithmeticError("Discriminant (=%s) must be a fundamental discriminant that satisfies the Heegner hypothesis."%D)

    if check_rank and self.rank() >= 2:
        return ZZ(0)

    if D == -3 or D == -4:
        raise ArithmeticError("Discriminant (=%s) must not be -3 or -4."%D)
    eps = self.root_number()
    L1_vanishes = self.lseries().L1_vanishes()

    IR = rings.RealIntervalField(20)    # TODO: why 20 bits here?

    if eps == 1 and L1_vanishes:
        return IR(0) # rank even hence >= 2, so Heegner point is torsion.

    RR = rings.RealField()
    from math import sqrt

    alpha = RR(sqrt(abs(D)))/(2*self.period_lattice().complex_area())
    F = self.quadratic_twist(D)
    E = self
    k_E = prec*sqrt(E.conductor()) + 20
    k_F = prec*sqrt(F.conductor()) + 20

    MIN_ERR = RR('1e-6')  # we assume that regulator and
                         # discriminant, etc., computed to this accuracy (which is easily the case).
                         # this should be made more intelligent / rigorous relative
                         # to the rest of the system.

    if eps == 1:   # E has even rank
        LF1, err_F = F.lseries().deriv_at1(k_F)
        LE1, err_E = E.lseries().at1(k_E)
        err_F = max(err_F, MIN_ERR)
        err_E = max(err_E, MIN_ERR)
        return IR(alpha-MIN_ERR,alpha+MIN_ERR) * IR(LE1-err_E,LE1+err_E) * IR(LF1-err_F,LF1+err_F)

    else:          # E has odd rank
        LE1, err_E = E.lseries().deriv_at1(k_E)
        LF1, err_F = F.lseries().at1(k_F)
        err_F = max(err_F, MIN_ERR)
        err_E = max(err_E, MIN_ERR)
        return IR(alpha-MIN_ERR,alpha+MIN_ERR) * IR(LE1-err_E,LE1+err_E) * IR(LF1-err_F,LF1+err_F)


def heegner_index(self, D,  min_p=2, prec=5, descent_second_limit=12, verbose_mwrank=False, check_rank=True):
    r"""
    Return an interval that contains the index of the Heegner
    point `y_K` in the group of `K`-rational points modulo torsion
    on this elliptic curve, computed using the Gross-Zagier
    formula and/or a point search, or possibly half the index
    if the rank is greater than one.

    If the curve has rank > 1, then the returned index is infinity.

    .. NOTE::

        If ``min_p`` is bigger than 2 then the index can be off by
        any prime less than ``min_p``. This function returns the
        index divided by `2` exactly when the rank of `E(K)` is
        greater than 1 and `E(\QQ)_{/tor} \oplus E^D(\QQ)_{/tor}`
        has index `2` in `E(K)_{/tor}`, where the second factor
        undergoes a twist.

    INPUT:

    -  ``D (int)`` - Heegner discriminant

    -  ``min_p (int)`` - (default: 2) only rule out primes
       = min_p dividing the index.

    -  ``verbose_mwrank (bool)`` - (default: ``False``); print lots of
       mwrank search status information when computing regulator

    -  ``prec (int)`` - (default: 5), use prec\*sqrt(N) +
       20 terms of L-series in computations, where N is the conductor.

    -  ``descent_second_limit`` - (default: 12)- used in 2-descent
       when computing regulator of the twist

    - ``check_rank`` - whether to check if the rank is at least 2 by
      computing the Mordell-Weil rank directly.


    OUTPUT: an interval that contains the index, or half the index

    EXAMPLES::

        sage: E = EllipticCurve('11a')
        sage: E.heegner_discriminants(50)
        [-7, -8, -19, -24, -35, -39, -40, -43]
        sage: E.heegner_index(-7)
        1.00000?

    ::

        sage: E = EllipticCurve('37b')
        sage: E.heegner_discriminants(100)
        [-3, -4, -7, -11, -40, -47, -67, -71, -83, -84, -95]
        sage: E.heegner_index(-95)          # long time (1 second)
        2.00000?

    This tests doing direct computation of the Mordell-Weil group.

    ::

        sage: EllipticCurve('675b').heegner_index(-11)
        3.0000?

    Currently discriminants -3 and -4 are not supported::

        sage: E.heegner_index(-3)
        Traceback (most recent call last):
        ...
        ArithmeticError: Discriminant (=-3) must not be -3 or -4.

    The curve 681b returns the true index, which is `3`::

        sage: E = EllipticCurve('681b')
        sage: I = E.heegner_index(-8); I
        3.0000?

    In fact, whenever the returned index has a denominator of
    `2`, the true index is got by multiplying the returned
    index by `2`. Unfortunately, this is not an if and only if
    condition, i.e., sometimes the index must be multiplied by
    `2` even though the denominator is not `2`.

    This example demonstrates the ``descent_second_limit`` option,
    which can be used to fine tune the 2-descent used to compute
    the regulator of the twist::

        sage: E = EllipticCurve([0, 0, 1, -34874, -2506691])
        sage: E.heegner_index(-8)
        Traceback (most recent call last):
        ...
        RuntimeError: ...

    However when we search higher, we find the points we need::

        sage: E.heegner_index(-8, descent_second_limit=16, check_rank=False)
        1.00000?


    Two higher rank examples (of ranks 2 and 3)::

        sage: E = EllipticCurve('389a')
        sage: E.heegner_index(-7)
        +Infinity
        sage: E = EllipticCurve('5077a')
        sage: E.heegner_index(-7)
        +Infinity
        sage: E.heegner_index(-7, check_rank=False)
        0.001?
        sage: E.heegner_index(-7, check_rank=False).lower() == 0
        True
    """
    if not self.satisfies_heegner_hypothesis(D):
        raise ArithmeticError("Discriminant (=%s) must be a fundamental discriminant that satisfies the Heegner hypothesis."%D)

    if check_rank and self.rank() >= 2:
        return rings.infinity

    # First compute upper bound on height of Heegner point.
    tm = verbose("computing heegner point height...")
    h0 = self.heegner_point_height(D, prec=prec, check_rank=check_rank)
    if h0 == 0:
        return rings.infinity

    # We divide by 2 to get the height **over Q** of the
    # Heegner point on the twist.

    ht = h0/2
    verbose('Height of heegner point = %s'%ht, tm)

    if self.root_number() == 1:
        F = self.quadratic_twist(D)
    else:
        F = self
    # Now rank(F) > 0
    h  = ht.upper()
    verbose("Heegner height bound = %s"%h)
    B = F.CPS_height_bound()
    verbose("CPS bound = %s"%B)
    c = h/(min_p**2) + B
    verbose("Search would have to be up to height = %s"%c)

    from .ell_rational_field import _MAX_HEIGHT

    IR = rings.RealIntervalField(20)  # todo: 20?

    a = 1
    if c > _MAX_HEIGHT or F is self:
        verbose("Doing direct computation of MW group.")
        reg = F.regulator(descent_second_limit=descent_second_limit, verbose=verbose_mwrank)
        if F.rank(use_database=True) == 1:
            z = F.gens()[0]
            FK = F.base_extend(QuadraticField(D,'a'))
            z = FK(z)
            if z.is_divisible_by(2):
                a = 2
            else:
                FK_even_tor_pts = [T for T in FK.torsion_subgroup().gens() if T.order()%2==0]
                if len(FK_even_tor_pts) == 2:
                    FK_even_tor_pts.append(sum(FK_even_tor_pts))
                for T in FK_even_tor_pts:
                    if (z + T).is_divisible_by(2):
                        a = 2; break
        return a*self._adjust_heegner_index(ht/IR(reg))

    # Do naive search to eliminate possibility that Heegner point
    # is divisible by p<min_p, without finding Heegner point.
    verbose("doing point search")
    P = F.point_search(c)
    verbose("done with point search")
    P = [x for x in P if x.order() == rings.infinity]
    a = 1
    if len(P) == 0:
        return IR(1)
    elif len(P) == 1:
        z = P[0]
        FK = F.base_extend(QuadraticField(D,'a'))
        z = FK(z)
        if z.is_divisible_by(2):
            a = 2
        else:
            FK_even_tor_pts = [T for T in FK.torsion_subgroup().gens() if T.order()%2==0]
            if len(FK_even_tor_pts) == 2:
                FK_even_tor_pts.append(sum(FK_even_tor_pts))
            for T in FK_even_tor_pts:
                if (z + T).is_divisible_by(2):
                    a = 2; break

    verbose("saturating")
    S, I, reg = F.saturation(P)
    verbose("done saturating")
    return a*self._adjust_heegner_index(ht/IR(reg))

def _adjust_heegner_index(self, a):
    r"""
    Take the square root of the interval that contains the Heegner
    index.

    EXAMPLES::

        sage: E = EllipticCurve('11a1')
        sage: a = RIF(sqrt(2))-1.4142135623730951
        sage: E._adjust_heegner_index(a)
        1.?e-8
    """
    if a.lower() < 0:
        IR = rings.RealIntervalField(20)  # todo: 20?
        a = IR((0, a.upper()))
    return a.sqrt()


def heegner_index_bound(self, D=0,  prec=5, max_height=None):
    r"""
    Assume ``self`` has rank 0.

    Return a list `v` of primes such that if an odd prime `p` divides
    the index of the Heegner point in the group of rational points
    modulo torsion, then `p` is in `v`.

    If 0 is in the interval of the height of the Heegner point
    computed to the given prec, then this function returns `v =
    0`. This does not mean that the Heegner point is torsion, just
    that it is very likely torsion.

    If we obtain no information from a search up to ``max_height``,
    e.g., if the Siksek et al. bound is bigger than ``max_height``,
    then we return `v = -1`.

    INPUT:


    -  ``D (int)`` - (default: 0) Heegner discriminant; if
       0, use the first discriminant -4 that satisfies the Heegner
       hypothesis

    -  ``verbose (bool)`` - (default: ``True``)

    -  ``prec (int)`` - (default: 5), use `prec \cdot \sqrt(N) + 20`
       terms of `L`-series in computations, where `N` is the conductor.

    -  ``max_height (float)`` - should be = 21; bound on
       logarithmic naive height used in point searches. Make smaller to
       make this function faster, at the expense of possibly obtaining a
       worse answer. A good range is between 13 and 21.


    OUTPUT:


    -  ``v`` - list or int (bad primes or 0 or -1)

    -  ``D`` - the discriminant that was used (this is
       useful if `D` was automatically selected).

    -  ``exact`` - either False, or the exact Heegner index
       (up to factors of 2)

    EXAMPLES::

        sage: E = EllipticCurve('11a1')
        sage: E.heegner_index_bound()
        ([2], -7, 2)
    """
    from .ell_rational_field import _MAX_HEIGHT
    if max_height is None:
        max_height = _MAX_HEIGHT
    else:
        max_height = min(float(max_height), _MAX_HEIGHT)
    if self.root_number() != 1:
        raise RuntimeError("The rank must be 0.")

    if D == 0:
        D = -5
        while not self.satisfies_heegner_hypothesis(D):
            D -= 1

    # First compute upper bound on Height of Heegner point.
    ht = self.heegner_point_height(D, prec=prec)
    if 0 in ht:
        return 0, D, False
    F = self.quadratic_twist(D)
    h  = ht.upper()
    verbose("Heegner height bound = %s"%h)
    B = F.CPS_height_bound()
    verbose("CPS bound = %s"%B)
    if self.two_torsion_rank() == 0:
        H = h
    else:
        H = 4*h
    p = 3
    from sage.all import next_prime
    while True:
        c = H/(2*p**2) + B
        if c < max_height:
            break
        if p > 100:
            break
        p = next_prime(p)
    verbose("Using p = %s"%p)

    if c > max_height:
        verbose("No information by searching only up to max_height (=%s)."%c)
        return -1, D, False

    verbose("Searching up to height = %s"%c)
    eps = 10e-5

    def _bound(P):
        """
        We will use this function below in two places. It bounds the index
        using a nontrivial point.
        """
        assert len(P) == 1

        S, I, reg = F.saturation(P)

        IR = rings.RealIntervalField(20)  # todo: 20?
        h = IR(reg-eps,reg+eps)
        ind2 = ht/(h/2)
        verbose("index squared = %s"%ind2)
        ind = ind2.sqrt()
        verbose("index = %s"%ind)
        # Compute upper bound on square root of index.
        if ind.absolute_diameter() < 1:
            t, i = ind.is_int()
            if t:   # unique integer in interval, so we've found exact index squared.
                return prime_divisors(i), D, i
        raise RuntimeError("Unable to compute bound for e=%s, D=%s (try increasing precision)"%(self, D))

    # First try a quick search, in case we get lucky and find
    # a generator.
    P = F.point_search(13, rank_bound=1)
    P = [x for x in P if x.order() == rings.infinity]
    if len(P) > 0:
        return _bound(P)

    # Do search to eliminate possibility that Heegner point is
    # divisible by primes up to p, without finding Heegner point.
    P = F.point_search(c, rank_bound=1)
    P = [x for x in P if x.order() == rings.infinity]
    if len(P) == 0:
        # We've eliminated the possibility of a divisor up to p.
        return rings.prime_range(3, p), D, False
    else:
        return _bound(P)


#################################################################################
def _heegner_index_in_EK(self, D):
    """
    Return the index of the sum of `E(\QQ)/tor + E^D(\QQ)/tor` in `E(K)/tor`.

    INPUT:
        - `D` -- negative integer; the Heegner discriminant

    OUTPUT:
        a power of 2 -- the given index

    EXAMPLES:
    We compute the index for a rank 2 curve and found that it is 2::

        sage: E = EllipticCurve('389a')
        sage: E._heegner_index_in_EK(-7)
        2

    We explicitly verify in the above example that indeed that
    index is divisibly by 2 by writing down a generator of
    `E(\QQ)/tor + E^D(\QQ)/tor` that is divisible by 2 in `E(K)`::

        sage: F = E.quadratic_twist(-7)
        sage: K = QuadraticField(-7,'a')
        sage: G = E.change_ring(K)
        sage: phi = F.change_ring(K).isomorphism_to(G)
        sage: P = G(E(-1,1)) + G((0,-1)) + G(phi(F(14,25))); P
        (-867/3872*a - 3615/3872 : -18003/170368*a - 374575/170368 : 1)
        sage: P.division_points(2)
        [(1/8*a + 5/8 : -5/16*a - 9/16 : 1)]

    """
    # check conditions, then use cache if possible.
    if not self.satisfies_heegner_hypothesis(D):
        raise ValueError("D (=%s) must satisfy the Heegner hypothesis"%D)
    try:
        return self.__heegner_index_in_EK[D]
    except AttributeError:
        self.__heegner_index_in_EK = {}
    except KeyError:
        pass

    #####################################################################
    # THE ALGORITHM:
    #
    # For an element P of an abelian group A, let [P] denote the
    # equivalence class of P in the quotient A/A_tor of A by
    # its torsion subgroup.   Then for P in E(Q) + E^D(QQ), we
    # have that [P] is divisible by 2 in E(K)/tor if and only
    # there is R in E(K) such that 2*[R] = [P], and this is
    # only if there is R in E(K) and t in E(K)_tor such that
    #          2*R = P + t.
    #
    # Using complex conjugation, one sees that the quotient
    # group E(K)/tor / ( E(Q)/tor + E^D(Q)/tor ) is killed by 2.
    # So to compute the order of this group we run through
    # representatives P for A/(2A) where A = E(Q)/tor + E^D(Q)/tor,
    # and for each we see whether there is a torsion point t in E(K)
    # such that P + t is divisible by 2.   Also, we have
    #    2 | P+t  <==> 2 | P+n*t for any odd integer n,
    # so we may assume t is of 2-power order.
    #####################################################################

    E     = self  # nice shortcut
    F     = E.quadratic_twist(D).minimal_model()
    K     = rings.QuadraticField(D, 'a')

    # Define a map phi that we'll use to put the points of E^D(QQ)
    # into E(K):
    G     = E.change_ring(K)
    G2    = F.change_ring(K)
    phi   = G2.isomorphism_to(G)

    # Basis for E(Q)/tor oplus E^D(QQ)/tor in E(K):
    basis = [G(z) for z in E.gens()] + [G(phi(z)) for z in F.gens()]
    # Make a list of the 2-power order torsion points in E(K), including 0.
    T     = [G(z) for z in G.torsion_subgroup().list() if z.order() == 1 or
            ((z.order() % 2 == 0 and len(z.order().factor()) == 1))]

    r     = len(basis)   # rank
    V     = rings.QQ**r
    B     = []

    # Iterate through reps for A/(2*A) creating vectors in (1/2)*ZZ^r
    for v in rings.GF(2)**r:
        if not v: continue
        P = sum([basis[i] for i in range(r) if v[i]])
        for t in T:
            if (P+t).is_divisible_by(2):
                B.append(V(v)/2)

    A = rings.ZZ**r
    # Take span of our vectors in (1/2)*ZZ^r, along with ZZ^r.  This is E(K)/tor.
    W     = V.span(B, rings.ZZ) + A

    # Compute the index in E(K)/tor of A = E(Q)/tor + E^D(Q)/tor, cache, and return.
    index = A.index_in(W)
    self.__heegner_index_in_EK[D] = index
    return index

def heegner_sha_an(self, D, prec=53):
    r"""
    Return the conjectural (analytic) order of Sha for E over the field `K=\QQ(\sqrt{D})`.

    INPUT:

    - `D` -- negative integer; the Heegner discriminant

    - prec -- integer (default: 53); bits of precision to
      compute analytic order of Sha

    OUTPUT:

    (floating point number) an approximation to the conjectural order of Sha.

    .. NOTE::

        Often you'll want to do ``proof.elliptic_curve(False)`` when
        using this function, since often the twisted elliptic
        curves that come up have enormous conductor, and Sha is
        nontrivial, which makes provably finding the Mordell-Weil
        group using 2-descent difficult.


    EXAMPLES:

    An example where E has conductor 11::

        sage: E = EllipticCurve('11a')
        sage: E.heegner_sha_an(-7)                                  # long time
        1.00000000000000

    The cache works::

        sage: E.heegner_sha_an(-7) is E.heegner_sha_an(-7)          # long time
        True

    Lower precision::

        sage: E.heegner_sha_an(-7,10)                               # long time
        1.0

    Checking that the cache works for any precision::

        sage: E.heegner_sha_an(-7,10) is E.heegner_sha_an(-7,10)    # long time
        True

    Next we consider a rank 1 curve with nontrivial Sha over the
    quadratic imaginary field `K`; however, there is no Sha for `E`
    over `\QQ` or for the quadratic twist of `E`::

        sage: E = EllipticCurve('37a')
        sage: E.heegner_sha_an(-40)                                 # long time
        4.00000000000000
        sage: E.quadratic_twist(-40).sha().an()                     # long time
        1
        sage: E.sha().an()                                          # long time
        1

    A rank 2 curve::

        sage: E = EllipticCurve('389a')                             # long time
        sage: E.heegner_sha_an(-7)                                  # long time
        1.00000000000000

    If we remove the hypothesis that `E(K)` has rank 1 in Conjecture
    2.3 in [Gross-Zagier, 1986, page 311], then that conjecture is
    false, as the following example shows::

        sage: E = EllipticCurve('65a')                              # long time
        sage: E.heegner_sha_an(-56)                                 # long time
        1.00000000000000
        sage: E.torsion_order()                                     # long time
        2
        sage: E.tamagawa_product()                                  # long time
        1
        sage: E.quadratic_twist(-56).rank()                         # long time
        2
    """
    # check conditions, then return from cache if possible.
    if not self.satisfies_heegner_hypothesis(D):
        raise ValueError("D (=%s) must satisfy the Heegner hypothesis"%D)
    try:
        return self.__heegner_sha_an[(D, prec)]
    except AttributeError:
        self.__heegner_sha_an = {}
    except KeyError:
        pass

    # Use the BSD conjecture over the quadratic imaginary K --
    # see page 311 of [Gross-Zagier, 1986] for the formula.
    E   = self  # notational convenience
    F   = E.quadratic_twist(D).minimal_model()
    K   = rings.QuadraticField(D, 'a')

    # Compute each of the quantities in BSD
    #  - The torsion subgroup over K.
    T   = E.change_ring(K).torsion_order()

    #  - The product of the Tamagawa numbers, which because D is
    #    coprime to N is just the square of the product of the
    #    Tamagawa numbers over QQ for E.  (we square below in the
    #    BSD formula)
    cqprod = E.tamagawa_product()

    #  - The leading term of the L-series, as a product of two
    #  other L-series.
    rE  = E.rank()
    rF = F.rank()
    L_E = E.lseries().dokchitser(prec).derivative(1, rE)
    L_F = F.lseries().dokchitser(prec).derivative(1, rF)
    #    NOTE: The binomial coefficient in the following formula
    #    for the leading term in terms of the other two leading
    #    terms comes from the product rule for the derivative.
    #    You can think this through or just type something like
    #      f = function('f',x); g = function('g',x); diff(f*g,6)
    #    into Sage to be convinced.
    L = binomial(rE + rF, rE) * (L_E * L_F / factorial(rE+rF) )

    #  - ||omega||^2 -- the period.  It is twice the volume of the
    #    period lattice.  See the following paper for a derivation:
    #    "Verification of the Birch and Swinnerton-Dyer Conjecture
    #     for Specific Elliptic Curves", G. Grigorov, A. Jorza, S. Patrikis,
    #     C. Patrascu, W. Stein
    omega = 2 * abs(E.period_lattice().basis_matrix().det())

    #  - The regulator.
    #    First we compute the regulator of the subgroup E(QQ) + E^D(QQ)
    #    of E(K).   The factor of 2 in the regulator
    #    accounts for the fact that the height over K is twice the
    #    height over QQ, i.e., for P in E(QQ) we have h_K(P,P) =
    #    2*h_Q(P,P).  See, e.g., equation (6.4) on page 230 of
    #    [Gross-Zagier, 1986].
    Reg_prod = 2**(rE + rF) * E.regulator(precision=prec) * F.regulator(precision=prec)
    #    Next we call off to the _heegner_index_in_EK function, which
    #    saturates the group E(QQ) + E^D(QQ) in E(K), given us the index,
    #    which must be a power of 2, since E(QQ) is the +1 eigenspace for
    #    complex conjugation, and E^D(QQ) is the -1 eigenspace.
    ind = self._heegner_index_in_EK(D)
    #    Finally, we know the regulator of E(K).
    Reg = Reg_prod / ind**2

    #  - Square root of the absolute value of the discriminant.  This is
    #    easy; we just make sure the D passed in is an integer, so we
    #    can call sqrt with the chosen precision.
    sqrtD = ZZ(abs(D)).sqrt(prec=prec)

    #  - Done: Finally, we plug everything into the BSD formula to get the
    #    analytic order of Sha.
    sha_an = (L * T**2 * sqrtD) / (omega * Reg * cqprod**2)

    #  - We cache and return the answer.
    self.__heegner_sha_an[(D, prec)] = sha_an
    return sha_an

def _heegner_forms_list(self, D, beta=None, expected_count=None):
    """
    Returns a list of quadratic forms corresponding to Heegner points
    with discriminant `D` and a choice of `\beta` a square root of
    `D` mod `4N`. Specifically, given a quadratic form
    `f = Ax^2 + Bxy + Cy^2` we let `\tau_f` be a root of `Ax^2 + Bx + C`
    and the discriminant `\Delta(\tau_f) = \Delta(f) = D` must be
    invariant under multiplication by `N`, the conductor of ``self``.

        `\Delta(N\tau_f) = \Delta(\tau_f) = \Delta(f) = D`

    EXAMPLES::

        sage: E = EllipticCurve('37a')
        sage: E._heegner_forms_list(-7)
        [37*x^2 + 17*x*y + 2*y^2]
        sage: E._heegner_forms_list(-195)
        [37*x^2 + 29*x*y + 7*y^2, 259*x^2 + 29*x*y + y^2, 111*x^2 + 177*x*y + 71*y^2, 2627*x^2 + 177*x*y + 3*y^2]
        sage: E._heegner_forms_list(-195)[-1].discriminant()
        -195
        sage: len(E._heegner_forms_list(-195))
        4
        sage: QQ[sqrt(-195)].class_number()
        4

        sage: E = EllipticCurve('389a')
        sage: E._heegner_forms_list(-7)
        [389*x^2 + 185*x*y + 22*y^2]
        sage: E._heegner_forms_list(-59)
        [389*x^2 + 313*x*y + 63*y^2, 1167*x^2 + 313*x*y + 21*y^2, 3501*x^2 + 313*x*y + 7*y^2]
    """
    if expected_count is None:
        expected_count = number_field.QuadraticField(D, 'a').class_number()
    N = self.conductor()
    if beta is None:
        beta = Integers(4*N)(D).sqrt(extend=False)
    else:
        assert beta**2 == Integers(4*N)(D)
    from sage.quadratic_forms.all import BinaryQF
    b = ZZ(beta) % (2*N)
    all = []
    seen = []
    # Note: This may give a sub-optimal list of forms.
    while True:
        R = (b**2-D)//(4*N)
        for d in R.divisors():
            f = BinaryQF([d*N, b, R//d])
            fr = f.reduced_form()
            if fr not in seen:
                seen.append(fr)
                all.append(f)
                if len(all) == expected_count:
                    return all
        b += 2*N

def _heegner_best_tau(self, D, prec=None):
    r"""
    Given a discrimanent `D`, find the Heegner point `\tau` in the
    upper half plane with largest imaginary part (which is optimal
    for evaluating the modular parametrization). If the optional
    parameter ``prec`` is given, return `\tau` to ``prec`` bits of
    precision, otherwise return it exactly as a symbolic object.

    EXAMPLES::

        sage: E = EllipticCurve('37a')
        sage: E._heegner_best_tau(-7)
        1/74*sqrt(-7) - 17/74
        sage: EllipticCurve('389a')._heegner_best_tau(-11)
        1/778*sqrt(-11) - 355/778
        sage: EllipticCurve('389a')._heegner_best_tau(-11, prec=100)
        -0.45629820051413881748071979434 + 0.0042630138693514136878083968338*I
    """
    # We know that N|A, so A = N is optimal.
    N = self.conductor()
    b = ZZ(Integers(4*N)(D).sqrt(extend=False) % (2*N))
    # TODO: make sure a different choice of b is not better?
    return (-b + ZZ(D).sqrt(prec=prec)) / (2*N)

def satisfies_heegner_hypothesis(self, D):
    """
    Returns ``True`` precisely when `D` is a fundamental discriminant that
    satisfies the Heegner hypothesis for this elliptic curve.

    EXAMPLES::

        sage: E = EllipticCurve('11a1')
        sage: E.satisfies_heegner_hypothesis(-7)
        True
        sage: E.satisfies_heegner_hypothesis(-11)
        False
    """
    if not number_field.is_fundamental_discriminant(D):
        return False
    D = ZZ(D)
    if D >= 0: return False
    if D.gcd(self.conductor()) != 1:
        return False
    for p, _ in self.conductor().factor():
        if D.kronecker(p) != 1:
            return False
    return True


#####################################################################
# End of elliptic curve methods.
#####################################################################