File: worksheet.html

package info (click to toggle)
sagenb-export 3.2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, sid, trixie
  • size: 556 kB
  • sloc: python: 591; makefile: 28; sh: 8
file content (233 lines) | stat: -rw-r--r-- 10,048 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233


<h1 style="text-align: center;">The 24-Cell</h1>

{{{id=4|
cell24 = polytopes.twenty_four_cell()
cell24.f_vector()   # it is self-dual
///
(1, 24, 96, 96, 24, 1)
}}}

{{{id=86|
cell24.f_vector?
///
<html><!--notruncate-->

<div class="docstring">
    
  <p><strong>File:</strong> /home/vbraun/Sage/sage/local/lib/python2.6/site-packages/sage/geometry/polyhedra.py</p>
<p><strong>Type:</strong> &lt;type &#8216;instancemethod&#8217;&gt;</p>
<p><strong>Definition:</strong> cell24.f_vector()</p>
<p><strong>Docstring:</strong></p>
<blockquote>
<p>Return the f-vector.</p>
<p>OUTPUT:</p>
<p>Returns a vector whose <tt class="docutils literal"><span class="pre">i</span></tt>-th entry is the number of
<tt class="docutils literal"><span class="pre">i</span></tt>-dimensional faces of the polytope.</p>
<p>EXAMPLES:</p>
<div class="highlight-python"><div class="highlight"><pre class="literal-block"><span class="gp">sage: </span><span class="n">p</span> <span class="o">=</span> <span class="n">Polyhedron</span><span class="p">(</span><span class="n">vertices</span> <span class="o">=</span> <span class="p">[[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">]])</span>
<span class="gp">sage: </span><span class="n">p</span><span class="o">.</span><span class="n">f_vector</span><span class="p">()</span>
<span class="go">(1, 7, 12, 7, 1)</span>
</pre></div>
</div>
</blockquote>


</div>
</html>
}}}

<p>Here is a picture of the 24-cell projected into 3 dimensions:</p>

{{{id=1|
cell24.plot()
///
}}}

<p><span style="font-weight: normal;"><span style="font-size: medium;">The "round" 24-cell can be $GL(4,\mathbb{Q})$-squished into a lattice polytope:</span></span></p>

{{{id=13|
cell24 = Polyhedron(vertices=[
  (1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(1,-1,-1,1),(0,0,-1,1),          
  (0,-1,0,1),(-1,0,0,1),(1,0,0,-1),(0,1,0,-1),(0,0,1,-1),(-1,1,1,-1),
  (1,-1,-1,0),(0,0,-1,0),(0,-1,0,0),(-1,0,0,0),(1,-1,0,0),(1,0,-1,0),
  (0,1,1,-1),(-1,1,1,0),(-1,1,0,0),(-1,0,1,0),(0,-1,-1,1),(0,0,0,-1)])
cell24.f_vector()
///
(1, 24, 96, 96, 24, 1)
}}}

{{{id=67|
cell24.lattice_polytope().is_reflexive()
///
True
}}}

<h2>Symmetry groups</h2>
<p>Here is the symmetry group of the 24-cell</p>

{{{id=27|
Aut = cell24.restricted_automorphism_group()
Aut.cardinality()
///
1152
}}}

{{{id=34|
Aut.gens()
///
[(3,9)(4,18)(7,13)(8,14)(10,20)(22,24), (2,3)(6,7)(10,11)(14,15)(17,18)(21,22), (2,4)(3,19)(5,18)(7,10)(8,21)(9,17)(12,22)(14,23)(15,24), (2,18)(3,17)(4,5)(8,23)(9,19)(12,24)(13,20)(14,21)(15,22), (2,19)(3,4)(5,17)(6,11)(8,22)(9,18)(12,21)(14,24)(15,23), (1,2,19,10,12,24,16,15,23,7,5,4)(3,18,20,9,21,11,14,22,13,8,17,6), (1,16)(2,21)(3,22)(4,8)(5,23)(9,24)(12,19)(14,18)(15,17)]
}}}

<p>Pick the following $G$-permutation action on the vertices of $\nabla$</p>

{{{id=36|
G = PermutationGroup([
        '(1,14,22)(2,24,7)(3,18,16)(4,10,15)(5,21,11)(6,12,17)(8,19,13)(9,23,20)', 
        '(1,10,16,7)(2,12,15,5)(3,9,14,8)(4,19,24,23)(6,20,11,13)(17,18,21,22)'])
G.is_subgroup(Aut) and G.is_isomorphic( SL(2,3).as_matrix_group().as_permutation_group() )
///
True
}}}

{{{id=85|
G.orbits()
///
[[1, 10, 14, 16, 15, 8, 22, 7, 3, 5, 4, 19, 17, 2, 9, 18, 21, 24, 13, 6, 12, 23, 11, 20]]
}}}

<p>Representatives for the 7 conjugacy classes:</p>

{{{id=44|
G.conjugacy_classes_representatives()
///
[(), (1,2,21,16,15,17)(3,19,10,14,23,7)(4,20,12,24,13,5)(6,8,22,11,9,18), (1,4,8,16,24,9)(2,6,23,15,11,19)(3,20,21,14,13,17)(5,7,22,12,10,18), (1,6,16,11)(2,14,15,3)(4,21,24,17)(5,8,12,9)(7,20,10,13)(18,23,22,19), (1,8,24)(2,23,11)(3,21,13)(4,16,9)(5,22,10)(6,15,19)(7,12,18)(14,17,20), (1,16)(2,15)(3,14)(4,24)(5,12)(6,11)(7,10)(8,9)(13,20)(17,21)(18,22)(19,23), (1,21,15)(2,16,17)(3,10,23)(4,12,13)(5,20,24)(6,22,9)(7,19,14)(8,11,18)]
}}}

<p>Here is the orbit of $1$ under the permutation $g_3$:</p>

{{{id=52|
(G.1).orbit(1)
///
[1, 14, 22]
}}}

<h1 style="text-align: center;">The 24-cell toric variety</h1>

{{{id=45|
fan = FaceFan(cell24.lattice_polytope())
Pnabla = ToricVariety(FaceFan(cell24.lattice_polytope()),
   coordinate_names='z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z11, z12, '+
                    'z13, z14, z15, z16, z17, z18, z19, z20, z21, z22, z23, z24',
   base_field=GF(101))
Pnabla
///
4-d toric variety covered by 24 affine patches
}}}

{{{id=56|
Pnabla.Chow_group().degree()
///
(Z, Z, C2 x C2 x Z^30, Z^20, Z)
}}}

{{{id=54|
SR = Pnabla.Stanley_Reisner_ideal(); SR
///
Ideal (z2*z11, z4*z11, z5*z11, z6*z11, z8*z11, z11*z14, z11*z18, z11*z21, z11*z23, z1*z12, z4*z12, z5*z12, z6*z12, z7*z12, z12*z13, z12*z17, z12*z18, z12*z23, z1*z15, z2*z15, z4*z15, z6*z15, z10*z15, z15*z18, z15*z19, z15*z20, z15*z21, z1*z16, z2*z16, z3*z16, z4*z16, z5*z16, z9*z16, z16*z17, z16*z18, z16*z19, z1*z22, z2*z22, z5*z22, z6*z22, z9*z22, z10*z22, z13*z22, z14*z22, z18*z22, z1*z24, z2*z24, z3*z24, z4*z24, z5*z24, z6*z24, z7*z24, z8*z24, z20*z24, z3*z10, z4*z10, z5*z10, z7*z10, z8*z10, z10*z17, z10*z23, z1*z14, z3*z14, z4*z14, z7*z14, z14*z17, z14*z19, z14*z20, z1*z21, z3*z21, z5*z21, z7*z21, z9*z21, z13*z21, z17*z21, z4*z9, z6*z9, z7*z9, z8*z9, z9*z20, z9*z23, z5*z19, z6*z19, z7*z19, z8*z19, z13*z19, z19*z23, z2*z13, z3*z13, z4*z13, z8*z13, z13*z20, z1*z23, z2*z23, z3*z23, z20*z23, z2*z17, z6*z17, z8*z17, z17*z20, z3*z18, z7*z18, z8*z18, z18*z20, z3*z6, z2*z7, z1*z8, z5*z20, z7*z11*z16, z10*z11*z16, z11*z13*z16, z11*z16*z20, z3*z12*z15, z8*z12*z15, z9*z12*z15, z12*z14*z15, z17*z22*z24, z19*z22*z24, z21*z22*z24, z22*z23*z24, z6*z10*z16, z10*z13*z16, z10*z16*z20, z2*z12*z14, z8*z12*z14, z9*z12*z14, z18*z21*z24, z19*z21*z24, z21*z23*z24, z2*z9*z12, z3*z9*z12, z1*z10*z11, z10*z11*z13, z10*z11*z20, z17*z19*z24, z18*z19*z24, z6*z13*z16, z7*z13*z16, z5*z14*z15, z8*z14*z15, z9*z14*z15, z17*z23*z24, z18*z23*z24, z3*z9*z15, z5*z9*z15, z1*z11*z13, z7*z11*z13, z17*z18*z24, z2*z9*z14, z5*z9*z14, z1*z10*z13, z6*z10*z13, z2*z3*z8, z3*z5*z8, z3*z8*z12, z3*z8*z15, z4*z17*z22, z4*z19*z22, z4*z21*z22, z4*z22*z23, z1*z7*z20, z6*z7*z20, z7*z11*z20, z7*z16*z20, z2*z5*z8, z2*z8*z12, z2*z8*z14, z4*z18*z21, z4*z19*z21, z4*z21*z23, z1*z6*z20, z6*z10*z20, z6*z16*z20, z1*z10*z20, z1*z11*z20, z2*z3*z5, z2*z3*z9, z2*z3*z12, z4*z17*z19, z4*z18*z19, z4*z17*z23, z4*z18*z23, z5*z8*z14, z5*z8*z15, z1*z6*z7, z6*z7*z13, z6*z7*z16, z1*z7*z11, z1*z7*z13, z3*z5*z9, z3*z5*z15, z4*z17*z18, z1*z6*z10, z1*z6*z13, z2*z5*z9, z2*z5*z14, z19*z21*z22, z21*z22*z23, z17*z19*z22, z18*z19*z21, z17*z22*z23, z17*z18*z23, z18*z21*z23, z17*z18*z19) of Multivariate Polynomial Ring in z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z11, z12, z13, z14, z15, z16, z17, z18, z19, z20, z21, z22, z23, z24 over Rational Field
}}}

{{{id=55|
Pnabla.inject_variables()
z1*z16 in SR  and  z1*z14*z22 in SR
///
Defining z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z11, z12, z13, z14, z15, z16, z17, z18, z19, z20, z21, z22, z23, z24
True
}}}

<h1 style="text-align: center;">The Calabi-Yau Hypersurface</h1>
<p style="text-align: left;">The polynomial $P=P_0+P_\infty$ is</p>

{{{id=57|
anticanonical_bundle = -Pnabla.K()
P = sum(anticanonical_bundle.sections_monomials())
P([1]*24)    # g_3 and g_4^2-fixed point z_i=1
///
25
}}}

<p>One of the maximal cones is $\langle p_1,p_2,p_3,p_4,p_{19},p_{20}\rangle$:</p>

{{{id=69|
cone = fan.generating_cone(8)
cone.ambient_ray_indices()
///
(0, 1, 2, 3, 18, 19)
}}}

<p>The singularity of $\mathbb{P}_\nabla$ is where the corresponding homogeneous variables vanish:</p>

{{{id=63|
P(0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1,1,1)
///
1
}}}

<h1 style="text-align: center;">Checking Transversality of the Equation</h1>
<p><span style="font-weight: normal;"><span style="font-size: medium;">The patches are non-complete intersections: 9 equations in $\mathbb{C}^8$ cutting out a $4$-dimensional affine toric variety</span></span></p>

{{{id=71|
ambient_patch = Pnabla.affine_algebraic_patch(cone, names='x+')
ambient_patch
///
Closed subscheme of Affine Space of dimension 8 over Finite Field of size 101 defined by:
  -x1*x4 + x0*x7,
  -x1*x5 + x0*x6,
  -x4*x6 + x5*x7,
  x0*x4 - x3*x5,
  -x2*x4 + x3*x7,
  -x1*x4 + x3*x6,
  x0*x2 - x1*x3,
  x2*x6 - x1*x7,
  -x1*x4 + x2*x5
}}}

<p>Of course there is a singularity at $0\in \mathbb{C}^8$:</p>

{{{id=76|
ambient_patch.is_smooth()
///
False
}}}

<p>Now we throw in the equation $P=0$ and go to the same patch again:</p>

{{{id=70|
Xtilde = Pnabla.subscheme(P)
patch = Xtilde.affine_algebraic_patch(cone, names='x+')
patch
///
Closed subscheme of Affine Space of dimension 8 over Finite Field of size 101 defined by:
  -x1*x4 + x0*x7,
  -x1*x5 + x0*x6,
  -x4*x6 + x5*x7,
  x0*x4 - x3*x5,
  -x2*x4 + x3*x7,
  -x1*x4 + x3*x6,
  x0*x2 - x1*x3,
  x2*x6 - x1*x7,
  -x1*x4 + x2*x5,
  x2^2*x5^2 + x0*x2*x5 + x2^2*x5 + x2*x3*x5 + x2*x4*x5 + x2*x5^2 + x0*x2*x6 + x2*x5*x6 + x2*x5*x7 + x0*x2 + x0*x4 + x2*x4 + x1*x5 + x2*x5 + x2*x6 + x5*x7 + x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + 1
}}}

{{{id=73|
patch.is_smooth()
///
True
}}}

{{{id=81|

///
}}}