1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
/*==========================================================================*/
/* Sail */
/* */
/* Sail and the Sail architecture models here, comprising all files and */
/* directories except the ASL-derived Sail code in the aarch64 directory, */
/* are subject to the BSD two-clause licence below. */
/* */
/* The ASL derived parts of the ARMv8.3 specification in */
/* aarch64/no_vector and aarch64/full are copyright ARM Ltd. */
/* */
/* Copyright (c) 2013-2021 */
/* Kathyrn Gray */
/* Shaked Flur */
/* Stephen Kell */
/* Gabriel Kerneis */
/* Robert Norton-Wright */
/* Christopher Pulte */
/* Peter Sewell */
/* Alasdair Armstrong */
/* Brian Campbell */
/* Thomas Bauereiss */
/* Anthony Fox */
/* Jon French */
/* Dominic Mulligan */
/* Stephen Kell */
/* Mark Wassell */
/* Alastair Reid (Arm Ltd) */
/* */
/* All rights reserved. */
/* */
/* This work was partially supported by EPSRC grant EP/K008528/1 <a */
/* href="http://www.cl.cam.ac.uk/users/pes20/rems">REMS: Rigorous */
/* Engineering for Mainstream Systems</a>, an ARM iCASE award, EPSRC IAA */
/* KTF funding, and donations from Arm. This project has received */
/* funding from the European Research Council (ERC) under the European */
/* Union’s Horizon 2020 research and innovation programme (grant */
/* agreement No 789108, ELVER). */
/* */
/* This software was developed by SRI International and the University of */
/* Cambridge Computer Laboratory (Department of Computer Science and */
/* Technology) under DARPA/AFRL contracts FA8650-18-C-7809 ("CIFV") */
/* and FA8750-10-C-0237 ("CTSRD"). */
/* */
/* SPDX-License-Identifier: BSD-2-Clause */
/*==========================================================================*/
$sail_internal
$ifndef _CONCURRENCY_INTERFACE_READ_WRITE_V2
$define _CONCURRENCY_INTERFACE_READ_WRITE_V2
$include <concurrency_interface/common.sail>
/* This file present the Sail interface for reading and writing memory. This
interface can instanciated either at the user-mode level when Sail is used to
reason about user-mode program, in which case the addresses used are the
program addresses: virtual addresses.
It can also be instanciated at the system level if address translation is
implemented in Sail, in which case the addresses will be physical addresses.
This interface depends on a few parameters:
- addr_size : Int, The size of addresses to be used, in bits.
- addr_space : Type, An extra tag on the address to identify it's address
space. For Arm this is Secure/Non-Secure, for all other architecture this
should probably be unit.
- mem_acc : Type, An architecture specific description of the access kind.
This may also contain arbitrary architecture specific metadata about the
access.
- abort : Type, The type of memory aborts/access failure: To be
returned when the access has failed. In system-level instantiations, this is
expected to be for physcial memory abort (e.g. SError in Arm)
- CHERI : Bool, Whether CHERI is active on this architecture, which means the
memory has capability tags
- cap_size_log : Int, If CHERI is on, the log2 of the size of capabilities in
bytes. For example for 16 bytes capabilities, this should be 4.
Arm-MTE-like tags are not supported by this API, but can be added separately
as an extension
*/
/* This type represent a Request to read a section of memory. It requests
reading 'n bytes of data and 'nt capabilities tags (if CHERI is off, 'nt must
be 0) The actual footprint read is max('n, 'cap_size * 'nt). If 'n is smaller
than this value, the extra bytes are discarded. */
$option -lem_extern_type Mem_read_request
$option -coq_extern_type Mem_read_request
$option -lean_extern_type Mem_read_request
struct Mem_read_request('n : Int, 'nt : Int, 'addr_size : Int, 'addr_space : Type,
'mem_acc : Type), 'n >= 0 & 'nt >= 0 & 'addr_size > 0 = {
access_kind : 'mem_acc,
address : bits('addr_size),
address_space : 'addr_space,
size : int('n),
num_tag : int('nt), // This is CHERI tags, MTE-like tags are not supported
}
$ifdef SYMBOLIC
register __monomorphize_reads: bool = false
register __monomorphize_writes: bool = false
$else
let __monomorphize_reads: bool = false
let __monomorphize_writes: bool = false
$endif
/* Requests a memory read. Return 'n bytes and 'nt tags */
outcome sail_mem_read : forall 'n 'nt, 'n >= 0 & (if 'CHERI then 'nt >= 0 else 'nt == 0).
Mem_read_request('n, 'nt, 'addr_size, 'addr_space, 'mem_acc)
-> result((vector('n, bits(8)), vector('nt, bool)), 'abort)
with
'addr_size : Int,
'addr_space : Type,
'mem_acc : Type,
'abort : Type,
'CHERI : Bool,
'cap_size_log : Int
constraint 'addr_size > 0 & 'cap_size_log >= 0
= {
// Generic classifiers for mem_acc to enable some level of architechture generic programming
// Is the access an explicit data access. That means it must respect basic
// coherency rule and in particular behave sequentially if used by a single
// thread without need for cache invalidation (if the backend memory is regular RAM)
val mem_acc_is_explicit : 'mem_acc -> bool
// Is the access an instruction fetch access
val mem_acc_is_ifetch : 'mem_acc -> bool
// Is the access a page-table walk access (from the MMU)
val mem_acc_is_ttw : 'mem_acc -> bool
// The remaining classifiers are only for explicit accesses,
// They should all imply mem_acc_is_explicit.
// Those 3 function classify the release/acquire strength
val mem_acc_is_relaxed : 'mem_acc -> bool
val mem_acc_is_rel_acq_rcpc : 'mem_acc -> bool
val mem_acc_is_rel_acq_rcsc : 'mem_acc -> bool
// Those 3 function classify whether a call is part of atomic/exclusive
// sequence or not
val mem_acc_is_standalone : 'mem_acc -> bool
val mem_acc_is_exclusive : 'mem_acc -> bool
val mem_acc_is_atomic_rmw : 'mem_acc -> bool
impl emulator_or_isla(request) = {
let address : {'as, 'as in {32, 64}. bits('as)} =
if length(request.address) <= 32
then sail_zero_extend(request.address, 32)
else if length(request.address) <= 64
then sail_zero_extend(request.address, 64)
// TODO maybe support addresses bigger than 64 bits
else {assert(false);sail_zeros(64)};
// In Isla, the address of an instruction fetch must be concrete
let address =
if mem_acc_is_ifetch(request.access_kind) | __monomorphize_reads
then __monomorphize(address)
else address;
let tags : vector('nt, bool) = if constraint('CHERI) then {
var tags : vector('nt, bool) = vector_init(request.num_tag, false);
let cap_size = 2 ^ 'cap_size_log;
let tag_address = address & sail_shiftleft(sail_ones(length(address)), 'cap_size_log);
foreach(i from 0 to (request.num_tag - 1)) {
if length(address) == 32 then {
tags[i] = read_tag#(32, tag_address + i * cap_size)
} else {
tags[i] = read_tag#(64, tag_address + i * cap_size)
}
};
tags
} else [];
let value = if request.size > 0 then {
let valuebv = if mem_acc_is_exclusive(request.access_kind) then {
if length(address) == 32 then {
read_mem_exclusive#(request, 32, address, request.size)
} else {
read_mem_exclusive#(request, 64, address, request.size)
}
} else if mem_acc_is_ifetch(request.access_kind) then {
if length(address) == 32 then {
read_mem_ifetch#(request, 32, address, request.size)
} else {
read_mem_ifetch#(request, 64, address, request.size)
}
} else {
if length(address) == 32 then {
read_mem#(request, 32, address, request.size)
} else {
read_mem#(request, 64, address, request.size)
}
};
to_bytes_le(request.size, valuebv)
} else {
vector_init(0, sail_zeros(8))
};
Ok(value, tags)
}
}
/* This type represent a request to write a range of memory. It requests
writing 'n bytes of data and 'nt capabilities tags (if CHERI is off, 'nt must
be 0). 'n can be 0 to write only CHERI tags */
$option -lem_extern_type Mem_write_request
$option -coq_extern_type Mem_write_request
$option -lean_extern_type Mem_write_request
struct Mem_write_request('n : Int, 'nt : Int, 'addr_size : Int, 'addr_space : Type,
'mem_acc : Type), 'n >= 0 & 'nt >= 0 & 'addr_size > 0 = {
access_kind : 'mem_acc,
address : bits('addr_size),
address_space : 'addr_space,
size : int('n),
num_tag : int('nt),
value : vector('n, bits(8)),
tags : vector('nt, bool),
}
/* Requests a memory write. If the write cannot happen due to
atomicity/exclusive constraints, then the execution path is discarded as
impossible (size-0 non deterministic choice). Is the responsability of the
Sail model to do the proper non-determinitic choices beforehand */
outcome sail_mem_write : forall 'n 'nt, 'n >= 0 & (if 'CHERI then 'nt >= 0 else 'nt == 0).
Mem_write_request('n, 'nt, 'addr_size, 'addr_space, 'mem_acc)
-> result(unit, 'abort)
with
'addr_size : Int,
'addr_space : Type,
'mem_acc : Type,
'abort : Type,
'CHERI : Bool,
'cap_size_log : Int
constraint 'addr_size > 0 & 'cap_size_log >= 0
= {
// See sail_mem_read for documentation
val mem_acc_is_explicit : 'mem_acc -> bool
val mem_acc_is_ifetch : 'mem_acc -> bool
val mem_acc_is_ttw : 'mem_acc -> bool
val mem_acc_is_relaxed : 'mem_acc -> bool
val mem_acc_is_rel_acq_rcpc : 'mem_acc -> bool
val mem_acc_is_rel_acq_rcsc : 'mem_acc -> bool
val mem_acc_is_standalone : 'mem_acc -> bool
val mem_acc_is_exclusive : 'mem_acc -> bool
val mem_acc_is_atomic_rmw : 'mem_acc -> bool
impl emulator_or_isla(request) = {
let address : {'as, 'as in {32, 64}. bits('as)} =
if length(request.address) <= 32
then sail_zero_extend(request.address, 32)
else if length(request.address) <= 64
then sail_zero_extend(request.address, 64)
else {assert(false); sail_zeros(64)};
let address = if __monomorphize_writes then __monomorphize(address) else address;
if constraint('CHERI) then {
let cap_size = 2 ^ 'cap_size_log;
let tag_address = address & sail_shiftleft(sail_ones(length(address)), 'cap_size_log);
let tag_footprint = max_int(tdiv_int(request.size + cap_size - 1, cap_size), request.num_tag);
foreach(i from 0 to (tag_footprint - 1)) {
let tag_val = if (i >= request.num_tag) then false else request.tags[i];
if length(address) == 32 then {
write_tag#(32, tag_address + i * cap_size, tag_val)
} else {
write_tag#(64, tag_address + i * cap_size, tag_val)
}
};
};
if request.size > 0 then {
let value = from_bytes_le(request.size, request.value);
if mem_acc_is_exclusive(request.access_kind) then {
if length(address) == 32 then {
let _ = write_mem_exclusive#(request, 32, address, request.size, value)
} else {
let _ = write_mem_exclusive#(request, 64, address, request.size, value)
}
} else {
if length(address) == 32 then {
let _ = write_mem#(request, 32, address, request.size, value)
} else {
let _ = write_mem#(request, 64, address, request.size, value);
}
}
};
Ok(())
}
}
// Used when we want a non memory read/write to appear in Isla's addr relation
$iftarget isla
val sail_address_announce = impure "address_announce" : forall 'addrsize, 'addrsize in {32, 64}. (int('addrsize), bits('addrsize)) -> unit
$else
val sail_address_announce : forall 'addrsize, 'addrsize in {32, 64}. (int('addrsize), bits('addrsize)) -> unit
function sail_address_announce(_, _) = ()
$endif
$endif
|