File: rts.c

package info (click to toggle)
sail-ocaml 0.19.1%2Bdfsg5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 18,008 kB
  • sloc: ml: 75,941; ansic: 8,848; python: 1,342; exp: 560; sh: 474; makefile: 218; cpp: 36
file content (530 lines) | stat: -rw-r--r-- 11,608 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
#include<string.h>
#include<getopt.h>
#include<inttypes.h>

#include"sail.h"
#include"rts.h"
#include"elf.h"

static uint64_t g_elf_entry;
uint64_t g_cycle_count = 0;
static uint64_t g_cycle_limit;

void sail_match_failure(const_sail_string msg)
{
  fprintf(stderr, "Pattern match failure in %s\n", msg);
  exit(EXIT_FAILURE);
}

unit sail_assert(bool b, const_sail_string msg)
{
  if (b) return UNIT;
  fprintf(stderr, "Assertion failed: %s\n", msg);
  exit(EXIT_FAILURE);
}

unit sail_exit(unit u)
{
  fprintf(stderr, "[Sail] Exiting after %" PRIu64 " cycles\n", g_cycle_count);
  exit(EXIT_SUCCESS);
  return UNIT;
}

static uint64_t g_verbosity = 0;

fbits sail_get_verbosity(const unit u)
{
  return g_verbosity;
}

bool g_sleeping = false;

unit sleep_request(const unit u)
{
  fprintf(stderr, "Sail CPU model going to sleep\n");
  g_sleeping = true;
  return UNIT;
}

unit wakeup_request(const unit u)
{
  fprintf(stderr, "Sail CPU model waking up\n");
  g_sleeping = false;
  return UNIT;
}

bool sleeping(const unit u)
{
    return g_sleeping;
}

/* ***** Sail memory builtins ***** */

/*
 * We organise memory available to the sail model into a linked list
 * of dynamically allocated MASK + 1 size blocks.
 */
struct block {
  uint64_t block_id;
  uint8_t *mem;
  struct block *next;
};

struct block *sail_memory = NULL;

struct tag_block {
  uint64_t block_id;
  bool *mem;
  struct tag_block *next;
};

struct tag_block *sail_tags = NULL;

/*
 * Must be one less than a power of two.
 */
uint64_t MASK = 0xFFFFFFul;

/*
 * All sail vectors are at least 64-bits, but only the bottom 8 bits
 * are used in the second argument.
 */
void write_mem(uint64_t address, uint64_t byte)
{
  uint64_t mask = address & ~MASK;
  uint64_t offset = address & MASK;

  //if ((byte >= 97 && byte <= 122) || (byte >= 64 && byte <= 90) || (byte >= 48 && byte <= 57) || byte == 10 || byte == 32) {
  //  fprintf(stderr, "%c", (char) byte);
  //}

  struct block *current = sail_memory;

  while (current != NULL) {
    if (current->block_id == mask) {
      current->mem[offset] = (uint8_t) byte;
      return;
    } else {
      current = current->next;
    }
  }

  /*
   * If we couldn't find a block matching the mask, allocate a new
   * one, write the byte, and put it at the front of the block list.
   */
  fprintf(stderr, "[Sail] Allocating new block 0x%" PRIx64 "\n", mask);
  struct block *new_block = malloc(sizeof(struct block));
  new_block->block_id = mask;
  new_block->mem = calloc(MASK + 1, sizeof(uint8_t));
  new_block->mem[offset] = (uint8_t) byte;
  new_block->next = sail_memory;
  sail_memory = new_block;
}

uint64_t read_mem(uint64_t address)
{
  uint64_t mask = address & ~MASK;
  uint64_t offset = address & MASK;

  struct block *current = sail_memory;

  while (current != NULL) {
    if (current->block_id == mask) {
      return (uint64_t) current->mem[offset];
    } else {
      current = current->next;
    }
  }

  return 0x00;
}

unit write_tag_bool(const uint64_t address, const bool tag)
{
  uint64_t mask = address & ~MASK;
  uint64_t offset = address & MASK;

  struct tag_block *current = sail_tags;

  while (current != NULL) {
    if (current->block_id == mask) {
      current->mem[offset] = tag;
      return UNIT;
    } else {
      current = current->next;
    }
  }

  /*
   * If we couldn't find a block matching the mask, allocate a new
   * one, write the byte, and put it at the front of the block list.
   */
  fprintf(stderr, "[Sail] Allocating new tag block 0x%" PRIx64 "\n", mask);
  struct tag_block *new_block = malloc(sizeof(struct tag_block));
  new_block->block_id = mask;
  new_block->mem = calloc(MASK + 1, sizeof(bool));
  new_block->mem[offset] = tag;
  new_block->next = sail_tags;
  sail_tags = new_block;

  return UNIT;
}

bool read_tag_bool(const uint64_t address)
{
  uint64_t mask = address & ~MASK;
  uint64_t offset = address & MASK;

  struct tag_block *current = sail_tags;

  while (current != NULL) {
    if (current->block_id == mask) {
      return current->mem[offset];
    } else {
      current = current->next;
    }
  }

  return false;
}

void kill_mem()
{
  while (sail_memory != NULL) {
    struct block *next = sail_memory->next;

    free(sail_memory->mem);
    free(sail_memory);

    sail_memory = next;
  }

  while (sail_tags != NULL) {
    struct tag_block *next = sail_tags->next;

    free(sail_tags->mem);
    free(sail_tags);

    sail_tags = next;
  }
}

// ***** Memory builtins *****

mpz_t write_buf;

bool write_ram(const sail_int addr_size,     // Either 32 or 64
	       const sail_int data_size_mpz, // Number of bytes
	       const lbits hex_ram,          // Currently unused
	       const lbits addr_bv,
	       const lbits data)
{
  uint64_t addr = mpz_get_ui(*addr_bv.bits);
  uint64_t data_size = (uint64_t) data_size_mpz;

  if (data_size <= 8) {
    uint64_t bytes = mpz_get_ui(*data.bits);

    for(uint64_t i = 0; i < data_size; ++i) {
      write_mem(addr + i, bytes & 0xFF);
      bytes >>= 8;
    }

    return true;
  } else {
    mpz_set(write_buf, *data.bits);

    uint64_t byte;
    for(uint64_t i = 0; i < data_size; ++i) {
      // Take the 8 low bits of write_buf and write to addr.
      byte = mpz_get_ui(write_buf) & 0xFF;
      write_mem(addr + i, byte);

      // Then shift buf 8 bits right.
      mpz_fdiv_q_2exp(write_buf, write_buf, 8);
    }
    
    return true;
  }
}

sbits fast_read_ram(const int64_t data_size,
		    const uint64_t addr)
{
  uint64_t r = 0;
  
  uint64_t byte;
  for(uint64_t i = (uint64_t) data_size; i > 0; --i) {
    byte = read_mem(addr + (i - 1));
    r = r << 8;
    r = r + byte;
  }
  sbits res = {.len = data_size * 8, .bits = r };
  return res;
}

mpz_t read_buf;

void read_ram(lbits *data,
	      const sail_int addr_size,
	      const sail_int data_size_mpz,
	      const lbits hex_ram,
	      const lbits addr_bv)
{
  uint64_t addr = mpz_get_ui(*addr_bv.bits);
  uint64_t data_size = (uint64_t) data_size_mpz;

  if (data_size <= 8) {
    uint64_t byte = 0;

    for(uint64_t i = data_size; i > 0; --i) {
      byte = byte << 8;
      byte += read_mem(addr + (i - 1));
    }

    mpz_set_ui(*data->bits, byte);
    data->len = data_size * 8;
  } else {
    mpz_set_ui(*data->bits, 0);
    data->len = data_size * 8;

    for(uint64_t i = data_size; i > 0; --i) {
      mpz_set_ui(read_buf, read_mem(addr + (i - 1)));
      mpz_mul_2exp(*data->bits, *data->bits, 8);
      mpz_add(*data->bits, *data->bits, read_buf);
    }
  }
}

unit load_raw(fbits addr, const_sail_string file)
{
  FILE *fp = fopen(file, "r");

  if (!fp) {
    fprintf(stderr, "[Sail] Raw file %s could not be loaded\n", file);
    exit(EXIT_FAILURE);
  }

  uint64_t byte;
  while ((byte = (uint64_t)fgetc(fp)) != EOF) {
    write_mem(addr, byte);
    addr++;
  }

  return UNIT;
}

void load_image(char *file)
{
  FILE *fp = fopen(file, "r");

  if (!fp) {
    fprintf(stderr, "[Sail] Image file %s could not be loaded\n", file);
    exit(EXIT_FAILURE);
  }

  char *addr = NULL;
  char *data = NULL;
  size_t len = 0;

  while (true) {
    ssize_t addr_len = getline(&addr, &len, fp);
    if (addr_len == -1) break;
    ssize_t data_len = getline(&data, &len, fp);
    if (data_len == -1) break;

    if (!strcmp(addr, "elf_entry\n")) {
      if (sscanf(data, "%" PRIu64 "\n", &g_elf_entry) != 1) {
	fprintf(stderr, "[Sail] Failed to parse elf_entry\n");
        exit(EXIT_FAILURE);
      };
      fprintf(stderr, "[Sail] Elf entry point: %" PRIx64 "\n", g_elf_entry);
    } else {
      write_mem((uint64_t) atoll(addr), (uint64_t) atoll(data));
    }
  }

  free(addr);
  free(data);
  fclose(fp);
}

/* ***** ELF functions ***** */

sail_int elf_entry(const unit u)
{
  return (__int128) g_elf_entry;
}

sail_int elf_tohost(const unit u)
{
  return (__int128) 0;
}

/* ***** Cycle limit ***** */

/* NB Also increments cycle_count */
bool cycle_limit_reached(const unit u)
{
  return ++g_cycle_count >= g_cycle_limit && g_cycle_limit != 0;
}

unit cycle_count(const unit u)
{
  if (cycle_limit_reached(UNIT)) {
    printf("\n[Sail] TIMEOUT: exceeded %" PRId64 " cycles\n", g_cycle_limit);
    exit(EXIT_SUCCESS);
  }
  return UNIT;
}

sail_int get_cycle_count(const unit u)
{
  return (__int128) g_cycle_count;
}

/* ***** Argument Parsing ***** */

static struct option options[] = {
  {"binary",     required_argument, 0, 'b'},
  {"cyclelimit", required_argument, 0, 'l'},
  {"config",     required_argument, 0, 'C'},
  {"elf",        required_argument, 0, 'e'},
  {"entry",      required_argument, 0, 'n'},
  {"image",      required_argument, 0, 'i'},
  {"verbosity",  required_argument, 0, 'v'},
  {"help",       no_argument,       0, 'h'},
  {0, 0, 0, 0}
};

static void print_usage()
{
  struct option *opt = options;
  while (opt->name) {
    printf("\t -%c\t %s\n", (char)opt->val, opt->name);
    opt++;
  }
  exit(EXIT_SUCCESS);
}

int process_arguments(int argc, char *argv[])
{
  int c;
  bool     elf_entry_set = false;
  uint64_t elf_entry;

  while (true) {
    int option_index = 0;
    c = getopt_long(argc, argv, "e:n:i:b:l:C:h", options, &option_index);

    if (c == -1) break;

    switch (c) {
    case 'C': {
        char arg[100];
        uint64_t value;
        if (sscanf(optarg, "%99[a-zA-Z0-9_-.]=0x%" PRIx64, arg, &value) == 2) {
            // fprintf(stderr, "Got hex flag %s %" PRIx64 "\n", arg, value);
            // do nothing
        } else if (sscanf(optarg, "%99[a-zA-Z0-9_-.]=%" PRId64, arg, &value) == 2) {
            // fprintf(stderr, "Got decimal flag %s %" PRIx64 "\n", arg, value);
            // do nothing
        } else {
          fprintf(stderr, "Could not parse argument %s\n", optarg);
#ifdef HAVE_SETCONFIG
          z__ListConfig(UNIT);
#endif
          return -1;
        };
#ifdef HAVE_SETCONFIG
        mpz_t s_value;
        mpz_init_set_ui(s_value, value);
        z__SetConfig(arg, s_value);
        mpz_clear(s_value);
#else
        fprintf(stderr, "Ignoring flag -C %s", optarg);
#endif
      }
      break;

    case 'b': ;
      uint64_t addr;
      char *cp, *file;

      addr = strtoull(optarg, &cp, 0);
      if (cp == optarg || cp[0] != ',' || cp[1] == '\0') {
	fprintf(stderr, "Could not parse argument %s\n", optarg);
	return -1;
      };
      file = cp + 1;

      load_raw(addr, file);
      break;

    case 'i':
      load_image(optarg);
      break;

    case 'e':
      load_elf(optarg, NULL, NULL);
      break;

    case 'n':
      if (!sscanf(optarg, "0x%" PRIx64, &elf_entry)) {
	fprintf(stderr, "Could not parse address %s\n", optarg);
	return -1;
      }
      elf_entry_set = true;
      break;

    case 'l':
      if (!sscanf(optarg, "%" PRId64, &g_cycle_limit)) {
	fprintf(stderr, "Could not parse cycle limit %s\n", optarg);
	return -1;
      }
      break;

    case 'v':
      if (!sscanf(optarg, "0x%" PRIx64, &g_verbosity)) {
       fprintf(stderr, "Could not parse verbosity flags %s\n", optarg);
       return -1;
      }
      break;

    case 'h':
      print_usage();
      break;

    default:
      fprintf(stderr, "Unrecognized option %s\n", optarg);
      print_usage();
      return -1;
    }
  }

  // assignment to g_elf_entry is deferred until the end of file so that an
  // explicit command line flag will override the address read from the ELF
  // file.
  if (elf_entry_set) {
      g_elf_entry = elf_entry;
  }

  return 0;
}

/* ***** Setup and cleanup functions for RTS ***** */

void setup_rts(void)
{
  mpz_init(write_buf);
  mpz_init(read_buf);
  return;
}

void cleanup_rts(void)
{
  mpz_clear(write_buf);
  mpz_clear(read_buf);
  kill_mem();
}