1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
|
theory Hoare
imports
Sail2_state_lemmas
"HOL-Eisbach.Eisbach_Tools"
begin
(*adhoc_overloading
Monad_Syntax.bind State_monad.bindS*)
section \<open>Hoare logic for the state, exception and nondeterminism monad\<close>
subsection \<open>Hoare triples\<close>
type_synonym 'regs predS = "'regs sequential_state \<Rightarrow> bool"
definition PrePost :: "'regs predS \<Rightarrow> ('regs, 'a, 'e) monadS \<Rightarrow> (('a, 'e) state_result \<Rightarrow> 'regs predS) \<Rightarrow> bool" ("\<lbrace>_\<rbrace> _ \<lbrace>_\<rbrace>")
where "PrePost P f Q \<equiv> (\<forall>s. P s \<longrightarrow> (\<forall>(r, s') \<in> f s. Q r s'))"
lemma PrePostI:
assumes "\<And>s r s'. P s \<Longrightarrow> (r, s') \<in> f s \<Longrightarrow> Q r s'"
shows "PrePost P f Q"
using assms unfolding PrePost_def by auto
lemma PrePost_elim:
assumes "PrePost P f Q" and "P s" and "(r, s') \<in> f s"
obtains "Q r s'"
using assms by (fastforce simp: PrePost_def)
lemma PrePost_consequence:
assumes "PrePost A f B"
and "\<And>s. P s \<Longrightarrow> A s" and "\<And>v s. B v s \<Longrightarrow> Q v s"
shows "PrePost P f Q"
using assms unfolding PrePost_def by (blast intro: list.pred_mono_strong)
lemma PrePost_strengthen_pre:
assumes "PrePost A f C" and "\<And>s. B s \<Longrightarrow> A s"
shows "PrePost B f C"
using assms by (rule PrePost_consequence)
lemma PrePost_weaken_post:
assumes "PrePost A f B" and "\<And>v s. B v s \<Longrightarrow> C v s"
shows "PrePost A f C"
using assms by (blast intro: PrePost_consequence)
named_theorems PrePost_compositeI
named_theorems PrePost_atomI
lemma PrePost_True_post[PrePost_atomI, intro, simp]:
"PrePost P m (\<lambda>_ _. True)"
unfolding PrePost_def by auto
lemma PrePost_any: "PrePost (\<lambda>s. \<forall>(r, s') \<in> m s. Q r s') m Q"
unfolding PrePost_def by auto
lemma PrePost_returnS[intro, PrePost_atomI]: "PrePost (P (Value x)) (returnS x) P"
unfolding PrePost_def returnS_def by auto
lemma PrePost_bindS[intro, PrePost_compositeI]:
assumes f: "\<And>s a s'. (Value a, s') \<in> m s \<Longrightarrow> PrePost (R a) (f a) Q"
and m: "PrePost P m (\<lambda>r. case r of Value a \<Rightarrow> R a | Ex e \<Rightarrow> Q (Ex e))"
shows "PrePost P (bindS m f) Q"
proof (intro PrePostI)
fix s r s'
assume P: "P s" and bind: "(r, s') \<in> bindS m f s"
from bind show "Q r s'"
proof (cases r s' m f s rule: bindS_cases)
case (Value a a' s'')
then have "R a' s''" using P m by (auto elim: PrePost_elim)
then show ?thesis using Value f by (auto elim: PrePost_elim)
next
case (Ex_Left e)
then show ?thesis using P m by (auto elim: PrePost_elim)
next
case (Ex_Right e a s'')
then have "R a s''" using P m by (auto elim: PrePost_elim)
then show ?thesis using Ex_Right f by (auto elim: PrePost_elim)
qed
qed
lemma PrePost_bindS_ignore:
assumes f: "PrePost R f Q"
and m : "PrePost P m (\<lambda>r. case r of Value a \<Rightarrow> R | Ex e \<Rightarrow> Q (Ex e))"
shows "PrePost P (bindS m (\<lambda>_. f)) Q"
using assms by auto
lemma PrePost_bindS_unit:
fixes m :: "('regs, unit, 'e) monadS"
assumes f: "PrePost R (f ()) Q"
and m: "PrePost P m (\<lambda>r. case r of Value a \<Rightarrow> R | Ex e \<Rightarrow> Q (Ex e))"
shows "PrePost P (bindS m f) Q"
using assms by auto
lemma PrePost_readS[intro, PrePost_atomI]: "PrePost (\<lambda>s. P (Value (f s)) s) (readS f) P"
unfolding PrePost_def readS_def returnS_def by auto
lemma PrePost_updateS[intro, PrePost_atomI]: "PrePost (\<lambda>s. P (Value ()) (f s)) (updateS f) P"
unfolding PrePost_def updateS_def returnS_def by auto
lemma PrePost_read_regS[intro, PrePost_atomI]:
"PrePost (\<lambda>s. P (Value (read_from reg (regstate s))) s) (read_regS reg) P"
unfolding read_regS_def by (rule PrePost_readS)
lemma PrePost_write_regS[intro, PrePost_atomI]:
"PrePost (\<lambda>s. P (Value ()) (s\<lparr>regstate := write_to reg v (regstate s)\<rparr>)) (write_regS reg v) P"
unfolding write_regS_def by (rule PrePost_updateS)
lemma PrePost_if:
assumes "b \<Longrightarrow> PrePost P f Q" and "\<not>b \<Longrightarrow> PrePost P g Q"
shows "PrePost P (if b then f else g) Q"
using assms by auto
lemma PrePost_if_branch[PrePost_compositeI]:
assumes "b \<Longrightarrow> PrePost Pf f Q" and "\<not>b \<Longrightarrow> PrePost Pg g Q"
shows "PrePost (if b then Pf else Pg) (if b then f else g) Q"
using assms by auto
lemma PrePost_if_then:
assumes "b" and "PrePost P f Q"
shows "PrePost P (if b then f else g) Q"
using assms by auto
lemma PrePost_if_else:
assumes "\<not>b" and "PrePost P g Q"
shows "PrePost P (if b then f else g) Q"
using assms by auto
lemma PrePost_prod_cases[PrePost_compositeI]:
assumes "PrePost P (f (fst x) (snd x)) Q"
shows "PrePost P (case x of (a, b) \<Rightarrow> f a b) Q"
using assms by (auto split: prod.splits)
lemma PrePost_option_cases[PrePost_compositeI]:
assumes "\<And>a. PrePost (PS a) (s a) Q" and "PrePost PN n Q"
shows "PrePost (case x of Some a \<Rightarrow> PS a | None \<Rightarrow> PN) (case x of Some a \<Rightarrow> s a | None \<Rightarrow> n) Q"
using assms by (auto split: option.splits)
lemma PrePost_let[intro, PrePost_compositeI]:
assumes "PrePost P (m y) Q"
shows "PrePost P (let x = y in m x) Q"
using assms by auto
lemma PrePost_and_boolS[PrePost_compositeI]:
assumes r: "PrePost R r Q"
and l: "PrePost P l (\<lambda>r. case r of Value True \<Rightarrow> R | _ \<Rightarrow> Q r)"
shows "PrePost P (and_boolS l r) Q"
unfolding and_boolS_def
proof (rule PrePost_bindS)
fix s a s'
assume "(Value a, s') \<in> l s"
show "PrePost (if a then R else Q (Value False)) (if a then r else returnS False) Q"
using r by auto
next
show "PrePost P l (\<lambda>r. case r of Value a \<Rightarrow> if a then R else Q (Value False) | Ex e \<Rightarrow> Q (Ex e))"
using l by (elim PrePost_weaken_post) (auto split: state_result.splits)
qed
lemma PrePost_or_boolS[PrePost_compositeI]:
assumes r: "PrePost R r Q"
and l: "PrePost P l (\<lambda>r. case r of Value False \<Rightarrow> R | _ \<Rightarrow> Q r)"
shows "PrePost P (or_boolS l r) Q"
unfolding or_boolS_def
proof (rule PrePost_bindS)
fix s a s'
assume "(Value a, s') \<in> l s"
show "PrePost (if a then Q (Value True) else R) (if a then returnS True else r) Q"
using r by auto
next
show "PrePost P l (\<lambda>r. case r of Value a \<Rightarrow> if a then Q (Value True) else R | Ex e \<Rightarrow> Q (Ex e))"
using l by (elim PrePost_weaken_post) (auto split: state_result.splits)
qed
lemma PrePost_assert_expS[intro, PrePost_atomI]: "PrePost (if c then P (Value ()) else P (Ex (Failure m))) (assert_expS c m) P"
unfolding PrePost_def assert_expS_def by (auto simp: returnS_def failS_def)
lemma PrePost_chooseS[intro, PrePost_atomI]: "PrePost (\<lambda>s. \<forall>x \<in> xs. Q (Value x) s) (chooseS xs) Q"
by (auto simp: PrePost_def chooseS_def)
lemma PrePost_failS[intro, PrePost_atomI]: "PrePost (Q (Ex (Failure msg))) (failS msg) Q"
by (auto simp: PrePost_def failS_def)
lemma case_result_combine[simp]:
"(case r of Value a \<Rightarrow> Q (Value a) | Ex e \<Rightarrow> Q (Ex e)) = Q r"
by (auto split: state_result.splits)
lemma PrePost_foreachS_Nil[intro, simp, PrePost_atomI]:
"PrePost (Q (Value vars)) (foreachS [] vars body) Q"
by auto
lemma PrePost_foreachS_Cons:
assumes "\<And>s vars' s'. (Value vars', s') \<in> body x vars s \<Longrightarrow> PrePost (Q (Value vars')) (foreachS xs vars' body) Q"
and "PrePost (Q (Value vars)) (body x vars) Q"
shows "PrePost (Q (Value vars)) (foreachS (x # xs) vars body) Q"
using assms by fastforce
lemma PrePost_foreachS_invariant:
assumes "\<And>x vars. x \<in> set xs \<Longrightarrow> PrePost (Q (Value vars)) (body x vars) Q"
shows "PrePost (Q (Value vars)) (foreachS xs vars body) Q"
proof (use assms in \<open>induction xs arbitrary: vars\<close>)
case (Cons x xs)
have "PrePost (Q (Value vars)) (bindS (body x vars) (\<lambda>vars. foreachS xs vars body)) Q"
proof (rule PrePost_bindS)
fix vars'
show "PrePost (Q (Value vars')) (foreachS xs vars' body) Q"
using Cons by auto
show "PrePost (Q (Value vars)) (body x vars) (\<lambda>r. case r of Value a \<Rightarrow> Q (Value a) | state_result.Ex e \<Rightarrow> Q (state_result.Ex e))"
unfolding case_result_combine
using Cons by auto
qed
then show ?case by auto
qed auto
subsection \<open>Hoare quadruples\<close>
text \<open>It is often convenient to treat the exception case separately. For this purpose, we use
a Hoare logic similar to the one used in [1]. It features not only Hoare triples, but also quadruples
with two postconditions: one for the case where the computation succeeds, and one for the case where
there is an exception.
[1] D. Cock, G. Klein, and T. Sewell, ‘Secure Microkernels, State Monads and Scalable Refinement’,
in Theorem Proving in Higher Order Logics, 2008, pp. 167–182.\<close>
definition PrePostE :: "'regs predS \<Rightarrow> ('regs, 'a, 'e) monadS \<Rightarrow> ('a \<Rightarrow> 'regs predS) \<Rightarrow> ('e ex \<Rightarrow> 'regs predS) \<Rightarrow> bool" ("\<lbrace>_\<rbrace> _ \<lbrace>_ \<bar> _\<rbrace>")
where "PrePostE P f Q E \<equiv> PrePost P f (\<lambda>v. case v of Value a \<Rightarrow> Q a | Ex e \<Rightarrow> E e)"
lemmas PrePost_defs = PrePost_def PrePostE_def
lemma PrePostE_I[case_names Val Err]:
assumes "\<And>s a s'. P s \<Longrightarrow> (Value a, s') \<in> f s \<Longrightarrow> Q a s'"
and "\<And>s e s'. P s \<Longrightarrow> (Ex e, s') \<in> f s \<Longrightarrow> E e s'"
shows "PrePostE P f Q E"
using assms unfolding PrePostE_def by (intro PrePostI) (auto split: state_result.splits)
lemma PrePostE_PrePost:
assumes "PrePost P m (\<lambda>v. case v of Value a \<Rightarrow> Q a | Ex e \<Rightarrow> E e)"
shows "PrePostE P m Q E"
using assms unfolding PrePostE_def by auto
lemma PrePostE_elim:
assumes "PrePostE P f Q E" and "P s" and "(r, s') \<in> f s"
obtains
(Val) v where "r = Value v" "Q v s'"
| (Ex) e where "r = Ex e" "E e s'"
using assms by (cases r; fastforce simp: PrePost_defs)
lemma PrePostE_consequence:
assumes "PrePostE A f B C"
and "\<And>s. P s \<Longrightarrow> A s" and "\<And>v s. B v s \<Longrightarrow> Q v s" and "\<And>e s. C e s \<Longrightarrow> E e s"
shows "PrePostE P f Q E"
using assms unfolding PrePostE_def by (auto elim: PrePost_consequence split: state_result.splits)
lemma PrePostE_strengthen_pre:
assumes "PrePostE R f Q E" and "\<And>s. P s \<Longrightarrow> R s"
shows "PrePostE P f Q E"
using assms PrePostE_consequence by blast
lemma PrePostE_weaken_post:
assumes "PrePostE A f B E" and "\<And>v s. B v s \<Longrightarrow> C v s"
shows "PrePostE A f C E"
using assms by (blast intro: PrePostE_consequence)
named_theorems PrePostE_compositeI
named_theorems PrePostE_atomI
lemma PrePostE_conj_conds:
assumes "PrePostE P1 m Q1 E1"
and "PrePostE P2 m Q2 E2"
shows "PrePostE (\<lambda>s. P1 s \<and> P2 s) m (\<lambda>r s. Q1 r s \<and> Q2 r s) (\<lambda>e s. E1 e s \<and> E2 e s)"
using assms by (auto intro: PrePostE_I elim: PrePostE_elim)
lemmas PrePostE_conj_conds_consequence = PrePostE_conj_conds[THEN PrePostE_consequence]
lemma PrePostE_post_mp:
assumes "PrePostE P m Q' E"
and "PrePostE P m (\<lambda>r s. Q' r s \<longrightarrow> Q r s) E"
shows "PrePostE P m Q E"
using PrePostE_conj_conds[OF assms] by (auto intro: PrePostE_weaken_post)
lemma PrePostE_cong:
assumes "\<And>s. P1 s \<longleftrightarrow> P2 s" and "\<And>s. P1 s \<Longrightarrow> m1 s = m2 s" and "\<And>r s. Q1 r s \<longleftrightarrow> Q2 r s"
and "\<And>e s. E1 e s \<longleftrightarrow> E2 e s"
shows "PrePostE P1 m1 Q1 E1 \<longleftrightarrow> PrePostE P2 m2 Q2 E2"
using assms unfolding PrePostE_def PrePost_def
by (auto split: state_result.splits)
lemma PrePostE_True_post[PrePostE_atomI, intro, simp]:
"PrePostE P m (\<lambda>_ _. True) (\<lambda>_ _. True)"
unfolding PrePost_defs by (auto split: state_result.splits)
lemma PrePostE_any: "PrePostE (\<lambda>s. \<forall>(r, s') \<in> m s. case r of Value a \<Rightarrow> Q a s' | Ex e \<Rightarrow> E e s') m Q E"
by (intro PrePostE_I) auto
lemma PrePostE_returnS[PrePostE_atomI, intro, simp]:
"PrePostE (P x) (returnS x) P Q"
unfolding PrePostE_def by (auto intro: PrePost_strengthen_pre)
lemma PrePostE_bindS[intro, PrePostE_compositeI]:
assumes f: "\<And>s a s'. (Value a, s') \<in> m s \<Longrightarrow> PrePostE (R a) (f a) Q E"
and m: "PrePostE P m R E"
shows "PrePostE P (bindS m f) Q E"
using assms
by (fastforce simp: PrePostE_def cong: state_result.case_cong)
lemma PrePostE_bindS_ignore:
assumes f: "PrePostE R f Q E"
and m : "PrePostE P m (\<lambda>_. R) E"
shows "PrePostE P (bindS m (\<lambda>_. f)) Q E"
using assms by auto
lemma PrePostE_bindS_unit:
fixes m :: "('regs, unit, 'e) monadS"
assumes f: "PrePostE R (f ()) Q E"
and m: "PrePostE P m (\<lambda>_. R) E"
shows "PrePostE P (bindS m f) Q E"
using assms by auto
lemma PrePostE_readS[PrePostE_atomI, intro]: "PrePostE (\<lambda>s. Q (f s) s) (readS f) Q E"
unfolding PrePostE_def by (auto intro: PrePost_strengthen_pre)
lemma PrePostE_updateS[PrePostE_atomI, intro]: "PrePostE (\<lambda>s. Q () (f s)) (updateS f) Q E"
unfolding PrePostE_def by (auto intro: PrePost_strengthen_pre)
lemma PrePostE_read_regS[PrePostE_atomI, intro]:
"PrePostE (\<lambda>s. Q (read_from reg (regstate s)) s) (read_regS reg) Q E"
unfolding read_regS_def by (rule PrePostE_readS)
lemma PrePostE_write_regS[PrePostE_atomI, intro]:
"PrePostE (\<lambda>s. Q () (s\<lparr>regstate := write_to reg v (regstate s)\<rparr>)) (write_regS reg v) Q E"
unfolding write_regS_def by (rule PrePostE_updateS)
lemma PrePostE_if_branch[PrePostE_compositeI]:
assumes "b \<Longrightarrow> PrePostE Pf f Q E" and "\<not>b \<Longrightarrow> PrePostE Pg g Q E"
shows "PrePostE (if b then Pf else Pg) (if b then f else g) Q E"
using assms by (auto)
lemma PrePostE_if:
assumes "b \<Longrightarrow> PrePostE P f Q E" and "\<not>b \<Longrightarrow> PrePostE P g Q E"
shows "PrePostE P (if b then f else g) Q E"
using assms by auto
lemma PrePostE_if_then:
assumes "b" and "PrePostE P f Q E"
shows "PrePostE P (if b then f else g) Q E"
using assms by auto
lemma PrePostE_if_else:
assumes "\<not> b" and "PrePostE P g Q E"
shows "PrePostE P (if b then f else g) Q E"
using assms by auto
lemma PrePostE_prod_cases[PrePostE_compositeI]:
assumes "PrePostE P (f (fst x) (snd x)) Q E"
shows "PrePostE P (case x of (a, b) \<Rightarrow> f a b) Q E"
using assms by (auto split: prod.splits)
lemma PrePostE_option_cases[PrePostE_compositeI]:
assumes "\<And>a. PrePostE (PS a) (s a) Q E" and "PrePostE PN n Q E"
shows "PrePostE (case x of Some a \<Rightarrow> PS a | None \<Rightarrow> PN) (case x of Some a \<Rightarrow> s a | None \<Rightarrow> n) Q E"
using assms by (auto split: option.splits)
lemma PrePostE_sum_cases[PrePostE_compositeI]:
assumes "\<And>a. PrePostE (Pl a) (l a) Q E" and "\<And>b. PrePostE (Pr b) (r b) Q E"
shows "PrePostE (case x of Inl a \<Rightarrow> Pl a | Inr b \<Rightarrow> Pr b) (case x of Inl a \<Rightarrow> l a | Inr b \<Rightarrow> r b) Q E"
using assms by (auto split: sum.splits)
lemma PrePostE_let[PrePostE_compositeI]:
assumes "PrePostE P (m y) Q E"
shows "PrePostE P (let x = y in m x) Q E"
using assms by auto
lemma PrePostE_and_boolS[PrePostE_compositeI]:
assumes r: "PrePostE R r Q E"
and l: "PrePostE P l (\<lambda>r. if r then R else Q False) E"
shows "PrePostE P (and_boolS l r) Q E"
using assms unfolding PrePostE_def
by (intro PrePost_and_boolS) (auto elim: PrePost_weaken_post split: if_splits state_result.splits)
lemma PrePostE_or_boolS[PrePostE_compositeI]:
assumes r: "PrePostE R r Q E"
and l: "PrePostE P l (\<lambda>r. if r then Q True else R) E"
shows "PrePostE P (or_boolS l r) Q E"
using assms unfolding PrePostE_def
by (intro PrePost_or_boolS) (auto elim: PrePost_weaken_post split: if_splits state_result.splits)
lemma PrePostE_assert_expS[PrePostE_atomI, intro]:
"PrePostE (if c then P () else Q (Failure m)) (assert_expS c m) P Q"
unfolding PrePostE_def by (auto intro: PrePost_strengthen_pre)
lemma PrePostE_failS[PrePostE_atomI, intro]:
"PrePostE (E (Failure msg)) (failS msg) Q E"
unfolding PrePostE_def by (auto intro: PrePost_strengthen_pre)
lemma PrePostE_maybe_failS[PrePostE_atomI]:
"PrePostE (\<lambda>s. case v of Some v \<Rightarrow> Q v s | None \<Rightarrow> E (Failure msg) s) (maybe_failS msg v) Q E"
by (auto simp: maybe_failS_def split: option.splits)
lemma PrePostE_exitS[PrePostE_atomI, intro]: "PrePostE (E (Failure ''exit'')) (exitS msg) Q E"
unfolding exitS_def PrePostE_def PrePost_def failS_def by auto
lemma PrePostE_chooseS[intro, PrePostE_atomI]:
"PrePostE (\<lambda>s. \<forall>x \<in> xs. Q x s) (chooseS xs) Q E"
unfolding PrePostE_def by (auto intro: PrePost_strengthen_pre)
lemma PrePostE_throwS[PrePostE_atomI]: "PrePostE (E (Throw e)) (throwS e) Q E"
by (intro PrePostE_I) (auto simp: throwS_def)
lemma PrePostE_try_catchS[PrePostE_compositeI]:
assumes Ph: "\<And>s e s'. (Ex (Throw e), s') \<in> m s \<Longrightarrow> PrePostE (Ph e) (h e) Q E"
and m: "PrePostE P m Q (\<lambda>ex. case ex of Throw e \<Rightarrow> Ph e | Failure msg \<Rightarrow> E (Failure msg))"
shows "PrePostE P (try_catchS m h) Q E"
unfolding PrePostE_def
proof (intro PrePostI)
fix s r s'
assume "(r, s') \<in> try_catchS m h s" and P: "P s"
then show "(case r of Value a \<Rightarrow> Q a | state_result.Ex e \<Rightarrow> E e) s'" using m
proof (cases rule: try_catchS_cases)
case (h e s'')
then have "Ph e s''" using P m by (auto elim!: PrePostE_elim)
then show ?thesis using Ph[OF h(1)] h(2) by (auto elim!: PrePostE_elim)
qed (auto elim!: PrePostE_elim)
qed
lemma PrePostE_catch_early_returnS[PrePostE_compositeI]:
assumes "PrePostE P m Q (\<lambda>ex. case ex of Throw (Inl a) \<Rightarrow> Q a | Throw (Inr e) \<Rightarrow> E (Throw e) | Failure msg \<Rightarrow> E (Failure msg))"
shows "PrePostE P (catch_early_returnS m) Q E"
unfolding catch_early_returnS_def
by (rule PrePostE_try_catchS, rule PrePostE_sum_cases[OF PrePostE_returnS PrePostE_throwS])
(auto intro: assms)
lemma PrePostE_early_returnS[PrePostE_atomI]: "PrePostE (E (Throw (Inl r))) (early_returnS r) Q E"
by (auto simp: early_returnS_def intro: PrePostE_throwS)
lemma PrePostE_liftRS[PrePostE_compositeI]:
assumes "PrePostE P m Q (\<lambda>ex. case ex of Throw e \<Rightarrow> E (Throw (Inr e)) | Failure msg \<Rightarrow> E (Failure msg))"
shows "PrePostE P (liftRS m) Q E"
using assms unfolding liftRS_def by (intro PrePostE_try_catchS[OF PrePostE_throwS])
lemma PrePostE_foreachS_Cons:
assumes "\<And>s vars' s'. (Value vars', s') \<in> body x vars s \<Longrightarrow> PrePostE (Q vars') (foreachS xs vars' body) Q E"
and "PrePostE (Q vars) (body x vars) Q E"
shows "PrePostE (Q vars) (foreachS (x # xs) vars body) Q E"
using assms by fastforce
lemma PrePostE_foreachS_invariant:
assumes "\<And>x vars. x \<in> set xs \<Longrightarrow> PrePostE (Q vars) (body x vars) Q E"
shows "PrePostE (Q vars) (foreachS xs vars body) Q E"
using assms unfolding PrePostE_def
by (intro PrePost_foreachS_invariant[THEN PrePost_strengthen_pre]) auto
lemma PrePostE_untilS:
assumes dom: "\<And>s. Inv Q vars s \<Longrightarrow> untilS_dom (vars, cond, body, s)"
and cond: "\<And>vars. PrePostE (Inv' Q vars) (cond vars) (\<lambda>c s'. Inv Q vars s' \<and> (c \<longrightarrow> Q vars s')) E"
and body: "\<And>vars. PrePostE (Inv Q vars) (body vars) (Inv' Q) E"
shows "PrePostE (Inv Q vars) (untilS vars cond body) Q E"
proof (unfold PrePostE_def, rule PrePostI)
fix s r s'
assume Inv_s: "Inv Q vars s" and r: "(r, s') \<in> untilS vars cond body s"
with dom[OF Inv_s] cond body
show "(case r of Value a \<Rightarrow> Q a | state_result.Ex e \<Rightarrow> E e) s'"
proof (induction vars cond body s rule: untilS.pinduct[case_names Step])
case (Step vars cond body s)
consider
(Value) vars' c sb sc where "(Value vars', sb) \<in> body vars s" and "(Value c, sc) \<in> cond vars' sb"
and "if c then r = Value vars' \<and> s' = sc else (r, s') \<in> untilS vars' cond body sc"
| (Ex) e where "(Ex e, s') \<in> bindS (body vars) cond s" and "r = Ex e"
using Step(1,6)
by (auto simp: untilS.psimps returnS_def Ex_bindS_iff elim!: bindS_cases split: if_splits; fastforce)
then show ?case
proof cases
case Value
then show ?thesis using Step.IH[OF Value(1,2) _ Step(3,4)] Step(3,4,5)
by (auto split: if_splits elim: PrePostE_elim)
next
case Ex
then show ?thesis using Step(3,4,5) by (auto elim!: bindS_cases PrePostE_elim)
qed
qed
qed
lemma PrePostE_untilS_pure_cond:
assumes dom: "\<And>s. Inv Q vars s \<Longrightarrow> untilS_dom (vars, returnS \<circ> cond, body, s)"
and body: "\<And>vars. PrePostE (Inv Q vars) (body vars) (\<lambda>vars' s'. Inv Q vars' s' \<and> (cond vars' \<longrightarrow> Q vars' s')) E"
shows "PrePostE (Inv Q vars) (untilS vars (returnS \<circ> cond) body) Q E"
using assms by (intro PrePostE_untilS) (auto simp: comp_def)
lemma PrePostE_liftState_untilM:
assumes dom: "\<And>s. Inv Q vars s \<Longrightarrow> untilM_dom (vars, cond, body)"
and cond: "\<And>vars. PrePostE (Inv' Q vars) (liftState r (cond vars)) (\<lambda>c s'. Inv Q vars s' \<and> (c \<longrightarrow> Q vars s')) E"
and body: "\<And>vars. PrePostE (Inv Q vars) (liftState r (body vars)) (Inv' Q) E"
shows "PrePostE (Inv Q vars) (liftState r (untilM vars cond body)) Q E"
proof -
have domS: "untilS_dom (vars, liftState r \<circ> cond, liftState r \<circ> body, s)" if "Inv Q vars s" for s
using dom that by (intro untilM_dom_untilS_dom)
then have "PrePostE (Inv Q vars) (untilS vars (liftState r \<circ> cond) (liftState r \<circ> body)) Q E"
using cond body by (auto intro: PrePostE_untilS simp: comp_def)
moreover have "liftState r (untilM vars cond body) s = untilS vars (liftState r \<circ> cond) (liftState r \<circ> body) s"
if "Inv Q vars s" for s
unfolding liftState_untilM[OF domS[OF that] dom[OF that]] ..
ultimately show ?thesis by (auto cong: PrePostE_cong)
qed
lemma PrePostE_liftState_untilM_pure_cond:
assumes dom: "\<And>s. Inv Q vars s \<Longrightarrow> untilM_dom (vars, return \<circ> cond, body)"
and body: "\<And>vars. PrePostE (Inv Q vars) (liftState r (body vars)) (\<lambda>vars' s'. Inv Q vars' s' \<and> (cond vars' \<longrightarrow> Q vars' s')) E"
shows "PrePostE (Inv Q vars) (liftState r (untilM vars (return \<circ> cond) body)) Q E"
using assms by (intro PrePostE_liftState_untilM) (auto simp: comp_def liftState_simp)
lemma PrePostE_choose_boolS_any[PrePostE_atomI]:
"PrePostE (\<lambda>s. \<forall>b. Q b s)
(choose_boolS unit) Q E"
unfolding choose_boolS_def seqS_def
by (auto intro: PrePostE_strengthen_pre)
lemma PrePostE_bool_of_bitU_nondetS_any:
"PrePostE (\<lambda>s. \<forall>b. Q b s) (bool_of_bitU_nondetS b) Q E"
unfolding bool_of_bitU_nondetS_def choose_boolS_def
by (cases b; simp; rule PrePostE_strengthen_pre, rule PrePostE_atomI) auto
lemma PrePostE_bools_of_bits_nondetS_any:
"PrePostE (\<lambda>s. \<forall>bs. Q bs s) (bools_of_bits_nondetS bs) Q E"
unfolding bools_of_bits_nondetS_def
by (rule PrePostE_weaken_post[where B = "\<lambda>_ s. \<forall>bs. Q bs s"], rule PrePostE_strengthen_pre,
(rule PrePostE_foreachS_invariant[OF PrePostE_strengthen_pre] PrePostE_bindS PrePostE_returnS
PrePostE_bool_of_bitU_nondetS_any)+)
auto
lemma PrePostE_choose_boolsS_any:
"PrePostE (\<lambda>s. \<forall>bs. Q bs s) (choose_boolsS n) Q E"
unfolding choose_boolsS_def genlistS_def Let_def
by (rule PrePostE_weaken_post[where B = "\<lambda>_ s. \<forall>bs. Q bs s"], rule PrePostE_strengthen_pre,
(rule PrePostE_foreachS_invariant[OF PrePostE_strengthen_pre] PrePostE_bindS PrePostE_returnS
PrePostE_choose_boolS_any)+)
auto
end
|