File: Hoare.thy

package info (click to toggle)
sail-ocaml 0.19.1%2Bdfsg5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 18,008 kB
  • sloc: ml: 75,941; ansic: 8,848; python: 1,342; exp: 560; sh: 474; makefile: 218; cpp: 36
file content (534 lines) | stat: -rw-r--r-- 24,317 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
theory Hoare
  imports
    Sail2_state_lemmas
    "HOL-Eisbach.Eisbach_Tools"
begin

(*adhoc_overloading
  Monad_Syntax.bind State_monad.bindS*)

section \<open>Hoare logic for the state, exception and nondeterminism monad\<close>

subsection \<open>Hoare triples\<close>

type_synonym 'regs predS = "'regs sequential_state \<Rightarrow> bool"

definition PrePost :: "'regs predS \<Rightarrow> ('regs, 'a, 'e) monadS \<Rightarrow> (('a, 'e) state_result \<Rightarrow> 'regs predS) \<Rightarrow> bool" ("\<lbrace>_\<rbrace> _ \<lbrace>_\<rbrace>")
  where "PrePost P f Q \<equiv> (\<forall>s. P s \<longrightarrow> (\<forall>(r, s') \<in> f s. Q r s'))"

lemma PrePostI:
  assumes "\<And>s r s'. P s \<Longrightarrow> (r, s') \<in> f s \<Longrightarrow> Q r s'"
  shows "PrePost P f Q"
  using assms unfolding PrePost_def by auto

lemma PrePost_elim:
  assumes "PrePost P f Q" and "P s" and "(r, s') \<in> f s"
  obtains "Q r s'"
  using assms by (fastforce simp: PrePost_def)

lemma PrePost_consequence:
  assumes "PrePost A f B"
    and "\<And>s. P s \<Longrightarrow> A s" and "\<And>v s. B v s \<Longrightarrow> Q v s"
  shows "PrePost P f Q"
  using assms unfolding PrePost_def by (blast intro: list.pred_mono_strong)

lemma PrePost_strengthen_pre:
  assumes "PrePost A f C" and  "\<And>s. B s \<Longrightarrow> A s"
  shows "PrePost B f C"
  using assms by (rule PrePost_consequence)

lemma PrePost_weaken_post:
  assumes "PrePost A f B" and  "\<And>v s. B v s \<Longrightarrow> C v s"
  shows "PrePost A f C"
  using assms by (blast intro: PrePost_consequence)

named_theorems PrePost_compositeI
named_theorems PrePost_atomI

lemma PrePost_True_post[PrePost_atomI, intro, simp]:
  "PrePost P m (\<lambda>_ _. True)"
  unfolding PrePost_def by auto

lemma PrePost_any: "PrePost (\<lambda>s. \<forall>(r, s') \<in> m s. Q r s') m Q"
  unfolding PrePost_def by auto

lemma PrePost_returnS[intro, PrePost_atomI]: "PrePost (P (Value x)) (returnS x) P"
  unfolding PrePost_def returnS_def by auto

lemma PrePost_bindS[intro, PrePost_compositeI]:
  assumes f: "\<And>s a s'. (Value a, s') \<in> m s \<Longrightarrow> PrePost (R a) (f a) Q"
    and m: "PrePost P m (\<lambda>r. case r of Value a \<Rightarrow> R a | Ex e \<Rightarrow> Q (Ex e))"
  shows "PrePost P (bindS m f) Q"
proof (intro PrePostI)
  fix s r s'
  assume P: "P s" and bind: "(r, s') \<in> bindS m f s"
  from bind show "Q r s'"
  proof (cases r s' m f s rule: bindS_cases)
    case (Value a a' s'')
    then have "R a' s''" using P m by (auto elim: PrePost_elim)
    then show ?thesis using Value f by (auto elim: PrePost_elim)
  next
    case (Ex_Left e)
    then show ?thesis using P m by (auto elim: PrePost_elim)
  next
    case (Ex_Right e a s'')
    then have "R a s''" using P m by (auto elim: PrePost_elim)
    then show ?thesis using Ex_Right f by (auto elim: PrePost_elim)
  qed
qed

lemma PrePost_bindS_ignore:
  assumes f: "PrePost R f Q"
    and m : "PrePost P m (\<lambda>r. case r of Value a \<Rightarrow> R | Ex e \<Rightarrow> Q (Ex e))"
  shows "PrePost P (bindS m (\<lambda>_. f)) Q"
  using assms by auto

lemma PrePost_bindS_unit:
  fixes m :: "('regs, unit, 'e) monadS"
  assumes f: "PrePost R (f ()) Q"
    and m: "PrePost P m (\<lambda>r. case r of Value a \<Rightarrow> R | Ex e \<Rightarrow> Q (Ex e))"
  shows "PrePost P (bindS m f) Q"
  using assms by auto

lemma PrePost_readS[intro, PrePost_atomI]: "PrePost (\<lambda>s. P (Value (f s)) s) (readS f) P"
  unfolding PrePost_def readS_def returnS_def by auto

lemma PrePost_updateS[intro, PrePost_atomI]: "PrePost (\<lambda>s. P (Value ()) (f s)) (updateS f) P"
  unfolding PrePost_def updateS_def returnS_def by auto

lemma PrePost_read_regS[intro, PrePost_atomI]:
  "PrePost (\<lambda>s. P (Value (read_from reg (regstate s))) s) (read_regS reg) P"
  unfolding read_regS_def by (rule PrePost_readS)

lemma PrePost_write_regS[intro, PrePost_atomI]:
  "PrePost (\<lambda>s. P (Value ()) (s\<lparr>regstate := write_to reg v (regstate s)\<rparr>)) (write_regS reg v) P"
  unfolding write_regS_def by (rule PrePost_updateS)

lemma PrePost_if:
  assumes "b \<Longrightarrow> PrePost P f Q" and "\<not>b \<Longrightarrow> PrePost P g Q"
  shows "PrePost P (if b then f else g) Q"
  using assms by auto

lemma PrePost_if_branch[PrePost_compositeI]:
  assumes "b \<Longrightarrow> PrePost Pf f Q" and "\<not>b \<Longrightarrow> PrePost Pg g Q"
  shows "PrePost (if b then Pf else Pg) (if b then f else g) Q"
  using assms by auto

lemma PrePost_if_then:
  assumes "b" and "PrePost P f Q"
  shows "PrePost P (if b then f else g) Q"
  using assms by auto

lemma PrePost_if_else:
  assumes "\<not>b" and "PrePost P g Q"
  shows "PrePost P (if b then f else g) Q"
  using assms by auto

lemma PrePost_prod_cases[PrePost_compositeI]:
  assumes "PrePost P (f (fst x) (snd x)) Q"
  shows "PrePost P (case x of (a, b) \<Rightarrow> f a b) Q"
  using assms by (auto split: prod.splits)

lemma PrePost_option_cases[PrePost_compositeI]:
  assumes "\<And>a. PrePost (PS a) (s a) Q" and "PrePost PN n Q"
  shows "PrePost (case x of Some a \<Rightarrow> PS a | None \<Rightarrow> PN) (case x of Some a \<Rightarrow> s a | None \<Rightarrow> n) Q"
  using assms by (auto split: option.splits)

lemma PrePost_let[intro, PrePost_compositeI]:
  assumes "PrePost P (m y) Q"
  shows "PrePost P (let x = y in m x) Q"
  using assms by auto

lemma PrePost_and_boolS[PrePost_compositeI]:
  assumes r: "PrePost R r Q"
    and l: "PrePost P l (\<lambda>r. case r of Value True \<Rightarrow> R | _ \<Rightarrow> Q r)"
  shows "PrePost P (and_boolS l r) Q"
  unfolding and_boolS_def
proof (rule PrePost_bindS)
  fix s a s'
  assume "(Value a, s') \<in> l s"
  show "PrePost (if a then R else Q (Value False)) (if a then r else returnS False) Q"
    using r by auto
next
  show "PrePost P l (\<lambda>r. case r of Value a \<Rightarrow> if a then R else Q (Value False) | Ex e \<Rightarrow> Q (Ex e))"
    using l by (elim PrePost_weaken_post) (auto split: state_result.splits)
qed

lemma PrePost_or_boolS[PrePost_compositeI]:
  assumes r: "PrePost R r Q"
    and l: "PrePost P l (\<lambda>r. case r of Value False \<Rightarrow> R | _ \<Rightarrow> Q r)"
  shows "PrePost P (or_boolS l r) Q"
  unfolding or_boolS_def
proof (rule PrePost_bindS)
  fix s a s'
  assume "(Value a, s') \<in> l s"
  show "PrePost (if a then Q (Value True) else R) (if a then returnS True else r) Q"
    using r by auto
next
  show "PrePost P l (\<lambda>r. case r of Value a \<Rightarrow> if a then Q (Value True) else R | Ex e \<Rightarrow> Q (Ex e))"
    using l by (elim PrePost_weaken_post) (auto split: state_result.splits)
qed

lemma PrePost_assert_expS[intro, PrePost_atomI]: "PrePost (if c then P (Value ()) else P (Ex (Failure m))) (assert_expS c m) P"
  unfolding PrePost_def assert_expS_def by (auto simp: returnS_def failS_def)

lemma PrePost_chooseS[intro, PrePost_atomI]: "PrePost (\<lambda>s. \<forall>x \<in> xs. Q (Value x) s) (chooseS xs) Q"
  by (auto simp: PrePost_def chooseS_def)

lemma PrePost_failS[intro, PrePost_atomI]: "PrePost (Q (Ex (Failure msg))) (failS msg) Q"
  by (auto simp: PrePost_def failS_def)

lemma case_result_combine[simp]:
  "(case r of Value a \<Rightarrow> Q (Value a) | Ex e \<Rightarrow> Q (Ex e)) = Q r"
  by (auto split: state_result.splits)

lemma PrePost_foreachS_Nil[intro, simp, PrePost_atomI]:
  "PrePost (Q (Value vars)) (foreachS [] vars body) Q"
  by auto

lemma PrePost_foreachS_Cons:
  assumes "\<And>s vars' s'. (Value vars', s') \<in> body x vars s \<Longrightarrow> PrePost (Q (Value vars')) (foreachS xs vars' body) Q"
    and "PrePost (Q (Value vars)) (body x vars) Q"
  shows "PrePost (Q (Value vars)) (foreachS (x # xs) vars body) Q"
  using assms by fastforce

lemma PrePost_foreachS_invariant:
  assumes "\<And>x vars. x \<in> set xs \<Longrightarrow> PrePost (Q (Value vars)) (body x vars) Q"
  shows "PrePost (Q (Value vars)) (foreachS xs vars body) Q"
proof (use assms in \<open>induction xs arbitrary: vars\<close>)
  case (Cons x xs)
  have "PrePost (Q (Value vars)) (bindS (body x vars) (\<lambda>vars. foreachS xs vars body)) Q"
  proof (rule PrePost_bindS)
    fix vars'
    show "PrePost (Q (Value vars')) (foreachS xs vars' body) Q"
      using Cons by auto
    show "PrePost (Q (Value vars)) (body x vars) (\<lambda>r. case r of Value a \<Rightarrow> Q (Value a) | state_result.Ex e \<Rightarrow> Q (state_result.Ex e))"
      unfolding case_result_combine
      using Cons by auto
  qed
  then show ?case by auto
qed auto

subsection \<open>Hoare quadruples\<close>

text \<open>It is often convenient to treat the exception case separately.  For this purpose, we use
a Hoare logic similar to the one used in [1]. It features not only Hoare triples, but also quadruples
with two postconditions: one for the case where the computation succeeds, and one for the case where
there is an exception.

[1] D. Cock, G. Klein, and T. Sewell, ‘Secure Microkernels, State Monads and Scalable Refinement’,
in Theorem Proving in Higher Order Logics, 2008, pp. 167–182.\<close>

definition PrePostE :: "'regs predS \<Rightarrow> ('regs, 'a, 'e) monadS \<Rightarrow> ('a \<Rightarrow> 'regs predS) \<Rightarrow> ('e ex \<Rightarrow> 'regs predS) \<Rightarrow> bool" ("\<lbrace>_\<rbrace> _ \<lbrace>_ \<bar> _\<rbrace>")
  where "PrePostE P f Q E \<equiv> PrePost P f (\<lambda>v. case v of Value a \<Rightarrow> Q a | Ex e \<Rightarrow> E e)"

lemmas PrePost_defs = PrePost_def PrePostE_def

lemma PrePostE_I[case_names Val Err]:
  assumes "\<And>s a s'. P s \<Longrightarrow> (Value a, s') \<in> f s \<Longrightarrow> Q a s'"
    and "\<And>s e s'. P s \<Longrightarrow> (Ex e, s') \<in> f s \<Longrightarrow> E e s'"
  shows "PrePostE P f Q E"
  using assms unfolding PrePostE_def by (intro PrePostI) (auto split: state_result.splits)

lemma PrePostE_PrePost:
  assumes "PrePost P m (\<lambda>v. case v of Value a \<Rightarrow> Q a | Ex e \<Rightarrow> E e)"
  shows "PrePostE P m Q E"
  using assms unfolding PrePostE_def by auto

lemma PrePostE_elim:
  assumes "PrePostE P f Q E" and "P s" and "(r, s') \<in> f s"
  obtains
    (Val) v where "r = Value v" "Q v s'"
  | (Ex) e where "r = Ex e" "E e s'"
  using assms by (cases r; fastforce simp: PrePost_defs)

lemma PrePostE_consequence:
  assumes "PrePostE A f B C"
    and "\<And>s. P s \<Longrightarrow> A s" and "\<And>v s. B v s \<Longrightarrow> Q v s" and "\<And>e s. C e s \<Longrightarrow> E e s"
  shows "PrePostE P f Q E"
  using assms unfolding PrePostE_def by (auto elim: PrePost_consequence split: state_result.splits)

lemma PrePostE_strengthen_pre:
  assumes "PrePostE R f Q E" and "\<And>s. P s \<Longrightarrow> R s"
  shows "PrePostE P f Q E"
  using assms PrePostE_consequence by blast

lemma PrePostE_weaken_post:
  assumes "PrePostE A f B E" and  "\<And>v s. B v s \<Longrightarrow> C v s"
  shows "PrePostE A f C E"
  using assms by (blast intro: PrePostE_consequence)

named_theorems PrePostE_compositeI
named_theorems PrePostE_atomI

lemma PrePostE_conj_conds:
  assumes "PrePostE P1 m Q1 E1"
    and "PrePostE P2 m Q2 E2"
  shows "PrePostE (\<lambda>s. P1 s \<and> P2 s) m (\<lambda>r s. Q1 r s \<and> Q2 r s) (\<lambda>e s. E1 e s \<and> E2 e s)"
  using assms by (auto intro: PrePostE_I elim: PrePostE_elim)

lemmas PrePostE_conj_conds_consequence = PrePostE_conj_conds[THEN PrePostE_consequence]

lemma PrePostE_post_mp:
  assumes "PrePostE P m Q' E"
    and "PrePostE P m (\<lambda>r s. Q' r s \<longrightarrow> Q r s) E"
  shows "PrePostE P m Q E"
  using PrePostE_conj_conds[OF assms] by (auto intro: PrePostE_weaken_post)

lemma PrePostE_cong:
  assumes "\<And>s. P1 s \<longleftrightarrow> P2 s" and "\<And>s. P1 s \<Longrightarrow> m1 s = m2 s" and "\<And>r s. Q1 r s \<longleftrightarrow> Q2 r s"
    and "\<And>e s. E1 e s \<longleftrightarrow> E2 e s"
  shows "PrePostE P1 m1 Q1 E1 \<longleftrightarrow> PrePostE P2 m2 Q2 E2"
  using assms unfolding PrePostE_def PrePost_def
  by (auto split: state_result.splits)

lemma PrePostE_True_post[PrePostE_atomI, intro, simp]:
  "PrePostE P m (\<lambda>_ _. True) (\<lambda>_ _. True)"
  unfolding PrePost_defs by (auto split: state_result.splits)

lemma PrePostE_any: "PrePostE (\<lambda>s. \<forall>(r, s') \<in> m s. case r of Value a \<Rightarrow> Q a s' | Ex e \<Rightarrow> E e s') m Q E"
  by (intro PrePostE_I) auto

lemma PrePostE_returnS[PrePostE_atomI, intro, simp]:
  "PrePostE (P x) (returnS x) P Q"
  unfolding PrePostE_def by (auto intro: PrePost_strengthen_pre)

lemma PrePostE_bindS[intro, PrePostE_compositeI]:
  assumes f: "\<And>s a s'. (Value a, s') \<in> m s \<Longrightarrow> PrePostE (R a) (f a) Q E"
    and m: "PrePostE P m R E"
  shows "PrePostE P (bindS m f) Q E"
  using assms
  by (fastforce simp: PrePostE_def cong: state_result.case_cong)

lemma PrePostE_bindS_ignore:
  assumes f: "PrePostE R f Q E"
    and m : "PrePostE  P m (\<lambda>_. R) E"
  shows "PrePostE P (bindS m (\<lambda>_. f)) Q E"
  using assms by auto

lemma PrePostE_bindS_unit:
  fixes m :: "('regs, unit, 'e) monadS"
  assumes f: "PrePostE R (f ()) Q E"
    and m: "PrePostE P m (\<lambda>_. R) E"
  shows "PrePostE P (bindS m f) Q E"
  using assms by auto

lemma PrePostE_readS[PrePostE_atomI, intro]: "PrePostE (\<lambda>s. Q (f s) s) (readS f) Q E"
  unfolding PrePostE_def by (auto intro: PrePost_strengthen_pre)

lemma PrePostE_updateS[PrePostE_atomI, intro]: "PrePostE (\<lambda>s. Q () (f s)) (updateS f) Q E"
  unfolding PrePostE_def by (auto intro: PrePost_strengthen_pre)

lemma PrePostE_read_regS[PrePostE_atomI, intro]:
  "PrePostE (\<lambda>s. Q (read_from reg (regstate s)) s) (read_regS reg) Q E"
  unfolding read_regS_def by (rule PrePostE_readS)

lemma PrePostE_write_regS[PrePostE_atomI, intro]:
  "PrePostE (\<lambda>s. Q () (s\<lparr>regstate := write_to reg v (regstate s)\<rparr>)) (write_regS reg v) Q E"
  unfolding write_regS_def by (rule PrePostE_updateS)

lemma PrePostE_if_branch[PrePostE_compositeI]:
  assumes "b \<Longrightarrow> PrePostE Pf f Q E" and "\<not>b \<Longrightarrow> PrePostE Pg g Q E"
  shows "PrePostE (if b then Pf else Pg) (if b then f else g) Q E"
  using assms by (auto)

lemma PrePostE_if:
  assumes "b \<Longrightarrow> PrePostE P f Q E" and "\<not>b \<Longrightarrow> PrePostE P g Q E"
  shows "PrePostE P (if b then f else g) Q E"
  using assms by auto

lemma PrePostE_if_then:
  assumes "b" and "PrePostE P f Q E"
  shows "PrePostE P (if b then f else g) Q E"
  using assms by auto

lemma PrePostE_if_else:
  assumes "\<not> b" and "PrePostE P g Q E"
  shows "PrePostE P (if b then f else g) Q E"
  using assms by auto

lemma PrePostE_prod_cases[PrePostE_compositeI]:
  assumes "PrePostE P (f (fst x) (snd x)) Q E"
  shows "PrePostE P (case x of (a, b) \<Rightarrow> f a b) Q E"
  using assms by (auto split: prod.splits)

lemma PrePostE_option_cases[PrePostE_compositeI]:
  assumes "\<And>a. PrePostE (PS a) (s a) Q E" and "PrePostE PN n Q E"
  shows "PrePostE (case x of Some a \<Rightarrow> PS a | None \<Rightarrow> PN) (case x of Some a \<Rightarrow> s a | None \<Rightarrow> n) Q E"
  using assms by (auto split: option.splits)

lemma PrePostE_sum_cases[PrePostE_compositeI]:
  assumes "\<And>a. PrePostE (Pl a) (l a) Q E" and "\<And>b. PrePostE (Pr b) (r b) Q E"
  shows "PrePostE (case x of Inl a \<Rightarrow> Pl a | Inr b \<Rightarrow> Pr b) (case x of Inl a \<Rightarrow> l a | Inr b \<Rightarrow> r b) Q E"
  using assms by (auto split: sum.splits)

lemma PrePostE_let[PrePostE_compositeI]:
  assumes "PrePostE P (m y) Q E"
  shows "PrePostE P (let x = y in m x) Q E"
  using assms by auto

lemma PrePostE_and_boolS[PrePostE_compositeI]:
  assumes r: "PrePostE R r Q E"
    and l: "PrePostE P l (\<lambda>r. if r then R else Q False) E"
  shows "PrePostE P (and_boolS l r) Q E"
  using assms unfolding PrePostE_def
  by (intro PrePost_and_boolS) (auto elim: PrePost_weaken_post split: if_splits state_result.splits)

lemma PrePostE_or_boolS[PrePostE_compositeI]:
  assumes r: "PrePostE R r Q E"
    and l: "PrePostE P l (\<lambda>r. if r then Q True else R) E"
  shows "PrePostE P (or_boolS l r) Q E"
  using assms unfolding PrePostE_def
  by (intro PrePost_or_boolS) (auto elim: PrePost_weaken_post split: if_splits state_result.splits)

lemma PrePostE_assert_expS[PrePostE_atomI, intro]:
  "PrePostE (if c then P () else Q (Failure m)) (assert_expS c m) P Q"
  unfolding PrePostE_def by (auto intro: PrePost_strengthen_pre)

lemma PrePostE_failS[PrePostE_atomI, intro]:
  "PrePostE (E (Failure msg)) (failS msg) Q E"
  unfolding PrePostE_def by (auto intro: PrePost_strengthen_pre)

lemma PrePostE_maybe_failS[PrePostE_atomI]:
  "PrePostE (\<lambda>s. case v of Some v \<Rightarrow> Q v s | None \<Rightarrow> E (Failure msg) s) (maybe_failS msg v) Q E"
  by (auto simp: maybe_failS_def split: option.splits)

lemma PrePostE_exitS[PrePostE_atomI, intro]: "PrePostE (E (Failure ''exit'')) (exitS msg) Q E"
  unfolding exitS_def PrePostE_def PrePost_def failS_def by auto

lemma PrePostE_chooseS[intro, PrePostE_atomI]:
  "PrePostE (\<lambda>s. \<forall>x \<in> xs. Q x s) (chooseS xs) Q E"
  unfolding PrePostE_def by (auto intro: PrePost_strengthen_pre)

lemma PrePostE_throwS[PrePostE_atomI]: "PrePostE (E (Throw e)) (throwS e) Q E"
  by (intro PrePostE_I) (auto simp: throwS_def)

lemma PrePostE_try_catchS[PrePostE_compositeI]:
  assumes Ph: "\<And>s e s'. (Ex (Throw e), s') \<in> m s \<Longrightarrow> PrePostE (Ph e) (h e) Q E"
    and m: "PrePostE P m Q (\<lambda>ex. case ex of Throw e \<Rightarrow> Ph e | Failure msg \<Rightarrow> E (Failure msg))"
  shows "PrePostE P (try_catchS m h) Q E"
  unfolding PrePostE_def
proof (intro PrePostI)
  fix s r s'
  assume "(r, s') \<in> try_catchS m h s" and P: "P s"
  then show "(case r of Value a \<Rightarrow> Q a | state_result.Ex e \<Rightarrow> E e) s'" using m
  proof (cases rule: try_catchS_cases)
    case (h e s'')
    then have "Ph e s''" using P m by (auto elim!: PrePostE_elim)
    then show ?thesis using Ph[OF h(1)] h(2) by (auto elim!: PrePostE_elim)
  qed (auto elim!: PrePostE_elim)
qed

lemma PrePostE_catch_early_returnS[PrePostE_compositeI]:
  assumes "PrePostE P m Q (\<lambda>ex. case ex of Throw (Inl a) \<Rightarrow> Q a | Throw (Inr e) \<Rightarrow> E (Throw e) | Failure msg \<Rightarrow> E (Failure msg))"
  shows "PrePostE P (catch_early_returnS m) Q E"
  unfolding catch_early_returnS_def
  by (rule PrePostE_try_catchS, rule PrePostE_sum_cases[OF PrePostE_returnS PrePostE_throwS])
     (auto intro: assms)

lemma PrePostE_early_returnS[PrePostE_atomI]: "PrePostE (E (Throw (Inl r))) (early_returnS r) Q E"
  by (auto simp: early_returnS_def intro: PrePostE_throwS)

lemma PrePostE_liftRS[PrePostE_compositeI]:
  assumes "PrePostE P m Q (\<lambda>ex. case ex of Throw e \<Rightarrow> E (Throw (Inr e)) | Failure msg \<Rightarrow> E (Failure msg))"
  shows "PrePostE P (liftRS m) Q E"
  using assms unfolding liftRS_def by (intro PrePostE_try_catchS[OF PrePostE_throwS])

lemma PrePostE_foreachS_Cons:
  assumes "\<And>s vars' s'. (Value vars', s') \<in> body x vars s \<Longrightarrow> PrePostE (Q vars') (foreachS xs vars' body) Q E"
    and "PrePostE (Q vars) (body x vars) Q E"
  shows "PrePostE (Q vars) (foreachS (x # xs) vars body) Q E"
  using assms by fastforce

lemma PrePostE_foreachS_invariant:
  assumes "\<And>x vars. x \<in> set xs \<Longrightarrow> PrePostE (Q vars) (body x vars) Q E"
  shows "PrePostE (Q vars) (foreachS xs vars body) Q E"
  using assms unfolding PrePostE_def
  by (intro PrePost_foreachS_invariant[THEN PrePost_strengthen_pre]) auto

lemma PrePostE_untilS:
  assumes dom: "\<And>s. Inv Q vars s \<Longrightarrow> untilS_dom (vars, cond, body, s)"
    and cond: "\<And>vars. PrePostE (Inv' Q vars) (cond vars) (\<lambda>c s'. Inv Q vars s' \<and> (c \<longrightarrow> Q vars s')) E"
    and body: "\<And>vars. PrePostE (Inv Q vars) (body vars) (Inv' Q) E"
  shows "PrePostE (Inv Q vars) (untilS vars cond body) Q E"
proof (unfold PrePostE_def, rule PrePostI)
  fix s r s'
  assume Inv_s: "Inv Q vars s" and r: "(r, s') \<in> untilS vars cond body s"
  with dom[OF Inv_s] cond body
  show "(case r of Value a \<Rightarrow> Q a | state_result.Ex e \<Rightarrow> E e) s'"
  proof (induction vars cond body s rule: untilS.pinduct[case_names Step])
    case (Step vars cond body s)
    consider
        (Value) vars' c sb sc where "(Value vars', sb) \<in> body vars s" and "(Value c, sc) \<in> cond vars' sb"
                                and "if c then r = Value vars' \<and> s' = sc else (r, s') \<in> untilS vars' cond body sc"
      | (Ex) e where "(Ex e, s') \<in> bindS (body vars) cond s" and "r = Ex e"
      using Step(1,6)
      by (auto simp: untilS.psimps returnS_def Ex_bindS_iff elim!: bindS_cases split: if_splits; fastforce)
    then show ?case
    proof cases
      case Value
      then show ?thesis using Step.IH[OF Value(1,2) _ Step(3,4)] Step(3,4,5)
        by (auto split: if_splits elim: PrePostE_elim)
    next
      case Ex
      then show ?thesis using Step(3,4,5) by (auto elim!: bindS_cases PrePostE_elim)
    qed
  qed
qed

lemma PrePostE_untilS_pure_cond:
  assumes dom: "\<And>s. Inv Q vars s \<Longrightarrow> untilS_dom (vars, returnS \<circ> cond, body, s)"
    and body: "\<And>vars. PrePostE (Inv Q vars) (body vars) (\<lambda>vars' s'. Inv Q vars' s' \<and> (cond vars' \<longrightarrow> Q vars' s')) E"
  shows "PrePostE (Inv Q vars) (untilS vars (returnS \<circ> cond) body) Q E"
  using assms by (intro PrePostE_untilS) (auto simp: comp_def)

lemma PrePostE_liftState_untilM:
  assumes dom: "\<And>s. Inv Q vars s \<Longrightarrow> untilM_dom (vars, cond, body)"
    and cond: "\<And>vars. PrePostE (Inv' Q vars) (liftState r (cond vars)) (\<lambda>c s'. Inv Q vars s' \<and> (c \<longrightarrow> Q vars s')) E"
    and body: "\<And>vars. PrePostE (Inv Q vars) (liftState r (body vars)) (Inv' Q) E"
  shows "PrePostE (Inv Q vars) (liftState r (untilM vars cond body)) Q E"
proof -
  have domS: "untilS_dom (vars, liftState r \<circ> cond, liftState r \<circ> body, s)" if "Inv Q vars s" for s
    using dom that by (intro untilM_dom_untilS_dom)
  then have "PrePostE (Inv Q vars) (untilS vars (liftState r \<circ> cond) (liftState r \<circ> body)) Q E"
    using cond body by (auto intro: PrePostE_untilS simp: comp_def)
  moreover have "liftState r (untilM vars cond body) s = untilS vars (liftState r \<circ> cond) (liftState r \<circ> body) s"
    if "Inv Q vars s" for s
    unfolding liftState_untilM[OF domS[OF that] dom[OF that]] ..
  ultimately show ?thesis by (auto cong: PrePostE_cong)
qed

lemma PrePostE_liftState_untilM_pure_cond:
  assumes dom: "\<And>s. Inv Q vars s \<Longrightarrow> untilM_dom (vars, return \<circ> cond, body)"
    and body: "\<And>vars. PrePostE (Inv Q vars) (liftState r (body vars)) (\<lambda>vars' s'. Inv Q vars' s' \<and> (cond vars' \<longrightarrow> Q vars' s')) E"
  shows "PrePostE (Inv Q vars) (liftState r (untilM vars (return \<circ> cond) body)) Q E"
  using assms by (intro PrePostE_liftState_untilM) (auto simp: comp_def liftState_simp)

lemma PrePostE_choose_boolS_any[PrePostE_atomI]:
  "PrePostE (\<lambda>s. \<forall>b. Q b s)
            (choose_boolS unit) Q E"
  unfolding choose_boolS_def seqS_def
  by (auto intro: PrePostE_strengthen_pre)

lemma PrePostE_bool_of_bitU_nondetS_any:
  "PrePostE (\<lambda>s. \<forall>b. Q b s) (bool_of_bitU_nondetS b) Q E"
  unfolding bool_of_bitU_nondetS_def choose_boolS_def
  by (cases b; simp; rule PrePostE_strengthen_pre, rule PrePostE_atomI) auto

lemma PrePostE_bools_of_bits_nondetS_any:
  "PrePostE (\<lambda>s. \<forall>bs. Q bs s) (bools_of_bits_nondetS bs) Q E"
  unfolding bools_of_bits_nondetS_def
  by (rule PrePostE_weaken_post[where B = "\<lambda>_ s. \<forall>bs. Q bs s"], rule PrePostE_strengthen_pre,
      (rule PrePostE_foreachS_invariant[OF PrePostE_strengthen_pre] PrePostE_bindS PrePostE_returnS
            PrePostE_bool_of_bitU_nondetS_any)+)
     auto

lemma PrePostE_choose_boolsS_any:
  "PrePostE (\<lambda>s. \<forall>bs. Q bs s) (choose_boolsS n) Q E"
  unfolding choose_boolsS_def genlistS_def Let_def
  by (rule PrePostE_weaken_post[where B = "\<lambda>_ s. \<forall>bs. Q bs s"], rule PrePostE_strengthen_pre,
      (rule PrePostE_foreachS_invariant[OF PrePostE_strengthen_pre] PrePostE_bindS PrePostE_returnS
            PrePostE_choose_boolS_any)+)
     auto

end