1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
|
theory Sail2_concurrency_interface_lemmas
imports
Sail2_concurrency_interface
Sail2_values_lemmas
begin
notation bind (infixr "\<bind>" 54)
notation either_bind (infixr "\<bind>\<^sub>R" 54)
abbreviation seq (*:: "('rv,unit,'e)monad \<Rightarrow> ('rv,'b,'e)monad \<Rightarrow>('rv,'b,'e)monad"*) (infixr "\<then>" 54) where
"m \<then> n \<equiv> m \<bind> (\<lambda>_ :: unit. n)"
abbreviation seqR (*:: "('e,unit)sum \<Rightarrow> ('e,'b)sum \<Rightarrow>('e,'b)sum"*) (infixr "\<then>\<^sub>R" 54) where
"m \<then>\<^sub>R n \<equiv> m \<bind>\<^sub>R (\<lambda>_ :: unit. n)"
lemma All_bind_dom: "bind_dom (m, f)"
by (induction m) (auto intro: bind.domintros)
termination bind using All_bind_dom by auto
lemmas bind_induct[case_names Done Read_mem Write_memv Read_reg Excl_res Write_ea Barrier Write_reg Fail Exception] = bind.induct
lemma bind_return[simp]: "bind (return a) f = f a"
by (auto simp: return_def)
lemma bind_return_right[simp]: "bind x return = x" by (induction x) (auto simp: return_def)
lemma bind_assoc[simp]: "bind (bind m f) g = bind m (\<lambda>x. bind (f x) g)"
by (induction m f arbitrary: g rule: bind.induct) auto
lemma bind_assert_True[simp]: "bind (assert_exp True msg) f = f ()"
by (auto simp: assert_exp_def)
lemma All_try_catch_dom: "try_catch_dom (m, h)"
by (induction m) (auto intro: try_catch.domintros)
termination try_catch using All_try_catch_dom by auto
lemmas try_catch_induct[case_names Done Read_mem Write_memv Read_reg Excl_res Write_ea Barrier Write_reg Fail Exception] = try_catch.induct
inductive_set T (*:: "(('rv, 'a, 'e) monad \<times> 'rv event \<times> ('rv, 'a, 'e) monad) set"*) where
Choose: "((Choose descr k), E_choose descr v, k v) \<in> T"
| Read_reg: "((Read_reg r k), E_read_reg r v, k v) \<in> T"
| Write_reg: "((Write_reg r v k), E_write_reg r v, k) \<in> T"
| Read_mem: "((Mem_read_request req k), E_mem_read_request req v, k v) \<in> T"
| Write_mem: "((Mem_write_request req k), E_mem_write_request req r, k r) \<in> T"
| Write_announce: "((Mem_write_announce_address a k), E_mem_write_announce_address a, k) \<in> T"
| Translation_start: "((Translation_start ts k), E_translation_start ts, k) \<in> T"
| Translation_end: "((Translation_end te k), E_translation_end te, k) \<in> T"
| Branch_announce: "((Branch_announce_address a k), E_branch_announce_address a, k) \<in> T"
| Barrier_request: "((Barrier_request r k), E_barrier_request r, k) \<in> T"
| Cache_op_request: "((Cache_op_request r k), E_cache_op_request r, k) \<in> T"
| TLB_op_request: "((TLB_op_request r k), E_tlb_op_request r, k) \<in> T"
| Fault: "((Fault_announce f k), E_fault_announce f, k) \<in> T"
| Eret: "((Eret_announce a k), E_eret_announce a, k) \<in> T"
lemma emitEvent_iff_T: "emitEvent m e = Some m' \<longleftrightarrow> (m, e, m') \<in> T"
by (cases e) (auto simp: emitEvent_def elim: T.cases intro: T.intros split: monad.splits)
lemmas emitEvent_intros = T.intros[folded emitEvent_iff_T]
(* lemmas emitEvent_cases = T.cases[folded emitEvent_iff_T, case_names Choose Read_reg Write_reg Read_mem Write_mem Write_announce Branch_announce Barrier Cache_op TLB_op Fault Eret] *)
lemma emitEvent_cases:
assumes "emitEvent m e = Some m'"
obtains
(Choose) descr k v where "m = Choose descr k" and "e = E_choose descr v" and "m' = k v"
| (Read_reg) r k v where "m = Read_reg r k" and "e = E_read_reg r v" and "m' = k v"
| (Write_reg) r k v where "m = Write_reg r v k" and "e = E_write_reg r v" and "m' = k"
| (Read_mem) req k v where "m = Mem_read_request req k" and "e = E_mem_read_request req v" and "m' = k v"
| (Write_mem) req k r where "m = Mem_write_request req k" and "e = E_mem_write_request req r" and "m' = k r"
| (Write_announce) a k where "m = Mem_write_announce_address a k" and "e = E_mem_write_announce_address a" and "m' = k"
| (Translation_start) ts k where "m = Translation_start ts k" and "e = E_translation_start ts" and "m' = k"
| (Translation_end) te k where "m = Translation_end te k" and "e = E_translation_end te" and "m' = k"
| (Branch_announce) a k where "m = Branch_announce_address a k" and "e = E_branch_announce_address a" and "m' = k"
| (Barrier_request) r k where "m = Barrier_request r k" and "e = E_barrier_request r" and "m' = k"
| (Cache_op_request) r k where "m = Cache_op_request r k" and "e = E_cache_op_request r" and "m' = k"
| (TLB_op_request) r k where "m = TLB_op_request r k" and "e = E_tlb_op_request r" and "m' = k"
| (Fault) f k where "m = Fault_announce f k" and "e = E_fault_announce f" and "m' = k"
| (Eret) a k where "m = Eret_announce a k" and "e = E_eret_announce a" and "m' = k"
using assms
by (auto simp: emitEvent_def split: event.splits monad.splits if_splits)
inductive_set Traces (*:: "(('rv, 'a, 'e) monad \<times> 'rv event list \<times> ('rv, 'a, 'e) monad) set"*) where
Nil: "(s, [], s) \<in> Traces"
| Step: "\<lbrakk>emitEvent s e = Some s''; (s'', t, s') \<in> Traces\<rbrakk> \<Longrightarrow> (s, e # t, s') \<in> Traces"
declare Traces.intros[intro]
(* declare T.intros[intro] *)
declare prod.splits[split]
lemmas Traces_ConsI = emitEvent_intros[THEN Step]
inductive_cases Traces_NilE[elim]: "(s, [], s') \<in> Traces"
inductive_cases Traces_ConsE[elim]: "(s, e # t, s') \<in> Traces"
lemma runTrace_iff_Traces: "runTrace t m = Some m' \<longleftrightarrow> (m, t, m') \<in> Traces"
by (induction t m rule: runTrace.induct; fastforce simp: bind_eq_Some_conv)
lemma hasTrace_iff_Traces_final: "hasTrace t m \<longleftrightarrow> (\<exists>m'. (m, t, m') \<in> Traces \<and> final m')"
by (auto simp: hasTrace_def runTrace_iff_Traces[symmetric] split: option.splits)
lemma runTrace_eq_iff_id:
"(\<forall>t. runTrace t m1 = runTrace t m2) \<longleftrightarrow> (m1 = m2)"
by (auto elim: allE[where x = "[]"])
lemma Traces_eq_iff_id:
"(\<forall>t m'. (m1, t, m') \<in> Traces \<longleftrightarrow> (m2, t, m') \<in> Traces) \<longleftrightarrow> (m1 = m2)"
by (auto elim: allE[where x = "[]"])
lemma Traces_cases:
(* fixes m :: "('rv, 'a, 'e) monad" *)
assumes Run: "(m, t, m') \<in> Traces"
obtains (Nil) a where "m = m'" and "t = []"
| (Choose) descr v k t' where "m = Choose descr k" and "t = E_choose descr v # t'" and "(k v, t', m') \<in> Traces"
| (Read_reg) reg k t' v where "m = Read_reg reg k" and "t = E_read_reg reg v # t'" and "(k v, t', m') \<in> Traces"
| (Write_reg) reg v k t' where "m = Write_reg reg v k" and "t = E_write_reg reg v # t'" and "(k, t', m') \<in> Traces"
| (Read_mem) req k t' v where "m = Mem_read_request req k" and "t = E_mem_read_request req v # t'" and "(k v, t', m') \<in> Traces"
| (Write_mem) req k v t' where "m = Mem_write_request req k" and "t = E_mem_write_request req v # t'" and "(k v, t', m') \<in> Traces"
| (Write_announce) a k t' where "m = Mem_write_announce_address a k" and "t = E_mem_write_announce_address a # t'" and "(k, t', m') \<in> Traces"
| (Translation_start) ts k t' where "m = Translation_start ts k" and "t = E_translation_start ts # t'" and "(k, t', m') \<in> Traces"
| (Translation_end) te k t' where "m = Translation_end te k" and "t = E_translation_end te # t'" and "(k, t', m') \<in> Traces"
| (Branch_announce) a k t' where "m = Branch_announce_address a k" and "t = E_branch_announce_address a # t'" and "(k, t', m') \<in> Traces"
| (Barrier) r k t' where "m = Barrier_request r k" and "t = E_barrier_request r # t'" and "(k, t', m') \<in> Traces"
| (Cache_op) r k t' where "m = Cache_op_request r k" and "t = E_cache_op_request r # t'" and "(k, t', m') \<in> Traces"
| (TLB_op) r k t' where "m = TLB_op_request r k" and "t = E_tlb_op_request r # t'" and "(k, t', m') \<in> Traces"
| (Fault) f k t' where "m = Fault_announce f k" and "t = E_fault_announce f # t'" and "(k, t', m') \<in> Traces"
| (Eret) pa k t' where "m = Eret_announce pa k" and "t = E_eret_announce pa # t'" and "(k, t', m') \<in> Traces"
proof (use Run in \<open>cases m t m' set: Traces\<close>)
case Nil
then show ?thesis by (auto intro: that(1))
next
case (Step e m'' t')
then show ?thesis
by (cases m; cases e) (auto simp: emitEvent_def split: if_splits elim: that)
qed
lemma Traces_iffs:
"\<And>a t m'. (Done a, t, m') \<in> Traces \<longleftrightarrow> (t = [] \<and> m' = Done a)"
"\<And>msg t m'. (Fail msg, t, m') \<in> Traces \<longleftrightarrow> (t = [] \<and> m' = Fail msg)"
"\<And>e t m'. (Exception e, t, m') \<in> Traces \<longleftrightarrow> (t = [] \<and> m' = Exception e)"
"\<And>descr k t m'. (Choose descr k, t, m') \<in> Traces \<longleftrightarrow> (t = [] \<and> m' = Choose descr k \<or> (\<exists>a t'. t = E_choose descr a # t' \<and> (k a, t', m') \<in> Traces))"
"\<And>reg k t m'. (Read_reg reg k, t, m') \<in> Traces \<longleftrightarrow> (t = [] \<and> m' = Read_reg reg k \<or> (\<exists>a t'. t = E_read_reg reg a # t' \<and> (k a, t', m') \<in> Traces))"
"\<And>reg a k t m'. (Write_reg reg a k, t, m') \<in> Traces \<longleftrightarrow> (t = [] \<and> m' = Write_reg reg a k \<or> (\<exists>t'. t = E_write_reg reg a # t' \<and> (k, t', m') \<in> Traces))"
"\<And>req k t m'. (Mem_read_request req k, t, m') \<in> Traces \<longleftrightarrow> (t = [] \<and> m' = Mem_read_request req k \<or> (\<exists>a t'. t = E_mem_read_request req a # t' \<and> (k a, t', m') \<in> Traces))"
"\<And>req k t m'. (Mem_write_request req k, t, m') \<in> Traces \<longleftrightarrow> (t = [] \<and> m' = Mem_write_request req k \<or> (\<exists>a t'. t = E_mem_write_request req a # t' \<and> (k a, t', m') \<in> Traces))"
"\<And>a k t m'. (Mem_write_announce_address a k, t, m') \<in> Traces \<longleftrightarrow> (t = [] \<and> m' = Mem_write_announce_address a k \<or> (\<exists>t'. t = E_mem_write_announce_address a # t' \<and> (k, t', m') \<in> Traces))"
"\<And>ts k t m'. (Translation_start ts k, t, m') \<in> Traces \<longleftrightarrow> (t = [] \<and> m' = Translation_start ts k \<or> (\<exists>t'. t = E_translation_start ts # t' \<and> (k, t', m') \<in> Traces))"
"\<And>te k t m'. (Translation_end te k, t, m') \<in> Traces \<longleftrightarrow> (t = [] \<and> m' = Translation_end te k \<or> (\<exists>t'. t = E_translation_end te # t' \<and> (k, t', m') \<in> Traces))"
"\<And>a k t m'. (Branch_announce_address a k, t, m') \<in> Traces \<longleftrightarrow> (t = [] \<and> m' = Branch_announce_address a k \<or> (\<exists>t'. t = E_branch_announce_address a # t' \<and> (k, t', m') \<in> Traces))"
"\<And>req k t m'. (Barrier_request req k, t, m') \<in> Traces \<longleftrightarrow> (t = [] \<and> m' = Barrier_request req k \<or> (\<exists>t'. t = E_barrier_request req # t' \<and> (k, t', m') \<in> Traces))"
"\<And>req k t m'. (Cache_op_request req k, t, m') \<in> Traces \<longleftrightarrow> (t = [] \<and> m' = Cache_op_request req k \<or> (\<exists>t'. t = E_cache_op_request req # t' \<and> (k, t', m') \<in> Traces))"
"\<And>req k t m'. (TLB_op_request req k, t, m') \<in> Traces \<longleftrightarrow> (t = [] \<and> m' = TLB_op_request req k \<or> (\<exists>t'. t = E_tlb_op_request req # t' \<and> (k, t', m') \<in> Traces))"
"\<And>f k t m'. (Fault_announce f k, t, m') \<in> Traces \<longleftrightarrow> (t = [] \<and> m' = Fault_announce f k \<or> (\<exists>t'. t = E_fault_announce f # t' \<and> (k, t', m') \<in> Traces))"
"\<And>pa k t m'. (Eret_announce pa k, t, m') \<in> Traces \<longleftrightarrow> (t = [] \<and> m' = Eret_announce pa k \<or> (\<exists>t'. t = E_eret_announce pa # t' \<and> (k, t', m') \<in> Traces))"
by (auto elim: Traces_cases intro: Traces_ConsI)
lemmas Done_Traces_iff[iff] = Traces_iffs(1)
lemmas Fail_Traces_iff[iff] = Traces_iffs(2)
lemmas Exception_Traces_iff[iff] = Traces_iffs(3)
lemmas Traces_iff_Cons = Traces_iffs(4-)
abbreviation Run (*:: "('rv, 'a, 'e) monad \<Rightarrow> 'rv event list \<Rightarrow> 'a \<Rightarrow> bool"*)
where "Run s t a \<equiv> (s, t, Done a) \<in> Traces"
lemma final_cases:
assumes "final m"
obtains (Done) a where "m = Done a" | (Fail) f where "m = Fail f" | (Ex) e where "m = Exception e"
using assms by (cases m) (auto simp: final_def)
lemma hasTraces_elim:
assumes "hasTrace t m"
obtains m' where "(m, t, m') \<in> Traces" and "final m'"
using assms
unfolding hasTrace_iff_Traces_final
by blast
lemma hasTrace_cases:
assumes "hasTrace t m"
obtains (Run) a where "Run m t a"
| (Fail) f where "(m, t, Fail f) \<in> Traces"
| (Ex) e where "(m, t, Exception e) \<in> Traces"
using assms by (elim hasTraces_elim final_cases) auto
lemma Traces_appendI:
assumes "(s, t1, s') \<in> Traces"
and "(s', t2, s'') \<in> Traces"
shows "(s, t1 @ t2, s'') \<in> Traces"
proof (use assms in \<open>induction t1 arbitrary: s\<close>)
case (Cons e t1)
then show ?case by (elim Traces_ConsE) auto
qed auto
lemma bind_DoneE:
assumes "bind m f = Done a"
obtains a' where "m = Done a'" and "f a' = Done a"
using assms by (auto elim: bind.elims)
lemma emitEvent_bind:
assumes "emitEvent m e = Some m'"
shows "emitEvent (bind m f) e = Some (bind m' f)"
using assms
by (cases rule: emitEvent_cases) (auto intro: emitEvent_intros)
lemma emitEvent_bind_cases:
assumes "emitEvent (bind m f) e = Some m'"
obtains (Done) a where "m = Done a" and "emitEvent (f a) e = Some m'"
| (Bind) m'' where "m' = bind m'' f" and "emitEvent m e = Some m''"
proof (cases "emitEvent m e")
case None
then have "emitEvent (bind m f) e = None \<or> (\<exists>a. m = Done a)"
by (auto simp: emitEvent_def split: event.splits monad.splits)
then show ?thesis
using assms
by (auto intro: Done)
next
case (Some m'')
then show ?thesis
using assms
by (auto simp: emitEvent_bind intro: Bind)
qed
lemma bind_T_cases:
assumes "(bind m f, e, s') \<in> T"
obtains (Done) a where "m = Done a" and "(f a, e, s') \<in> T"
| (Bind) m' where "s' = bind m' f" and "(m, e, m') \<in> T"
using assms
unfolding emitEvent_iff_T[symmetric]
by (elim emitEvent_bind_cases)
lemma Traces_bindI:
assumes "Run m t1 a1"
and "(f a1, t2, m') \<in> Traces"
shows "(m \<bind> f, t1 @ t2, m') \<in> Traces"
using assms
by (induction t1 arbitrary: m; fastforce intro: Traces_ConsI elim: emitEvent_cases)
lemma Run_Done_iff[iff]: "Run (Done a) t a' \<longleftrightarrow> t = [] \<and> a' = a" by auto
lemma Run_return_iff[iff]: "Run (return a) t a' \<longleftrightarrow> t = [] \<and> a' = a" by (auto simp: return_def)
lemma Run_throw[iff]: "Run (throw e) t a \<longleftrightarrow> False" by (auto simp: throw_def)
lemma Run_early_return_False[iff]: "Run (early_return x) t u \<longleftrightarrow> False"
by (auto simp: early_return_def)
lemma Run_assert_exp_iff[iff]: "Run (assert_exp c msg) t u \<longleftrightarrow> t = [] \<and> c"
by (auto simp: assert_exp_def)
lemma Run_DoneE:
assumes "Run (Done a) t a'"
obtains "t = []" and "a' = a"
using assms
by (auto)
lemma Run_Nil_iff_Done: "Run m [] a \<longleftrightarrow> m = Done a"
by auto
lemma Traces_Nil_iff: "(m, [], m') \<in> Traces \<longleftrightarrow> m' = m"
by auto
lemma bind_Traces_cases:
assumes "(m \<bind> f, t, m') \<in> Traces"
obtains (Left) m'' where "(m, t, m'') \<in> Traces" and "m' = m'' \<bind> f"
| (Bind) tm am tf where "t = tm @ tf" and "Run m tm am" and "(f am, tf, m') \<in> Traces"
proof (use assms in \<open>induction "bind m f" t m' arbitrary: m rule: Traces.induct\<close>)
case Nil
then show ?case by (auto simp: Traces_Nil_iff)
next
case (Step e s'' t s')
note IH = Step(3)
note Left' = Step(4)
note Bind' = Step(5)
show thesis
proof (use \<open>emitEvent (m \<bind> f) e = Some s''\<close> in \<open>cases rule: emitEvent_bind_cases\<close>)
case (Done a)
then show ?thesis using \<open>(s'', t, s') \<in> Traces\<close> Step(5)[of "[]" "e # t" a] by auto
next
case (Bind m')
show ?thesis
proof (rule IH)
show "s'' = m' \<bind> f" using Bind by blast
next
fix m''
assume "(m', t, m'') \<in> Traces" and "s' = m'' \<bind> f"
then show thesis using \<open>emitEvent m e = Some m'\<close> Left'[of m''] by auto
next
fix tm tf am
assume "t = tm @ tf" and "Run m' tm am" and "(f am, tf, s') \<in> Traces"
then show thesis using \<open>emitEvent m e = Some m'\<close> Bind'[of "e # tm" tf am] by auto
qed
qed
qed
lemma final_bind_cases:
assumes "final (m \<bind> f)"
obtains (Done) a where "m = Done a" and "final (f a)"
| (Fail) msg where "m = Fail msg"
| (Ex) e where "m = Exception e"
using assms by (cases m) (auto simp: final_def)
lemma hasFailure_iff_Traces_Fail: "hasFailure t m \<longleftrightarrow> (\<exists>msg. (m, t, Fail msg) \<in> Traces)"
by (auto simp: hasFailure_def runTrace_iff_Traces[symmetric] split: option.splits monad.splits)
lemma hasException_iff_Traces_Exception: "hasException t m \<longleftrightarrow> (\<exists>e. (m, t, Exception e) \<in> Traces)"
by (auto simp: hasException_def runTrace_iff_Traces[symmetric] split: option.splits monad.splits)
lemma hasTrace_bind_cases:
assumes "hasTrace t (m \<bind> f)"
obtains (Bind) tm am tf where "t = tm @ tf" and "Run m tm am" and "hasTrace tf (f am)"
| (Fail) "hasFailure t m"
| (Ex) "hasException t m"
proof -
from assms obtain m' where t: "(m \<bind> f, t, m') \<in> Traces" and m': "final m'"
by (auto simp: hasTrace_iff_Traces_final)
note [simp] = hasTrace_iff_Traces_final hasFailure_iff_Traces_Fail hasException_iff_Traces_Exception
from t show thesis
proof (cases rule: bind_Traces_cases)
case (Left m'')
then show ?thesis
using m' Fail Ex Bind[of t "[]"]
by (fastforce elim!: final_bind_cases)
next
case (Bind tm am tf)
then show ?thesis
using m' that
by fastforce
qed
qed
lemma emitEvent_try_catch_cases:
assumes "emitEvent (try_catch m h) e = Some m'"
obtains (NoEx) m'' where "emitEvent m e = Some m''" and "m' = try_catch m'' h"
| (Ex) ex where "m = Exception ex" and "emitEvent (h ex) e = Some m'"
using assms
by (cases m) (auto elim: emitEvent_cases simp: emitEvent_intros)
(*lemma try_catch_T_cases:
assumes "(try_catch m h, e, m') \<in> T"
obtains (NoEx) m'' where "(m, e, m'') \<in> T" and "m' = try_catch m'' h"
| (Ex) ex where "m = Exception ex" and "(h ex, e, m') \<in> T"
using assms
by (cases m) (auto elim!: T.cases)*)
lemma try_catch_Traces_cases:
assumes "(try_catch m h, t, mtc) \<in> Traces"
obtains (NoEx) m' where "(m, t, m') \<in> Traces" and "mtc = try_catch m' h"
| (Ex) tm ex th where "(m, tm, Exception ex) \<in> Traces" and "(h ex, th, mtc) \<in> Traces" and "t = tm @ th"
proof (use assms in \<open>induction "try_catch m h" t mtc arbitrary: m rule: Traces.induct\<close>)
case Nil
then show ?case by auto
next
case (Step e mtc' t mtc)
note e = \<open>emitEvent (try_catch m h) e = Some mtc'\<close>
note t = \<open>(mtc', t, mtc) \<in> Traces\<close>
note IH = Step(3)
note NoEx_ConsE = Step(4)
note Ex_ConsE = Step(5)
show ?case
proof (use e in \<open>cases rule: emitEvent_try_catch_cases\<close>)
case (NoEx m1)
show ?thesis
proof (rule IH)
show "mtc' = try_catch m1 h" using NoEx by auto
next
fix m'
assume "(m1, t, m') \<in> Traces" and "mtc = try_catch m' h"
then show ?thesis
using NoEx NoEx_ConsE[of m']
by auto
next
fix tm ex th
assume "(m1, tm, Exception ex) \<in> Traces" and "(h ex, th, mtc) \<in> Traces" and "t = tm @ th"
then show ?thesis
using NoEx Ex_ConsE[of "e # tm" ex th]
by auto
qed
next
case (Ex ex)
then show ?thesis
using t Ex_ConsE[of "[]" ex "e # t"]
by auto
qed
qed
lemma Read_reg_TracesE:
assumes "(Read_reg r k, t, m') \<in> Traces"
obtains (Nil) "t = []" and "m' = Read_reg r k"
| (Cons) v t' where "t = E_read_reg r v # t'" and "(k v, t', m') \<in> Traces"
using assms
by (auto elim: Traces_cases)
lemma Write_reg_TracesE:
assumes "(Write_reg r v k, t, m') \<in> Traces"
obtains (Nil) "t = []" and "m' = Write_reg r v k"
| (Cons) t' where "t = E_write_reg r v # t'" and "(k, t', m') \<in> Traces"
using assms
by (auto elim: Traces_cases)
lemma Mem_write_request_TracesE:
assumes "(Mem_write_request req k, t, m') \<in> Traces"
obtains (Nil) "t = []" and "m' = Mem_write_request req k"
| (Cons) t' r where "t = E_mem_write_request req r # t'" and "(k r, t', m') \<in> Traces"
using assms
by (auto elim: Traces_cases)
(*lemma Write_ea_TracesE:
assumes "(Write_ea wk addr sz k, t, m') \<in> Traces"
obtains (Nil) "t = []" and "m' = Write_ea wk addr sz k"
| (Cons) t' where "t = E_write_ea wk addr sz # t'" and "(k, t', m') \<in> Traces"
using assms
by (auto elim: Traces_cases)*)
lemma Run_bind_ex:
assumes "Run (bind m f) t a"
shows "\<exists>tm am tf. t = tm @ tf \<and> Run m tm am \<and> Run (f am) tf a"
proof (use assms in \<open>induction t arbitrary: m\<close>)
case (Nil m)
then show ?case
by (cases m) auto
next
case (Cons e t m)
then consider (Step) m' where "emitEvent m e = Some m'" and "Run (bind m' f) t a"
| (Done) a' where "m = Done a'"
by (elim Traces_ConsE emitEvent_bind_cases) auto
then show ?case
proof cases
case Step
then obtain tm' am' tf where "t = tm' @ tf" and "Run m' tm' am'" and "Run (f am') tf a"
using Cons.IH[of m']
by blast
then have "e # t = (e # tm') @ tf" and "Run m (e # tm') am'" and "Run (f am') tf a"
using Step
by auto
then show ?thesis
by blast
next
case Done
with Cons.prems show ?thesis
by auto
qed
qed
lemma Run_bindE:
assumes "Run (bind m f) t a"
obtains tm am tf where "t = tm @ tf" and "Run m tm am" and "Run (f am) tf a"
using Run_bind_ex[OF assms]
by blast
lemma Run_bindE_ignore_trace:
assumes "Run (m \<bind> f) t a"
obtains tm tf am where "Run m tm am" and "Run (f am) tf a"
using assms by (elim Run_bindE)
lemma Run_letE:
assumes "Run (let x = y in f x) t a"
obtains "Run (f y) t a"
using assms by auto
lemma Run_ifE:
assumes "Run (if b then f else g) t a"
obtains "b" and "Run f t a" | "\<not>b" and "Run g t a"
using assms by (auto split: if_splits)
lemma Run_returnE:
assumes "Run (return x) t a"
obtains "t = []" and "a = x"
using assms by (auto simp: return_def)
lemma Run_early_returnE:
assumes "Run (early_return x) t a"
shows P
using assms by (auto simp: early_return_def throw_def elim: Traces_cases)
lemma bind_cong[fundef_cong]:
assumes m: "m1 = m2"
and f: "\<And>t a. Run m2 t a \<Longrightarrow> f1 a = f2 a"
shows "bind m1 f1 = bind m2 f2"
unfolding m using f
by (induction m2 f1 arbitrary: f2 rule: bind.induct; unfold bind.simps; blast intro: emitEvent_intros)
lemma liftR_read_reg[simp]: "liftR (read_reg reg) = read_reg reg" by (auto simp: read_reg_def liftR_def split: option.splits)
lemma try_catch_return[simp]: "try_catch (return x) h = return x" by (auto simp: return_def)
lemma liftR_return[simp]: "liftR (return x) = return x" by (auto simp: liftR_def)
lemma assert_exp_True_return[simp]: "assert_exp True msg = return ()" by (auto simp: assert_exp_def return_def)
lemma liftR_assert_exp[simp]: "liftR (assert_exp e msg) = assert_exp e msg" by (auto simp: liftR_def assert_exp_def)
lemma try_catch_maybe_fail[simp]: "try_catch (maybe_fail msg v) h = maybe_fail msg v" by (cases v; auto simp: maybe_fail_def)
lemma liftR_choose_regval[simp]: "liftR (choose_regval descr) = choose_regval descr" by (auto simp: liftR_def choose_regval_def)
lemma liftR_choose_convert[simp]: "liftR (choose_convert of_rv descr) = choose_convert of_rv descr" by (auto simp: liftR_def choose_convert_def)
lemma liftR_choose_convert_default[simp]: "liftR (choose_convert_default of_rv x descr) = choose_convert_default of_rv x descr"
by (auto simp: liftR_def choose_convert_default_def)
lemma liftR_choose_builtins[simp]:
"liftR (choose_bool RV u) = choose_bool RV u"
"liftR (choose_int RV u) = choose_int RV u"
"liftR (choose_real RV u) = choose_real RV u"
"liftR (choose_string RV u) = choose_string RV u"
unfolding choose_bool_def choose_int_def choose_real_def choose_string_def
by auto
lemma catch_early_return_bind_liftR:
"catch_early_return (liftR m \<bind> f) = (m \<bind> (\<lambda>a. catch_early_return (f a)))"
by (induction m) (auto simp: catch_early_return_def liftR_def throw_def)
lemma catch_early_return_bind_early_return:
"catch_early_return (early_return a \<bind> f) = return a"
by (auto simp: catch_early_return_def early_return_def throw_def)
lemmas catch_early_return_if_distrib = if_distrib[where f = catch_early_return]
lemmas catch_early_return_prod_distrib = prod.case_distrib[where h = catch_early_return]
lemmas catch_early_return_bind_if_distrib =
if_distrib[where f = "\<lambda>m. m \<bind> f" for f, THEN refl[of catch_early_return, THEN cong]]
text \<open>Precondition to ensure reading a register doesn't fail.\<close>
fun(sequential)
register_reads_ok (*:: "(string \<Rightarrow> ('regval \<Rightarrow> bool) option) \<Rightarrow> 'regval event \<Rightarrow> bool"*)
where
"register_reads_ok f (E_read_reg nm v) = register_read_ok f nm v"
| "register_reads_ok f _ = True"
lemma read_reg_non_failure:
"(read_reg reg_ref, t, x) \<in> Traces \<Longrightarrow>
f (name reg_ref) = Some (fst (register_ops_of reg_ref)) \<Longrightarrow>
\<forall>event \<in> set t. register_reads_ok f event \<Longrightarrow>
x \<noteq> Fail msg"
by (auto simp: read_reg_def register_read_ok_def register_ops_of_def
elim!: Read_reg_TracesE split: option.split_asm)
end
|