1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
|
theory Sail2_values_lemmas
imports Sail2_values
begin
lemma while_domI:
fixes V :: "'vars \<Rightarrow> nat"
assumes "\<And>vars. cond vars \<Longrightarrow> V (body vars) < V vars"
shows "while_dom (vars, cond, body)"
by (induction vars rule: measure_induct_rule[where f = V])
(use assms in \<open>auto intro: while.domintros\<close>)
lemma nat_of_int_nat_simps[simp]: "nat_of_int = nat" by (auto simp: nat_of_int_def)
termination reverse_endianness_list by (lexicographic_order simp add: drop_list_def)
declare reverse_endianness_list.simps[simp del]
declare take_list_def[simp]
declare drop_list_def[simp]
function take_chunks :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list list" where
"take_chunks n [] = []"
| "take_chunks 0 xs = []"
| "take_chunks n xs = take n xs # take_chunks n (drop n xs)" if "n > 0" and "xs \<noteq> []"
by auto blast
termination by lexicographic_order
lemma take_chunks_length_leq_n: "length xs \<le> n \<Longrightarrow> xs \<noteq> [] \<Longrightarrow> take_chunks n xs = [xs]"
by (cases n) auto
lemma take_chunks_append: "n dvd length a \<Longrightarrow> take_chunks n (a @ b) = take_chunks n a @ take_chunks n b"
by (induction n a rule: take_chunks.induct) (auto simp: dvd_imp_le)
lemma Suc8_plus8: "Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc x))))))) = 8 + x"
by auto
lemma byte_chunks_take_chunks_8:
assumes "8 dvd length xs"
shows "byte_chunks xs = Some (take_chunks 8 xs)"
proof -
have Suc8_plus8: "Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc x))))))) = 8 + x" for x
by auto
from assms show ?thesis
by (induction xs rule: byte_chunks.induct) (auto simp: Suc8_plus8 nat_dvd_not_less)
qed
lemma reverse_endianness_list_rev_take_chunks:
"reverse_endianness_list bits = List.concat (rev (take_chunks 8 bits))"
by (induction "8 :: nat" bits rule: take_chunks.induct)
(auto simp: reverse_endianness_list.simps)
lemma reverse_endianness_list_simps:
"length bits \<le> 8 \<Longrightarrow> reverse_endianness_list bits = bits"
"length bits > 8 \<Longrightarrow> reverse_endianness_list bits = reverse_endianness_list (drop 8 bits) @ take 8 bits"
by (cases bits; auto simp: reverse_endianness_list_rev_take_chunks)+
lemma reverse_endianness_list_append:
assumes "8 dvd length a"
shows "reverse_endianness_list (a @ b) = reverse_endianness_list b @ reverse_endianness_list a"
using assms by (auto simp: reverse_endianness_list_rev_take_chunks take_chunks_append)
lemma length_reverse_endianness_list[simp]:
"length (reverse_endianness_list l) = length l"
by (induction l rule: reverse_endianness_list.induct) (auto simp: reverse_endianness_list.simps)
lemma reverse_endianness_list_take_8[simp]:
"reverse_endianness_list (take 8 bits) = take 8 bits"
by (auto simp: reverse_endianness_list_simps)
lemma reverse_reverse_endianness_list[simp]:
assumes "8 dvd length l"
shows "reverse_endianness_list (reverse_endianness_list l) = l"
proof (use assms in \<open>induction l rule: reverse_endianness_list.induct[case_names Step]\<close>)
case (Step bits)
then show ?case
by (auto simp: reverse_endianness_list.simps[of bits] reverse_endianness_list_append)
qed
declare repeat.simps[simp del]
lemma length_repeat[simp]: "length (repeat xs n) = nat n * length xs"
proof (induction xs n rule: repeat.induct[case_names Step])
case (Step xs n)
then show ?case unfolding repeat.simps[of xs n]
by (auto simp del: mult_Suc simp: mult_Suc[symmetric])
qed
lemma nth_repeat:
assumes "i < nat n * length xs"
shows "repeat xs n ! i = xs ! (i mod length xs)"
proof (use assms in \<open>induction xs n arbitrary: i rule: repeat.induct[case_names Step]\<close>)
case (Step xs n i)
show ?case
using Step.prems Step.IH[of "i - length xs"]
unfolding repeat.simps[of xs n]
by (auto simp: nth_append Divides.mod_geq[symmetric] nat_diff_distrib diff_mult_distrib)
qed
termination index_list
by (relation "measure (\<lambda>(i, j, step). nat ((j - i + step) * sgn step))") auto
lemma index_list_Zero[simp]: "index_list i j 0 = []"
by auto
lemma index_list_simps:
"0 < step \<Longrightarrow> from \<le> to \<Longrightarrow> index_list from to step = from # index_list (from + step) to step"
"0 < step \<Longrightarrow> from > to \<Longrightarrow> index_list from to step = []"
"0 > step \<Longrightarrow> from \<ge> to \<Longrightarrow> index_list from to step = from # index_list (from + step) to step"
"0 > step \<Longrightarrow> from < to \<Longrightarrow> index_list from to step = []"
by auto
lemma index_list_step1_upto[simp]: "index_list i j 1 = [i..j]"
by (induction i j "1 :: int" rule: index_list.induct)
(auto simp: index_list_simps upto.simps)
lemma length_upto[simp]: "i \<le> j \<Longrightarrow> length [i..j] = nat (j - i + 1)"
by (induction i j rule: upto.induct) (auto simp: upto.simps)
lemma nth_upto[simp]: "i + int n \<le> j \<Longrightarrow> [i..j] ! n = i + int n"
by (induction i j arbitrary: n rule: upto.induct)
(auto simp: upto.simps nth_Cons split: nat.splits)
declare index_list.simps[simp del]
lemma index_list_singleton[simp]: "n \<noteq> 0 \<Longrightarrow> index_list i i n = [i]"
by (auto simp: index_list.simps[of i i n] index_list.simps[of "i + n" i n])
lemma genlist_add_upt[simp]: "genlist ((+) start) len = [start..<start + len]"
by (auto simp: genlist_def map_add_upt add.commute cong: map_cong)
lemma just_list_map_Some[simp]: "just_list (map Some v) = Some v" by (induction v) auto
lemma just_list_None_iff[simp]: "just_list xs = None \<longleftrightarrow> None \<in> set xs"
by (induction xs) (auto split: option.splits)
lemma just_list_None_member_None: "None \<in> set xs \<Longrightarrow> just_list xs = None"
by auto
lemma just_list_Some_iff[simp]: "just_list xs = Some ys \<longleftrightarrow> xs = map Some ys"
by (induction xs arbitrary: ys) (auto split: option.splits)
lemma just_list_cases:
assumes "just_list xs = y"
obtains (None) "None \<in> set xs" and "y = None"
| (Some) ys where "xs = map Some ys" and "y = Some ys"
using assms by (cases y) auto
lemma repeat_singleton_replicate[simp]:
"repeat [x] n = replicate (nat n) x"
proof (induction n)
case (nonneg n)
have "nat (1 + int m) = Suc m" for m by auto
then show ?case by (induction n) (auto simp: repeat.simps)
next
case (neg n)
then show ?case by (auto simp: repeat.simps)
qed
lemma and_bit_B1[simp]: "and_bit B1 b = b"
by (cases b) auto
lemma and_bit_idem[simp]: "and_bit b b = b"
by (cases b) auto
lemma and_bit_eq_iff:
"and_bit b b' = B0 \<longleftrightarrow> (b = B0 \<or> b' = B0)"
"and_bit b b' = BU \<longleftrightarrow> (b = BU \<or> b' = BU) \<and> b \<noteq> B0 \<and> b' \<noteq> B0"
"and_bit b b' = B1 \<longleftrightarrow> (b = B1 \<and> b' = B1)"
by (cases b; cases b'; auto)+
lemma foldl_and_bit_eq_iff:
shows "foldl and_bit b bs = B0 \<longleftrightarrow> (b = B0 \<or> B0 \<in> set bs)" (is ?B0)
and "foldl and_bit b bs = B1 \<longleftrightarrow> (b = B1 \<and> set bs \<subseteq> {B1})" (is ?B1)
and "foldl and_bit b bs = BU \<longleftrightarrow> (b = BU \<or> BU \<in> set bs) \<and> b \<noteq> B0 \<and> B0 \<notin> set bs" (is ?BU)
proof -
have "?B0 \<and> ?B1 \<and> ?BU"
proof (induction bs arbitrary: b)
case (Cons b' bs)
show ?case using Cons.IH by (cases b; cases b') auto
qed auto
then show ?B0 and ?B1 and ?BU by auto
qed
lemma bool_of_bitU_simps[simp]:
"bool_of_bitU B0 = Some False"
"bool_of_bitU B1 = Some True"
"bool_of_bitU BU = None"
by (auto simp: bool_of_bitU_def)
lemma bitops_bitU_of_bool[simp]:
"and_bit (bitU_of_bool x) (bitU_of_bool y) = bitU_of_bool (x \<and> y)"
"or_bit (bitU_of_bool x) (bitU_of_bool y) = bitU_of_bool (x \<or> y)"
"xor_bit (bitU_of_bool x) (bitU_of_bool y) = bitU_of_bool ((x \<or> y) \<and> \<not>(x \<and> y))"
"not_bit (bitU_of_bool x) = bitU_of_bool (\<not>x)"
"not_bit \<circ> bitU_of_bool = bitU_of_bool \<circ> Not"
by (auto simp: bitU_of_bool_def not_bit_def)
lemma image_bitU_of_bool_B0_B1: "bitU_of_bool ` bs \<subseteq> {B0, B1}"
by (auto simp: bitU_of_bool_def split: if_splits)
lemma bool_of_bitU_bitU_of_bool[simp]:
"bool_of_bitU \<circ> bitU_of_bool = Some"
"bool_of_bitU \<circ> (bitU_of_bool \<circ> f) = Some \<circ> f"
"bool_of_bitU (bitU_of_bool x) = Some x"
by (intro ext, auto simp: bool_of_bitU_def bitU_of_bool_def)+
abbreviation "BC_bitU_list \<equiv> instance_Sail2_values_Bitvector_list_dict instance_Sail2_values_BitU_Sail2_values_bitU_dict"
lemmas BC_bitU_list_def = instance_Sail2_values_Bitvector_list_dict_def instance_Sail2_values_BitU_Sail2_values_bitU_dict_def
abbreviation "BC_mword \<equiv> instance_Sail2_values_Bitvector_Machine_word_mword_dict"
lemmas BC_mword_defs = instance_Sail2_values_Bitvector_Machine_word_mword_dict_def
access_mword_def access_mword_inc_def access_mword_dec_def
(*update_mword_def update_mword_inc_def update_mword_dec_def*)
subrange_list_def subrange_list_inc_def subrange_list_dec_def
update_subrange_list_def update_subrange_list_inc_def update_subrange_list_dec_def
declare size_itself_int_def[simp]
declare size_itself_def[simp]
declare word_size[simp]
lemma int_of_mword_simps[simp]:
"int_of_mword False w = uint w"
"int_of_mword True w = sint w"
"int_of_bv BC_mword False w = Some (uint w)"
"int_of_bv BC_mword True w = Some (sint w)"
by (auto simp: int_of_mword_def int_of_bv_def BC_mword_defs)
lemma BC_mword_simps[simp]:
"unsigned_method BC_mword a = Some (uint a)"
"signed_method BC_mword a = Some (sint a)"
"length_method BC_mword (a :: ('a :: len) word) = int (LENGTH('a))"
by (auto simp: BC_mword_defs)
lemma of_bits_mword_of_bl[simp]:
assumes "just_list (map bool_of_bitU bus) = Some bs"
shows "of_bits_method BC_mword bus = Some (of_bl bs)"
and "of_bits_failwith BC_mword bus = of_bl bs"
using assms by (auto simp: BC_mword_defs of_bits_failwith_def maybe_failwith_def)
lemma nat_of_bits_aux_bl_to_bin_aux:
"nat_of_bools_aux acc bs = nat (bl_to_bin_aux bs (int acc))"
by (induction acc bs rule: nat_of_bools_aux.induct) auto
lemma nat_of_bits_bl_to_bin[simp]:
"nat_of_bools bs = nat (bl_to_bin bs)"
by (auto simp: nat_of_bools_def bl_to_bin_def nat_of_bits_aux_bl_to_bin_aux)
lemma unsigned_bits_of_mword[simp]:
"unsigned_method BC_bitU_list (bits_of_method BC_mword a) = Some (uint a)"
by (auto simp: BC_bitU_list_def BC_mword_defs unsigned_of_bits_def unsigned_of_bools_def)
definition mem_bytes_of_word :: "'a::len word \<Rightarrow> bitU list list" where
"mem_bytes_of_word w = rev (take_chunks 8 (map bitU_of_bool (to_bl w)))"
lemma mem_bytes_of_bits_mem_bytes_of_word[simp]:
assumes "8 dvd LENGTH('a)"
shows "mem_bytes_of_bits BC_mword (w :: 'a::len word) = Some (mem_bytes_of_word w)"
using assms
by (auto simp: mem_bytes_of_bits_def bytes_of_bits_def BC_mword_defs byte_chunks_take_chunks_8 mem_bytes_of_word_def)
lemma bits_of_bitU_list[simp]:
"bits_of_method BC_bitU_list v = v"
"of_bits_method BC_bitU_list v = Some v"
by (auto simp: BC_bitU_list_def)
lemma subrange_list_inc_drop_take:
"subrange_list_inc xs i j = drop (nat i) (take (nat (j + 1)) xs)"
by (auto simp: subrange_list_inc_def split_at_def)
lemma subrange_list_dec_drop_take:
assumes "i \<ge> 0" and "j \<ge> 0"
shows "subrange_list_dec xs i j = drop (length xs - nat (i + 1)) (take (length xs - nat j) xs)"
using assms unfolding subrange_list_dec_def
by (auto simp: subrange_list_inc_drop_take add.commute diff_diff_add nat_minus_as_int)
lemma update_subrange_list_inc_drop_take:
assumes "i \<ge> 0" and "j \<ge> i"
shows "update_subrange_list_inc xs i j xs' = take (nat i) xs @ xs' @ drop (nat (j + 1)) xs"
using assms unfolding update_subrange_list_inc_def
by (auto simp: split_at_def min_def)
lemma update_subrange_list_dec_drop_take:
assumes "j \<ge> 0" and "i \<ge> j"
shows "update_subrange_list_dec xs i j xs' = take (length xs - nat (i + 1)) xs @ xs' @ drop (length xs - nat j) xs"
using assms unfolding update_subrange_list_dec_def update_subrange_list_inc_def
by (auto simp: split_at_def min_def Let_def add.commute diff_diff_add nat_minus_as_int)
declare access_list_inc_def[simp]
lemma access_list_dec_rev_nth:
assumes "0 \<le> i" and "nat i < length xs"
shows "access_list_dec xs i = rev xs ! (nat i)"
using assms
by (auto simp: access_list_dec_def rev_nth intro!: arg_cong2[where f = List.nth])
lemma access_bv_dec_mword[simp]:
fixes w :: "('a::len) word"
assumes "0 \<le> n" and "nat n < LENGTH('a)"
shows "access_bv_dec BC_mword w n = bitU_of_bool (bit w (nat n))"
using assms unfolding access_bv_dec_def access_list_def
by (auto simp: access_list_dec_rev_nth BC_mword_defs rev_map test_bit_bl)
lemma access_list_dec_nth[simp]:
assumes "0 \<le> i"
shows "access_list_dec xs i = xs ! (length xs - nat (i + 1))"
using assms
by (auto simp: access_list_dec_def add.commute diff_diff_add nat_minus_as_int)
lemma update_list_inc_update[simp]:
"update_list_inc xs n x = xs[nat n := x]"
by (auto simp: update_list_inc_def)
lemma update_list_dec_update[simp]:
"update_list_dec xs n x = xs[length xs - nat (n + 1) := x]"
by (auto simp: update_list_dec_def add.commute diff_diff_add nat_minus_as_int)
lemma update_list_dec_update_rev:
"0 \<le> n \<Longrightarrow> nat n < length xs \<Longrightarrow> update_list_dec xs n x = rev ((rev xs)[nat n := x])"
by (auto simp: update_list_dec_def add.commute diff_diff_add nat_minus_as_int rev_update)
lemma access_list_dec_update_list_dec[simp]:
"0 \<le> n \<Longrightarrow> nat n < length xs \<Longrightarrow> access_list_dec (update_list_dec xs n x) n = x"
by (auto simp: access_list_dec_rev_nth update_list_dec_update_rev)
lemma bools_of_nat_aux_simps[simp]:
"\<And>len. len \<le> 0 \<Longrightarrow> bools_of_nat_aux len x acc = acc"
"\<And>len. bools_of_nat_aux (int (Suc len)) x acc =
bools_of_nat_aux (int len) (x div 2) ((if x mod 2 = 1 then True else False) # acc)"
by auto
declare bools_of_nat_aux.simps[simp del]
lemma bools_of_nat_aux_bin_to_bl_aux:
"bools_of_nat_aux len n acc = bin_to_bl_aux (nat len) (int n) acc"
proof (cases len)
case (nonneg len')
show ?thesis unfolding nonneg
proof (induction len' arbitrary: n acc)
case (Suc len'' n acc)
then show ?case
using zmod_int[of n 2]
by (cases "odd n") (auto simp del: of_nat_simps simp add: zdiv_int)
qed auto
qed auto
lemma bools_of_nat_bin_to_bl[simp]:
"bools_of_nat len n = bin_to_bl (nat len) (int n)"
by (auto simp: bools_of_nat_def bools_of_nat_aux_bin_to_bl_aux)
lemma add_one_bool_ignore_overflow_aux_rbl_succ[simp]:
"add_one_bool_ignore_overflow_aux xs = rbl_succ xs"
by (induction xs) auto
lemma add_one_bool_ignore_overflow_rbl_succ[simp]:
"add_one_bool_ignore_overflow xs = rev (rbl_succ (rev xs))"
unfolding add_one_bool_ignore_overflow_def by auto
lemma map_Not_bin_to_bl:
"map Not (bin_to_bl_aux len n acc) = bin_to_bl_aux len (-n - 1) (map Not acc)"
proof (induction len arbitrary: n acc)
case (Suc len n acc)
moreover have "(- (n div 2) - 1) = ((-n - 1) div 2)" by auto
moreover have "(n mod 2 = 0) = ((- n - 1) mod 2 = 1)" by presburger
ultimately show ?case by (auto simp: bin_last_def)
qed auto
lemma bools_of_int_bin_to_bl[simp]:
"bools_of_int len n = bin_to_bl (nat len) n"
by (auto simp: bools_of_int_def Let_def map_Not_bin_to_bl rbl_succ[unfolded bin_to_bl_def])
lemmas register_ops_of_simp[simp] = register_ops_of_def[of "register_ref_ext _ _ _ _ _ _"]
definition
register_read_ok :: "(string \<Rightarrow> ('regval \<Rightarrow> bool) option) \<Rightarrow> string \<Rightarrow> 'regval \<Rightarrow> bool"
where
"register_read_ok f nm r = (case f nm of None \<Rightarrow> False | Some P \<Rightarrow> P r)"
lemma option_bind_SomeE:
assumes "Option.bind x f = Some y"
obtains z where "x = Some z" and "f z = Some y"
using assms
by (cases x; auto)
lemma map_of_Cons_SomeE:
assumes "map_of ((x, y) # xs) x' = Some y'"
obtains "x' = x" and "y' = y" | "map_of xs x' = Some y'"
using assms
by (cases "x' = x") auto
end
|