File: rts.c

package info (click to toggle)
sail-ocaml 0.19.1%2Bdfsg5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 18,008 kB
  • sloc: ml: 75,941; ansic: 8,848; python: 1,342; exp: 560; sh: 474; makefile: 218; cpp: 36
file content (758 lines) | stat: -rw-r--r-- 19,224 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
/****************************************************************************/
/*     Sail                                                                 */
/*                                                                          */
/*  Sail and the Sail architecture models here, comprising all files and    */
/*  directories except the ASL-derived Sail code in the aarch64 directory,  */
/*  are subject to the BSD two-clause licence below.                        */
/*                                                                          */
/*  The ASL derived parts of the ARMv8.3 specification in                   */
/*  aarch64/no_vector and aarch64/full are copyright ARM Ltd.               */
/*                                                                          */
/*  Copyright (c) 2013-2021                                                 */
/*    Kathyrn Gray                                                          */
/*    Shaked Flur                                                           */
/*    Stephen Kell                                                          */
/*    Gabriel Kerneis                                                       */
/*    Robert Norton-Wright                                                  */
/*    Christopher Pulte                                                     */
/*    Peter Sewell                                                          */
/*    Alasdair Armstrong                                                    */
/*    Brian Campbell                                                        */
/*    Thomas Bauereiss                                                      */
/*    Anthony Fox                                                           */
/*    Jon French                                                            */
/*    Dominic Mulligan                                                      */
/*    Stephen Kell                                                          */
/*    Mark Wassell                                                          */
/*    Alastair Reid (Arm Ltd)                                               */
/*                                                                          */
/*  All rights reserved.                                                    */
/*                                                                          */
/*  This work was partially supported by EPSRC grant EP/K008528/1 <a        */
/*  href="http://www.cl.cam.ac.uk/users/pes20/rems">REMS: Rigorous          */
/*  Engineering for Mainstream Systems</a>, an ARM iCASE award, EPSRC IAA   */
/*  KTF funding, and donations from Arm.  This project has received         */
/*  funding from the European Research Council (ERC) under the European     */
/*  Union’s Horizon 2020 research and innovation programme (grant           */
/*  agreement No 789108, ELVER).                                            */
/*                                                                          */
/*  This software was developed by SRI International and the University of  */
/*  Cambridge Computer Laboratory (Department of Computer Science and       */
/*  Technology) under DARPA/AFRL contracts FA8650-18-C-7809 ("CIFV")        */
/*  and FA8750-10-C-0237 ("CTSRD").                                         */
/*                                                                          */
/*  SPDX-License-Identifier: BSD-2-Clause                                   */
/****************************************************************************/

#include <string.h>
#include <getopt.h>
#include <inttypes.h>
#include <sys/types.h>

#include "sail.h"
#include "rts.h"
#include "elf.h"

#ifdef __cplusplus
extern "C" {
#endif

extern void (*sail_rts_set_coverage_file)(const char *);

static uint64_t g_elf_entry;
uint64_t g_cycle_count = 0;
static uint64_t g_cycle_limit;

extern void model_pre_exit();

unit sail_exit(unit u)
{
  model_pre_exit();
  exit(EXIT_SUCCESS);
  return UNIT;
}

static uint64_t g_verbosity = 0;

fbits sail_get_verbosity(const unit u)
{
  return g_verbosity;
}

bool g_sleeping = false;

unit sleep_request(const unit u)
{
  g_sleeping = true;
  return UNIT;
}

unit wakeup_request(const unit u)
{
  g_sleeping = false;
  return UNIT;
}

bool sleeping(const unit u)
{
    return g_sleeping;
}

/* ***** Sail memory builtins ***** */

/*
 * We organise memory available to the sail model into a linked list
 * of dynamically allocated MASK + 1 size blocks.
 */
struct block {
  uint64_t block_id;
  uint8_t *mem;
  struct block *next;
};

struct block *sail_memory = NULL;

struct tag_block {
  uint64_t block_id;
  bool *mem;
  struct tag_block *next;
};

struct tag_block *sail_tags = NULL;

/*
 * Must be one less than a power of two.
 */
uint64_t MASK = 0xFFFFFFul;

/*
 * All sail vectors are at least 64-bits, but only the bottom 8 bits
 * are used in the second argument.
 */
void write_mem(uint64_t address, uint64_t byte)
{
  uint64_t mask = address & ~MASK;
  uint64_t offset = address & MASK;

  struct block *current = sail_memory;

  while (current != NULL) {
    if (current->block_id == mask) {
      current->mem[offset] = (uint8_t) byte;
      return;
    } else {
      current = current->next;
    }
  }

  /*
   * If we couldn't find a block matching the mask, allocate a new
   * one, write the byte, and put it at the front of the block list.
   */
  struct block *new_block = (struct block *)malloc(sizeof(struct block));
  new_block->block_id = mask;
  new_block->mem = (uint8_t *)calloc(MASK + 1, sizeof(uint8_t));
  new_block->mem[offset] = (uint8_t) byte;
  new_block->next = sail_memory;
  sail_memory = new_block;
}

uint64_t read_mem(uint64_t address)
{
  uint64_t mask = address & ~MASK;
  uint64_t offset = address & MASK;

  struct block *current = sail_memory;

  while (current != NULL) {
    if (current->block_id == mask) {
      return (uint64_t) current->mem[offset];
    } else {
      current = current->next;
    }
  }

  return 0x00;
}

unit write_tag_bool(const uint64_t address, const bool tag)
{
  uint64_t mask = address & ~MASK;
  uint64_t offset = address & MASK;

  struct tag_block *current = sail_tags;

  while (current != NULL) {
    if (current->block_id == mask) {
      current->mem[offset] = tag;
      return UNIT;
    } else {
      current = current->next;
    }
  }

  /*
   * If we couldn't find a block matching the mask, allocate a new
   * one, write the byte, and put it at the front of the block list.
   */
  struct tag_block *new_block = (struct tag_block *)malloc(sizeof(struct tag_block));
  new_block->block_id = mask;
  new_block->mem = (bool *)calloc(MASK + 1, sizeof(bool));
  new_block->mem[offset] = tag;
  new_block->next = sail_tags;
  sail_tags = new_block;

  return UNIT;
}

unit emulator_write_tag(const uint64_t addr_size, const sbits addr, const bool tag)
{
  write_tag_bool(addr.bits, tag);
  return UNIT;
}

bool read_tag_bool(const uint64_t address)
{
  uint64_t mask = address & ~MASK;
  uint64_t offset = address & MASK;

  struct tag_block *current = sail_tags;

  while (current != NULL) {
    if (current->block_id == mask) {
      return current->mem[offset];
    } else {
      current = current->next;
    }
  }

  return false;
}

bool emulator_read_tag(const uint64_t addr_size, const sbits addr)
{
  return read_tag_bool(addr.bits);
}

void kill_mem()
{
  while (sail_memory != NULL) {
    struct block *next = sail_memory->next;

    free(sail_memory->mem);
    free(sail_memory);

    sail_memory = next;
  }

  while (sail_tags != NULL) {
    struct tag_block *next = sail_tags->next;

    free(sail_tags->mem);
    free(sail_tags);

    sail_tags = next;
  }
}

// ***** Memory builtins *****

bool write_ram(const mpz_t addr_size,     // Either 32 or 64
	       const mpz_t data_size_mpz, // Number of bytes
	       const lbits hex_ram,       // Currently unused
	       const lbits addr_bv,
	       const lbits data)
{
  uint64_t addr = mpz_get_ui(*addr_bv.bits);
  uint64_t data_size = mpz_get_ui(data_size_mpz);

  mpz_t buf;
  mpz_init_set(buf, *data.bits);

  uint64_t byte;
  for(uint64_t i = 0; i < data_size; ++i) {
    // Take the 8 low bits of buf and write to addr.
    byte = mpz_get_ui(buf) & 0xFF;
    write_mem(addr + i, byte);

    // Then shift buf 8 bits right.
    mpz_fdiv_q_2exp(buf, buf, 8);
  }

  mpz_clear(buf);
  return true;
}

sbits fast_read_ram(const int64_t data_size,
		    const uint64_t addr)
{
  uint64_t r = 0;

  uint64_t byte;
  for(uint64_t i = (uint64_t) data_size; i > 0; --i) {
    byte = read_mem(addr + (i - 1));
    r = r << 8;
    r = r + byte;
  }
  sbits res = {.len = (uint64_t)data_size * 8, .bits = r };
  return res;
}

void read_ram(lbits *data,
	      const mpz_t addr_size,
	      const mpz_t data_size_mpz,
	      const lbits hex_ram,
	      const lbits addr_bv)
{
  uint64_t addr = mpz_get_ui(*addr_bv.bits);
  uint64_t data_size = mpz_get_ui(data_size_mpz);

  mpz_set_ui(*data->bits, 0);
  data->len = data_size * 8;

  mpz_t byte;
  mpz_init(byte);
  for(uint64_t i = data_size; i > 0; --i) {
    mpz_set_ui(byte, read_mem(addr + (i - 1)));
    mpz_mul_2exp(*data->bits, *data->bits, 8);
    mpz_add(*data->bits, *data->bits, byte);
  }

  mpz_clear(byte);
}

void platform_read_mem(lbits *data,
                       const int read_kind,
                       const uint64_t addr_size,
                       const sbits addr,
                       const mpz_t n)
{
  sbits sdata;
  uint64_t len = mpz_get_ui(n); /* Sail type says always >0 */
  if (len <= 8) {
    /* fast path for small reads */
    sdata = fast_read_ram(len, addr.bits);
    RECREATE_OF(lbits, sbits)(data, sdata, true);
  } else {
    mpz_t mpz_addr_size;
    mpz_init(mpz_addr_size);
    mpz_set_ui(mpz_addr_size, addr_size);
    mpz_t addr_bv;
    mpz_init(addr_bv);
    mpz_set_ui(addr_bv, addr.bits);
    read_ram(data, mpz_addr_size, n, (lbits){.len=0, .bits=NULL}, (lbits){.len=addr.len, .bits=&addr_bv});
    mpz_clear(mpz_addr_size);
    mpz_clear(addr_bv);
  }
}

unit platform_write_mem_ea(const int write_kind,
                           const uint64_t addr_size,
                           const sbits addr,
                           const mpz_t n)
{
    return UNIT;
}

bool platform_write_mem(const int write_kind,
                        const uint64_t addr_size,
                        const sbits addr,
                        const mpz_t n,
                        const lbits data)
{
    mpz_t mpz_addr_size;
    mpz_init(mpz_addr_size);
    mpz_set_ui(mpz_addr_size, addr_size);
    mpz_t addr_bv;
    mpz_init(addr_bv);
    mpz_set_ui(addr_bv, addr.bits);
    bool res = write_ram(mpz_addr_size, n, (lbits){.len=0, .bits=NULL}, (lbits){.len=addr.len, .bits=&addr_bv}, data);
    mpz_clear(mpz_addr_size);
    mpz_clear(addr_bv);
    return res;
}

bool platform_excl_res(const unit unit)
{
    return true;
}

unit platform_barrier()
{
    return UNIT;
}

void emulator_read_mem(lbits *data,
                       const uint64_t addr_size,
                       const sbits addr,
                       const mpz_t n)
{
  platform_read_mem(data, 0, addr_size, addr, n);
}

void emulator_read_mem_ifetch(lbits *data,
                              const uint64_t addr_size,
                              const sbits addr,
                              const mpz_t n)
{
  platform_read_mem(data, 0, addr_size, addr, n);
}

void emulator_read_mem_exclusive(lbits *data,
                                 const uint64_t addr_size,
                                 const sbits addr,
                                 const mpz_t n)
{
  platform_read_mem(data, 0, addr_size, addr, n);
}

bool emulator_write_mem(const uint64_t addr_size,
                        const sbits addr,
                        const mpz_t n,
                        const lbits data)
{
  return platform_write_mem(0, addr_size, addr, n, data);
}

bool emulator_write_mem_exclusive(const uint64_t addr_size,
                                  const sbits addr,
                                  const mpz_t n,
                                  const lbits data)
{
  return platform_write_mem(0, addr_size, addr, n, data);
}

unit load_raw(fbits addr, const_sail_string file)
{
  FILE *fp = fopen(file, "r");

  if (!fp) {
    fprintf(stderr, "[Sail] Raw file %s could not be loaded\n", file);
    exit(EXIT_FAILURE);
  }

  uint64_t byte;
  while ((byte = (uint64_t)fgetc(fp)) != EOF) {
    write_mem(addr, byte);
    addr++;
  }

  return UNIT;
}

void load_image(char *file)
{
  FILE *fp = fopen(file, "r");

  if (!fp) {
    fprintf(stderr, "[Sail] Image file %s could not be loaded\n", file);
    exit(EXIT_FAILURE);
  }

  char *addr = NULL;
  char *data = NULL;
  size_t len = 0;

  while (true) {
    ssize_t addr_len = getline(&addr, &len, fp);
    if (addr_len == -1) break;
    ssize_t data_len = getline(&data, &len, fp);
    if (data_len == -1) break;

    if (!strcmp(addr, "elf_entry\n")) {
      if (sscanf(data, "%" PRIu64 "\n", &g_elf_entry) != 1) {
	fprintf(stderr, "[Sail] Failed to parse elf_entry\n");
        exit(EXIT_FAILURE);
      };
      fprintf(stderr, "[Sail] Elf entry point: %" PRIx64 "\n", g_elf_entry);
    } else {
      write_mem((uint64_t) atoll(addr), (uint64_t) atoll(data));
    }
  }

  free(addr);
  free(data);
  fclose(fp);
}

// ***** Tracing support *****

static int64_t g_trace_depth;
//static int64_t g_trace_max_depth;
static bool g_trace_enabled;

unit enable_tracing(const unit u)
{
  g_trace_depth = 0;
  g_trace_enabled = true;
  return UNIT;
}

unit disable_tracing(const unit u)
{
  g_trace_depth = 0;
  g_trace_enabled = false;
  return UNIT;
}

bool is_tracing(const unit u)
{
  return g_trace_enabled;
}

void trace_fbits(const fbits x) {
  if (g_trace_enabled) fprintf(stderr, "0x%" PRIx64, x);
}

void trace_unit(const unit u) {
  if (g_trace_enabled) fputs("()", stderr);
}

void trace_sail_string(const_sail_string str) {
  if (g_trace_enabled) fputs(str, stderr);
}

void trace_sail_int(const sail_int op) {
  if (g_trace_enabled) mpz_out_str(stderr, 10, op);
}

void trace_lbits(const lbits op) {
  if (g_trace_enabled) fprint_bits("", op, "", stderr);
}

void trace_bool(const bool b) {
  if (g_trace_enabled) {
    if (b) {
      fprintf(stderr, "true");
    } else {
      fprintf(stderr, "false");
    }
  }
}

void trace_unknown(void) {
  if (g_trace_enabled) fputs("?", stderr);
}

void trace_argsep(void) {
  if (g_trace_enabled) fputs(", ", stderr);
}

void trace_argend(void) {
  if (g_trace_enabled) fputs(")\n", stderr);
}

void trace_retend(void) {
  if (g_trace_enabled) fputs("\n", stderr);
}

void trace_start(char *name)
{
  if (g_trace_enabled) {
    fprintf(stderr, "[TRACE] ");
    for (int64_t i = 0; i < g_trace_depth; ++i) {
      fprintf(stderr, "%s", "|   ");
    }
    fprintf(stderr, "%s(", name);
    g_trace_depth++;
  }
}

void trace_end(void)
{
  if (g_trace_enabled) {
    fprintf(stderr, "[TRACE] ");
    for (int64_t i = 0; i < g_trace_depth; ++i) {
      fprintf(stderr, "%s", "|   ");
    }
    g_trace_depth--;
  }
}

/* ***** ELF functions ***** */

void elf_entry(mpz_t *rop, const unit u)
{
  mpz_set_ui(*rop, g_elf_entry);
}

void elf_tohost(mpz_t *rop, const unit u)
{
  mpz_set_ui(*rop, 0x0ul);
}

/* ***** Cycle limit ***** */

/* NB Also increments cycle_count */
bool cycle_limit_reached(const unit u)
{
  return ++g_cycle_count >= g_cycle_limit && g_cycle_limit != 0;
}

unit cycle_count(const unit u)
{
  if (cycle_limit_reached(UNIT)) {
    printf("\n[Sail] TIMEOUT: exceeded %" PRId64 " cycles\n", g_cycle_limit);
    exit(EXIT_SUCCESS);
  }
  return UNIT;
}

void get_cycle_count(sail_int *rop, const unit u)
{
    mpz_set_ui(*rop, g_cycle_count);
}

/* ***** Argument Parsing ***** */

static struct option options[] = {
  {"binary",     required_argument, 0, 'b'},
  {"cyclelimit", required_argument, 0, 'l'},
  {"config",     required_argument, 0, 'C'},
  {"elf",        required_argument, 0, 'e'},
  {"entry",      required_argument, 0, 'n'},
  {"image",      required_argument, 0, 'i'},
  {"coverage",   required_argument, 0, 'c'},
  {"verbosity",  required_argument, 0, 'v'},
  {"help",       no_argument,       0, 'h'},
  {0, 0, 0, 0}
};

static void print_usage()
{
  struct option *opt = options;
  while (opt->name) {
    printf("\t -%c\t %s\n", (char)opt->val, opt->name);
    opt++;
  }
  exit(EXIT_SUCCESS);
}

int process_arguments(int argc, char *argv[])
{
  int c;
  bool     elf_entry_set = false;
  uint64_t elf_entry;

  while (true) {
    int option_index = 0;
    c = getopt_long(argc, argv, "e:n:i:b:l:C:c:v:h", options, &option_index);

    if (c == -1) break;

    switch (c) {
    case 'C': {
        char arg[100];
        uint64_t value;
        if (sscanf(optarg, "%99[a-zA-Z0-9_-.]=0x%" PRIx64, arg, &value) == 2) {
            // do nothing
        } else if (sscanf(optarg, "%99[a-zA-Z0-9_-.]=%" PRId64, arg, &value) == 2) {
            // do nothing
        } else {
          fprintf(stderr, "Could not parse argument %s\n", optarg);
#ifdef HAVE_SETCONFIG
          z__ListConfig(UNIT);
#endif
          return -1;
        };
#ifdef HAVE_SETCONFIG
        mpz_t s_value;
        mpz_init_set_ui(s_value, value);
        z__SetConfig(arg, s_value);
        mpz_clear(s_value);
#else
        fprintf(stderr, "Ignoring flag -C %s", optarg);
#endif
      }
      break;

    case 'b': ;
      uint64_t addr;
      char *cp, *file;

      addr = strtoull(optarg, &cp, 0);
      if (cp == optarg || cp[0] != ',' || cp[1] == '\0') {
	fprintf(stderr, "Could not parse argument %s\n", optarg);
	return -1;
      };
      file = cp + 1;

      load_raw(addr, file);
      break;

    case 'i':
      load_image(optarg);
      break;

    case 'e':
      load_elf(optarg, NULL, &g_elf_entry);
      break;

    case 'n':
      if (!sscanf(optarg, "0x%" PRIx64, &elf_entry)) {
	fprintf(stderr, "Could not parse address %s\n", optarg);
	return -1;
      }
      elf_entry_set = true;
      break;

    case 'l':
      if (!sscanf(optarg, "%" PRId64, &g_cycle_limit)) {
	fprintf(stderr, "Could not parse cycle limit %s\n", optarg);
	return -1;
      }
      break;

    case 'c':
      if (sail_rts_set_coverage_file != NULL) {
        sail_rts_set_coverage_file(optarg);
      } else {
        fprintf(stderr, "Ignoring flag -c %s. Requires the model to be compiled with coverage\n", optarg);
      }
      break;

    case 'v':
      if (!sscanf(optarg, "0x%" PRIx64, &g_verbosity)) {
       fprintf(stderr, "Could not parse verbosity flags %s\n", optarg);
       return -1;
      }
      break;

    case 'h':
      print_usage();
      break;

    default:
      fprintf(stderr, "Unrecognized option %s\n", optarg);
      print_usage();
      return -1;
    }
  }

  // assignment to g_elf_entry is deferred until the end of file so that an
  // explicit command line flag will override the address read from the ELF
  // file.
  if (elf_entry_set) {
      g_elf_entry = elf_entry;
  }

  return 0;
}

/* ***** Setup and cleanup functions for RTS ***** */

void setup_rts(void)
{
  disable_tracing(UNIT);
  setup_library();
}

void cleanup_rts(void)
{
  cleanup_library();
  kill_mem();
}

#ifdef __cplusplus
}
#endif