1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
|
(*========================================================================*)
(* *)
(* This software was developed by the University of Cambridge Computer *)
(* Laboratory as part of the Rigorous Engineering of Mainstream Systems *)
(* (REMS) project, funded by EPSRC grant EP/K008528/1. *)
(* *)
(* SPDX-License-Identifier: BSD-2-Clause *)
(*========================================================================*)
default Order dec
val extern forall Type 'a. ('a, list<'a>) -> bool effect pure ismember
val extern forall Type 'a. list<'a> -> nat effect pure listlength
function (bit[8 ]) ASR8 ((bit[8 ]) v, ([|8 |]) shift) = let v2 = ((bit[16 ]) (EXTS(v))) in (bit[8 ]) (mask(v2 >> shift))
function (bit[16]) ASR16 ((bit[16]) v, ([|16|]) shift) = let v2 = ((bit[32 ]) (EXTS(v))) in (bit[16]) (mask(v2 >> shift))
function (bit[32]) ASR32 ((bit[32]) v, ([|32|]) shift) = let v2 = ((bit[64 ]) (EXTS(v))) in (bit[32]) (mask(v2 >> shift))
function (bit[64]) ASR64 ((bit[64]) v, ([|64|]) shift) = let v2 = ((bit[128]) (EXTS(v))) in (bit[64]) (mask(v2 >> shift))
function (bit[8 ]) ROR8 ((bit[8 ]) v, ([|8 |]) shift) = let v2 = ((bit[16 ]) (v:v)) in (bit[8 ]) (mask(v2 >> shift))
function (bit[16]) ROR16 ((bit[16]) v, ([|16|]) shift) = let v2 = ((bit[32 ]) (v:v)) in (bit[16]) (mask(v2 >> shift))
function (bit[32]) ROR32 ((bit[32]) v, ([|32|]) shift) = let v2 = ((bit[64 ]) (v:v)) in (bit[32]) (mask(v2 >> shift))
function (bit[64]) ROR64 ((bit[64]) v, ([|64|]) shift) = let v2 = ((bit[128]) (v:v)) in (bit[64]) (mask(v2 >> shift))
function (bit[8 ]) ROL8 ((bit[8 ]) v, ([|8 |]) shift) = let v2 = ((bit[16 ]) (v:v)) in (bit[8 ]) (mask(v2 << shift))
function (bit[16]) ROL16 ((bit[16]) v, ([|16|]) shift) = let v2 = ((bit[32 ]) (v:v)) in (bit[16]) (mask(v2 << shift))
function (bit[32]) ROL32 ((bit[32]) v, ([|32|]) shift) = let v2 = ((bit[64 ]) (v:v)) in (bit[32]) (mask(v2 << shift))
function (bit[64]) ROL64 ((bit[64]) v, ([|64|]) shift) = let v2 = ((bit[128]) (v:v)) in (bit[64]) (mask(v2 << shift))
(*val cast bool -> bit effect pure cast_bool_bit
val cast bit -> int effect pure cast_bit_int *)
function forall Nat 'n, Nat 'm, Nat 'o, 'n <= 0, 'm <= 'o. ([|0:'o|]) negative_to_zero (([|'n:'m|]) x) =
if x < 0 then 0 else x
typedef byte = bit[8]
typedef qword = bit[64]
typedef regn = [|15|]
typedef byte_stream = list<byte>
typedef ostream = option<byte_stream>
(* --------------------------------------------------------------------------
Registers
-------------------------------------------------------------------------- *)
(* Program Counter *)
register qword RIP
(* General purpose registers *)
register qword RAX (* 0 *)
register qword RCX (* 1 *)
register qword RDX (* 2 *)
register qword RBX (* 3 *)
register qword RSP (* 4 *)
register qword RBP (* 5 *)
register qword RSI (* 6 *)
register qword RDI (* 7 *)
register qword R8
register qword R9
register qword R10
register qword R11
register qword R12
register qword R13
register qword R14
register qword R15
let (vector<0,16,inc,(register<qword>)>) REG =
[RAX,RCX,RDX,RBX,RSP,RBP,RSI,RDI,R8,R9,R10,R11,R12,R13,R14,R15]
(* Flags *)
register bit[1] CF
register bit[1] PF
register bit[1] AF
register bit[1] ZF
register bit[1] SF
register bit[1] OF
(* --------------------------------------------------------------------------
Memory
-------------------------------------------------------------------------- *)
val extern forall Nat 'n. (qword, [|'n|]) -> (bit[8 * 'n]) effect { rmem } rMEM
val extern forall Nat 'n. (qword, [|'n|]) -> (bit[8 * 'n]) effect { rmem } rMEM_locked
function forall Nat 'n. (bit[8 * 'n]) effect { rmem } rMEMl ((bool) locked, (qword) addr, ([|'n|]) size) =
if locked then rMEM_locked(addr, size) else rMEM(addr, size)
val extern forall Nat 'n. ( bit[64] , [|'n|]) -> unit effect { eamem } MEMea
val extern forall Nat 'n. ( bit[64] , [|'n|]) -> unit effect { eamem } MEMea_locked
val extern forall Nat 'n. ( bit[64] , [|'n|] , bit[8*'n]) -> unit effect { wmv } MEMval
val extern unit -> unit effect { barr } X86_MFENCE
function forall Nat 'n. unit effect {eamem, wmv} wMEM ((bool) locked, (qword) addr, ([|'n|]) len, (bit[8 * 'n]) data) = {
if locked then MEMea_locked(addr, len) else MEMea(addr, len);
MEMval(addr, len, data);
}
(* --------------------------------------------------------------------------
Helper functions
-------------------------------------------------------------------------- *)
(* Instruction addressing modes *)
typedef wsize = const union {
bool Sz8;
unit Sz16;
unit Sz32;
unit Sz64;
}
function ([|8:64|]) size_to_int((wsize) s) =
switch(s) {
case (Sz8(_)) -> 8
case Sz16 -> 16
case Sz32 -> 32
case Sz64 -> 64
}
typedef base = const union {
unit NoBase;
unit RipBase;
regn RegBase;
}
typedef scale_index = (bit[2],regn)
typedef rm = const union {
regn X86_Reg;
(option<scale_index>,base,qword) Mem;
}
typedef dest_src = const union {
(rm,qword) Rm_i;
(rm,regn) Rm_r;
(regn,rm) R_rm;
}
typedef imm_rm = const union {
rm Rm;
qword Imm;
}
typedef bit_offset = const union {
(rm, qword) Bit_rm_imm;
(rm, regn) Bit_rm_r;
}
typedef monop_name = enumerate { X86_Dec; X86_Inc; X86_Not; X86_Neg }
typedef binop_name = enumerate {
X86_Add; X86_Or; X86_Adc; X86_Sbb; X86_And; X86_Sub; X86_Xor; X86_Cmp;
X86_Rol; X86_Ror; X86_Rcl; X86_Rcr; X86_Shl; X86_Shr; X86_Test; X86_Sar;
}
typedef bitop_name = enumerate { Bts; Btc; Btr }
function binop_name opc_to_binop_name ((bit[4]) opc) =
switch opc
{
case 0x0 -> X86_Add
case 0x1 -> X86_Or
case 0x2 -> X86_Adc
case 0x3 -> X86_Sbb
case 0x4 -> X86_And
case 0x5 -> X86_Sub
case 0x6 -> X86_Xor
case 0x7 -> X86_Cmp
case 0x8 -> X86_Rol
case 0x9 -> X86_Ror
case 0xa -> X86_Rcl
case 0xb -> X86_Rcr
case 0xc -> X86_Shl
case 0xd -> X86_Shr
case 0xe -> X86_Test
case 0xf -> X86_Sar
}
typedef cond = enumerate {
X86_O; X86_NO; X86_B; X86_NB; X86_E; X86_NE; X86_NA; X86_A; X86_S;
X86_NS; X86_P; X86_NP; X86_L; X86_NL; X86_NG; X86_G; X86_ALWAYS;
}
function cond bv_to_cond ((bit[4]) v) =
switch v
{
case 0x0 -> X86_O
case 0x1 -> X86_NO
case 0x2 -> X86_B
case 0x3 -> X86_NB
case 0x4 -> X86_E
case 0x5 -> X86_NE
case 0x6 -> X86_NA
case 0x7 -> X86_A
case 0x8 -> X86_S
case 0x9 -> X86_NS
case 0xa -> X86_P
case 0xb -> X86_NP
case 0xc -> X86_L
case 0xd -> X86_NL
case 0xe -> X86_NG
case 0xf -> X86_G
}
(* Effective addresses *)
typedef ea = const union {
(wsize,qword) Ea_i;
(wsize,regn) Ea_r;
(wsize,qword) Ea_m;
}
function qword ea_index ((option<scale_index>) index) =
switch (index) {
case None -> 0x0000000000000000
case (Some(scale, idx)) ->
let x = (qword) (0x0000000000000001 << scale) in
let y = (qword) (REG[idx]) in
let z = (bit[128]) (x * y) in
z[63 .. 0]
}
function qword ea_base ((base) b) =
switch b {
case NoBase -> 0x0000000000000000
case RipBase -> RIP
case (RegBase(b)) -> REG[b]
}
function ea ea_rm ((wsize) sz, (rm) r) =
switch r {
case (X86_Reg(n)) -> Ea_r (sz, n)
case (Mem(idx, b, d)) -> Ea_m (sz, ea_index(idx) + (qword) (ea_base(b) + d))
}
function ea ea_dest ((wsize) sz, (dest_src) ds) =
switch ds {
case (Rm_i (v, _)) -> ea_rm (sz, v)
case (Rm_r (v, _)) -> ea_rm (sz, v)
case (R_rm (v, _)) -> Ea_r (sz, v)
}
function ea ea_src ((wsize) sz, (dest_src) ds) =
switch ds {
case (Rm_i (_, v)) -> Ea_i (sz, v)
case (Rm_r (_, v)) -> Ea_r (sz, v)
case (R_rm (_, v)) -> ea_rm (sz, v)
}
function ea ea_imm_rm ((imm_rm) i_rm) =
switch i_rm {
case (Rm (v)) -> ea_rm (Sz64, v)
case (Imm (v)) -> Ea_i (Sz64, v)
}
function qword restrict_size ((wsize) sz, (qword) imm) =
switch sz {
case (Sz8(_)) -> imm & 0x00000000000000FF
case Sz16 -> imm & 0x000000000000FFFF
case Sz32 -> imm & 0x00000000FFFFFFFF
case Sz64 -> imm
}
function regn sub4 ((regn) r) = negative_to_zero (r - 4)
function qword effect { rreg, rmem } EA ((bool) locked, (ea) e) =
switch e {
case (Ea_i(sz,i)) -> restrict_size(sz,i)
case (Ea_r((Sz8(have_rex)),r)) ->
if have_rex | r < 4 (* RSP *) | r > 7 (* RDI *) then
REG[r]
else
(REG[sub4 (r)] >> 8) & 0x00000000000000FF
case (Ea_r(sz,r)) -> restrict_size(sz, REG[r])
case (Ea_m((Sz8(_)),a)) -> EXTZ (rMEMl(locked, a, 1))
case (Ea_m(Sz16,a)) -> EXTZ (rMEMl(locked, a, 2))
case (Ea_m(Sz32,a)) -> EXTZ (rMEMl(locked, a, 4))
case (Ea_m(Sz64,a)) -> rMEMl(locked, a, 8)
}
function unit effect { wmem, wreg, escape } wEA ((bool) locked, (ea) e, (qword) w) =
switch e {
case (Ea_i(_,_)) -> exit ()
case (Ea_r((Sz8(have_rex)),r)) ->
if have_rex | r < 4 (* RSP *) | r > 7 (* RDI *) then
(REG[r])[7 .. 0] := w[7 .. 0]
else
(REG[sub4(r)])[15 .. 8] := (vector<15,8,dec,bit>) (w[7 .. 0])
case (Ea_r(Sz16,r)) ->(REG[r])[15 .. 0] := w[15 .. 0]
case (Ea_r(Sz32,r)) -> REG[r] := (qword) (EXTZ (w[31 .. 0]))
case (Ea_r(Sz64,r)) -> REG[r] := w
case (Ea_m((Sz8(_)),a)) -> wMEM(locked, a, 1, w[7 .. 0])
case (Ea_m(Sz16,a)) -> wMEM(locked, a, 2, w[15 .. 0])
case (Ea_m(Sz32,a)) -> wMEM(locked, a, 4, w[31 .. 0])
case (Ea_m(Sz64,a)) -> wMEM(locked, a, 8, w)
}
function (ea, qword, qword) read_dest_src_ea ((bool) locked, (wsize) sz, (dest_src) ds) =
let e = ea_dest (sz, ds) in
(e, EA(locked, e), EA(locked, ea_src(sz, ds)))
function qword call_dest_from_ea ((ea) e) =
switch e {
case (Ea_i(_, i)) -> RIP + i
case (Ea_r(_, r)) -> REG[r]
case (Ea_m(_, a)) -> rMEM(a, 8)
}
function qword get_ea_address ((ea) e) =
switch e {
case (Ea_i(_, i)) -> 0x0000000000000000
case (Ea_r(_, r)) -> 0x0000000000000000
case (Ea_m(_, a)) -> a
}
function unit jump_to_ea ((ea) e) = RIP := call_dest_from_ea(e)
function (ea, nat) bit_offset_ea ((wsize) sz, (bit_offset) bo) =
let s = size_to_int (sz) in
switch bo {
case (Bit_rm_imm (r_m, imm)) ->
let base_ea = ea_rm (sz, r_m) in
switch (base_ea) {
case (Ea_r(_, r)) -> (Ea_r(sz, r), imm mod s)
case (Ea_m(_, a)) -> (Ea_m(sz, a), imm mod s)
}
case (Bit_rm_r (r_m, r)) ->
let base_ea = ea_rm (sz, r_m) in
let offset = REG[r] in
switch (base_ea) {
case (Ea_r(_, r)) -> (Ea_r(sz, r), offset mod s)
case (Ea_m(_, a)) -> (Ea_m(Sz64, a + (offset div 8)), offset mod 64)
}
}
(* EFLAG updates *)
function bit byte_parity ((byte) b) =
{
(int) acc := 0;
foreach (i from 0 to 7) acc := acc + (int) (b[i]);
(bit) (acc mod 2 == 0)
}
function [|64|] size_width ((wsize) sz) =
switch sz {
case (Sz8(_)) -> 8
case Sz16 -> 16
case Sz32 -> 32
case Sz64 -> 64
}
function [|63|] size_width_sub1 ((wsize) sz) =
switch sz {
case (Sz8(_)) -> 7
case Sz16 -> 15
case Sz32 -> 31
case Sz64 -> 63
}
(* XXXXX
function bit word_size_msb ((wsize) sz, (qword) w) = w[size_width(sz) - 1]
*)
function bit word_size_msb ((wsize) sz, (qword) w) = w[size_width_sub1(sz)]
function unit write_PF ((qword) w) = PF := byte_parity (w[7 .. 0])
function unit write_SF ((wsize) sz, (qword) w) = SF := word_size_msb (sz, w)
function unit write_ZF ((wsize) sz, (qword) w) =
ZF := (bit)
(switch sz {
case (Sz8(_)) -> w[7 .. 0] == 0x00
case Sz16 -> w[15 .. 0] == 0x0000
case Sz32 -> w[31 .. 0] == 0x00000000
case Sz64 -> w == 0x0000000000000000
})
function unit write_arith_eflags_except_CF_OF ((wsize) sz, (qword) w) =
{
AF := undefined;
write_PF(w);
write_SF(sz, w);
write_ZF(sz, w);
}
function unit write_arith_eflags ((wsize) sz, (qword) w, (bit) c, (bit) x) =
{
CF := c;
OF := x;
write_arith_eflags_except_CF_OF (sz, w)
}
function unit write_logical_eflags ((wsize) sz, (qword) w) =
write_arith_eflags (sz, w, bitzero, bitzero)
function unit erase_eflags () =
{
AF := undefined;
CF := undefined;
OF := undefined;
PF := undefined;
SF := undefined;
ZF := undefined;
}
function nat value_width ((wsize) sz) = 2 ** size_width(sz)
function bit word_signed_overflow_add ((wsize) sz, (qword) a, (qword) b) =
(bit) (word_size_msb (sz, a) == word_size_msb (sz, b) &
word_size_msb (sz, a + b) != word_size_msb (sz, a))
function bit word_signed_overflow_sub ((wsize) sz, (qword) a, (qword) b) =
(bit) (word_size_msb (sz, a) != word_size_msb (sz, b) &
word_size_msb (sz, a - b) != word_size_msb (sz, a))
function (qword, bit, bit) add_with_carry_out ((wsize) sz, (qword) a, (qword) b) =
(a + b, (bit) ((int) (value_width (sz)) <= unsigned(a) + unsigned(b)),
word_signed_overflow_add (sz, a, b))
function (qword, bit, bit) sub_with_borrow ((wsize) sz, (qword) a, (qword) b) =
(a - b, (bit) (a < b), word_signed_overflow_sub (sz, a, b))
function unit write_arith_result ((bool) locked, (wsize) sz, (qword) w, (bit) c, (bit) x, (ea) e) =
{
write_arith_eflags (sz, w, c, x);
wEA (locked, e) := w;
}
function unit write_arith_result_no_CF_OF ((bool) locked, (wsize) sz, (qword) w, (ea) e) =
{
write_arith_eflags_except_CF_OF (sz, w);
wEA (locked, e) := w;
}
function unit write_logical_result ((bool) locked, (wsize) sz, (qword) w, (ea) e) =
{
write_arith_eflags_except_CF_OF (sz, w);
wEA (locked, e) := w;
}
function unit write_result_erase_eflags ((bool) locked, (qword) w, (ea) e) =
{
erase_eflags ();
wEA (locked, e) := w;
}
function qword effect { escape } sign_extension ((qword) w, (wsize) size1, (wsize) size2) =
{
(qword) x := w;
switch (size1, size2) {
case ((Sz8(_)), Sz16) -> x[15 .. 0] := (bit[16]) (EXTS (w[7 .. 0]))
case ((Sz8(_)), Sz32) -> x[31 .. 0] := (bit[32]) (EXTS (w[7 .. 0]))
case ((Sz8(_)), Sz64) -> x := (qword) (EXTS (w[7 .. 0]))
case (Sz16, Sz32) -> x[31 .. 0] := (bit[32]) (EXTS (w[15 .. 0]))
case (Sz16, Sz64) -> x := (qword) (EXTS (w[15 .. 0]))
case (Sz32, Sz64) -> x := (qword) (EXTS (w[31 .. 0]))
case _ -> undefined
};
x;
}
function [|64|] mask_shift ((wsize) sz, (qword) w) =
if sz == Sz64 then w[5 .. 0] else w[4 .. 0]
function qword rol ((wsize) sz, (qword) a, (qword) b) =
switch sz {
case (Sz8(_)) -> EXTZ (ROL8 (a[7 .. 0], b[2 .. 0]))
case Sz16 -> EXTZ (ROL16 (a[15 .. 0], b[3 .. 0]))
case Sz32 -> EXTZ (ROL32 (a[31 .. 0], b[4 .. 0]))
case Sz64 -> ROL64 (a, b[5 .. 0])
}
function qword ror ((wsize) sz, (qword) a, (qword) b) =
switch sz {
case (Sz8(_)) -> EXTZ (ROR8 (a[7 .. 0], b[2 .. 0]))
case Sz16 -> EXTZ (ROR16 (a[15 .. 0], b[3 .. 0]))
case Sz32 -> EXTZ (ROR32 (a[31 .. 0], b[4 .. 0]))
case Sz64 -> ROR64 (a, b[5 .. 0])
}
function qword sar ((wsize) sz, (qword) a, (qword) b) =
switch sz {
case (Sz8(_)) -> EXTZ (ASR8 (a[7 .. 0], b[2 .. 0]))
case Sz16 -> EXTZ (ASR16 (a[15 .. 0], b[3 .. 0]))
case Sz32 -> EXTZ (ASR32 (a[31 .. 0], b[4 .. 0]))
case Sz64 -> ASR64 (a, b[5 .. 0])
}
function unit write_binop ((bool) locked, (wsize) sz, (binop_name) bop, (qword) a, (qword) b, (ea) e) =
switch bop {
case X86_Add -> let (w,c,x) = add_with_carry_out (sz, a, b) in
write_arith_result (locked, sz, w, c, x, e)
case X86_Sub -> let (w,c,x) = sub_with_borrow (sz, a, b) in
write_arith_result (locked, sz, w, c, x, e)
case X86_Cmp -> let (w,c,x) = sub_with_borrow (sz, a, b) in
write_arith_eflags (sz, w, c, x)
case X86_Test -> write_logical_eflags (sz, a & b)
case X86_And -> write_logical_result (locked, sz, a & b, e) (* XXX rmn30 wrong flags? *)
case X86_Xor -> write_logical_result (locked, sz, a ^ b, e)
case X86_Or -> write_logical_result (locked, sz, a | b, e)
case X86_Rol -> write_result_erase_eflags (locked, rol (sz, a, b), e)
case X86_Ror -> write_result_erase_eflags (locked, ror (sz, a, b), e)
case X86_Sar -> write_result_erase_eflags (locked, sar (sz, a, b), e)
case X86_Shl -> write_result_erase_eflags (locked, a << mask_shift (sz, b), e)
case X86_Shr -> write_result_erase_eflags (locked, a >> mask_shift (sz, b), e)
case X86_Adc ->
{
let carry = (bit) CF in
let (qword) result = a + (qword) (b + carry) in
{
CF := (bit) ((int) (value_width (sz)) <= unsigned(a) + unsigned(b));
OF := undefined;
write_arith_result_no_CF_OF (locked, sz, result, e);
}
}
case X86_Sbb ->
{
let carry = (bit) CF in
let (qword) result = a - (qword) (b + carry) in
{
CF := (bit) (unsigned(a) < unsigned(b) + (int) carry);
OF := undefined;
write_arith_result_no_CF_OF (locked, sz, result, e);
}
}
case _ -> exit ()
}
function unit write_monop ((bool) locked, (wsize) sz, (monop_name) mop, (qword) a, (ea) e) =
switch mop {
case X86_Not -> wEA(locked, e) := ~(a)
case X86_Dec -> write_arith_result_no_CF_OF (locked, sz, a - 1, e)
case X86_Inc -> write_arith_result_no_CF_OF (locked, sz, a + 1, e)(* XXX rmn30 should set OF *)
case X86_Neg -> { write_arith_result_no_CF_OF (locked, sz, 0 - a, e);
CF := undefined;
}
}
function bool read_cond ((cond) c) =
switch c {
case X86_A -> ~(CF) & ~(ZF)
case X86_NB -> ~(CF)
case X86_B -> CF
case X86_NA -> CF | (bit) ZF
case X86_E -> ZF
case X86_G -> ~(ZF) & (SF == OF)
case X86_NL -> SF == OF
case X86_L -> SF != OF
case X86_NG -> ZF | SF != OF
case X86_NE -> ~(ZF)
case X86_NO -> ~(OF)
case X86_NP -> ~(PF)
case X86_NS -> ~(SF)
case X86_O -> OF
case X86_P -> PF
case X86_S -> SF
case X86_ALWAYS -> true
}
function qword pop_aux () =
let top = rMEM(RSP, 8) in
{
RSP := RSP + 8;
top;
}
function unit push_aux ((qword) w) =
{
RSP := RSP - 8;
wMEM(false, RSP, 8) := w;
}
function unit pop ((rm) r) = wEA (false, ea_rm (Sz64,r)) := pop_aux()
function unit pop_rip () = RIP := pop_aux()
function unit push ((imm_rm) i) = push_aux (EA (false, ea_imm_rm (i)))
function unit push_rip () = push_aux (RIP)
function unit drop ((qword) i) = if i[7 ..0] != 0 then () else RSP := RSP + i
(* --------------------------------------------------------------------------
Instructions
-------------------------------------------------------------------------- *)
scattered function unit execute
scattered typedef ast = const union
val ast -> unit effect {escape, rmem, rreg, undef, eamem, wmv, wreg, barr} execute
(* ==========================================================================
Binop
========================================================================== *)
union ast member (bool,binop_name,wsize,dest_src) Binop
function clause execute (Binop (locked,bop,sz,ds)) =
let (e, val_dst, val_src) = read_dest_src_ea (locked, sz, ds) in
write_binop (locked, sz, bop, val_dst, val_src, e)
(* ==========================================================================
Bitop
========================================================================== *)
union ast member (bool,bitop_name,wsize,bit_offset) Bitop
function clause execute (Bitop (locked,bop,sz,boffset)) =
let (base_ea, offset) = bit_offset_ea (sz, boffset) in {
word := EA(locked, base_ea);
bitval := word[offset];
word[offset] := switch(bop) {
case Bts -> bitone
case Btc -> (~ (bitval))
case Btr -> bitzero
};
CF := bitval;
wEA(locked, base_ea) := word;
}
(* ==========================================================================
CALL
========================================================================== *)
union ast member imm_rm CALL
function clause execute (CALL (i)) =
{
push_rip();
jump_to_ea (ea_imm_rm (i))
}
(* ==========================================================================
CLC
========================================================================== *)
union ast member unit CLC
function clause execute CLC = CF := false
(* ==========================================================================
CMC
========================================================================== *)
union ast member unit CMC
function clause execute CMC = CF := ~(CF)
(* ==========================================================================
CMPXCHG
========================================================================== *)
union ast member (bool, wsize,rm,regn) CMPXCHG
function clause execute (CMPXCHG (locked, sz,r,n)) =
let src = Ea_r(sz, n) in
let acc = Ea_r(sz, 0) in (* RAX *)
let dst = ea_rm(sz, r) in
let val_dst = EA(locked, dst) in
let val_acc = EA(false, acc) in
{
write_binop (locked, sz, X86_Cmp, val_acc, val_dst, src);
if val_acc == val_dst then
wEA(locked, dst) := EA (false, src)
else {
wEA(false, acc) := val_dst;
(* write back the original value in dst so that we always
perform locked write after locked read *)
wEA(locked, dst) := val_dst;
}
}
(* ==========================================================================
DIV
========================================================================== *)
union ast member (wsize,rm) X86_DIV
function clause execute (X86_DIV (sz,r)) =
let w = (int) (value_width(sz)) in
let eax = Ea_r(sz, 0) in (* RAX *)
let edx = Ea_r(sz, 2) in (* RDX *)
let n = unsigned(EA(false, edx)) * w + unsigned(EA(false, eax)) in
let d = unsigned(EA(false, ea_rm(sz, r))) in
let q = n quot d in
let m = n mod d in
if d == 0 | w < q then exit ()
else
{
wEA(false, eax) := (qword) q;
wEA(false, edx) := (qword) m;
erase_eflags();
}
(* ==========================================================================
HLT -- halt instruction used to end test in RMEM
========================================================================== *)
union ast member unit HLT
function clause execute (HLT) = ()
(* ==========================================================================
Jcc
========================================================================== *)
union ast member (cond,qword) Jcc
function clause execute (Jcc (c,i)) =
if read_cond (c) then RIP := RIP + i else ()
(* ==========================================================================
JMP
========================================================================== *)
union ast member rm JMP
function clause execute (JMP (r)) = RIP := EA (false, ea_rm (Sz64, r))
(* ==========================================================================
LEA
========================================================================== *)
union ast member (wsize,dest_src) LEA
function clause execute (LEA (sz,ds)) =
let src = ea_src (sz, ds) in
let dst = ea_dest (sz, ds) in
wEA(false, dst) := get_ea_address (src)
(* ==========================================================================
LEAVE
========================================================================== *)
union ast member unit LEAVE
function clause execute LEAVE =
{
RSP := RBP;
pop (X86_Reg (5)); (* RBP *)
}
(* ==========================================================================
LOOP
========================================================================== *)
union ast member (cond,qword) LOOP
function clause execute (LOOP (c,i)) =
{
RCX := RCX - 1;
if RCX != 0 & read_cond (c) then RIP := RIP + i else ();
}
(* ==========================================================================
MFENCE
========================================================================== *)
union ast member unit MFENCE
function clause execute (MFENCE) =
X86_MFENCE ()
(* ==========================================================================
Monop
========================================================================== *)
union ast member (bool,monop_name,wsize,rm) Monop
function clause execute (Monop (locked,mop,sz,r)) =
let e = ea_rm (sz, r) in write_monop (locked, sz, mop, EA(locked, e), e)
(* ==========================================================================
MOV
========================================================================== *)
union ast member (cond,wsize,dest_src) MOV
function clause execute (MOV (c,sz,ds)) =
if read_cond (c) then
let src = ea_src (sz, ds) in
let dst = ea_dest (sz, ds) in
wEA(false, dst) := EA(false, src)
else ()
(* ==========================================================================
MOVSX
========================================================================== *)
union ast member (wsize,dest_src,wsize) MOVSX
function clause execute (MOVSX (sz1,ds,sz2)) =
let src = ea_src (sz1, ds) in
let dst = ea_dest (sz2, ds) in
wEA(false, dst) := sign_extension (EA(false, src), sz1, sz2)
(* ==========================================================================
MOVZX
========================================================================== *)
union ast member (wsize,dest_src,wsize) MOVZX
function clause execute (MOVZX (sz1,ds,sz2)) =
let src = ea_src (sz1, ds) in
let dst = ea_dest (sz2, ds) in
wEA(false, dst) := EA(false, src)
(* ==========================================================================
MUL
========================================================================== *)
union ast member (wsize,rm) X86_MUL
function clause execute (X86_MUL (sz,r)) =
let eax = Ea_r (sz, 0) in (* RAX *)
let val_eax = EA(false, eax) in
let val_src = EA(false, ea_rm (sz, r)) in
switch sz {
case (Sz8(_)) -> wEA(false, Ea_r(Sz16,0)) := (val_eax * val_src)[63 .. 0]
case _ ->
let m = val_eax * val_src in
let edx = Ea_r (sz, 2) in (* RDX *)
{
wEA(false, eax) := m[63 .. 0];
wEA(false, edx) := (m >> size_width(sz))[63 .. 0]
}
}
(* ==========================================================================
NOP
========================================================================== *)
union ast member nat NOP
function clause execute (NOP (_)) = ()
(* ==========================================================================
POP
========================================================================== *)
union ast member rm POP
function clause execute (POP (r)) = pop(r)
(* ==========================================================================
PUSH
========================================================================== *)
union ast member imm_rm PUSH
function clause execute (PUSH (i)) = push(i)
(* ==========================================================================
RET
========================================================================== *)
union ast member qword RET
function clause execute (RET (i)) =
{
pop_rip();
drop(i);
}
(* ==========================================================================
SET
========================================================================== *)
union ast member (cond,bool,rm) SET
function clause execute (SET (c,b,r)) =
wEA(false, ea_rm(Sz8(b),r)) := if read_cond (c) then 1 else 0
(* ==========================================================================
STC
========================================================================== *)
union ast member unit STC
function clause execute STC = CF := true
(* ==========================================================================
XADD
========================================================================== *)
union ast member (bool, wsize,rm,regn) XADD
function clause execute (XADD (locked,sz,r,n)) =
let src = Ea_r (sz, n) in
let dst = ea_rm (sz, r) in
let val_src = EA(false, src) in
let val_dst = EA(locked, dst) in
{
wEA(false, src) := val_dst;
write_binop (locked, sz, X86_Add, val_src, val_dst, dst);
}
(* ==========================================================================
XCHG
========================================================================== *)
union ast member (bool,wsize,rm,regn) XCHG
function clause execute (XCHG (locked,sz,r,n)) =
let src = Ea_r (sz, n) in
let dst = ea_rm (sz, r) in
let val_src = EA(false, src) in
let val_dst = EA(locked, dst) in
{
wEA(false, src) := val_dst;
wEA(locked, dst) := val_src;
}
end ast
end execute
(* --------------------------------------------------------------------------
Decoding
-------------------------------------------------------------------------- *)
(*
function (qword,ostream) oimmediate8 ((ostream) strm) =
switch strm {
case (Some (b :: t)) -> ((qword) (EXTS(b)), Some (t))
case _ -> ((qword) undefined, (ostream) None)
}
function (qword,ostream) immediate8 ((byte_stream) strm) =
oimmediate8 (Some (strm))
function (qword,ostream) immediate16 ((byte_stream) strm) =
switch strm {
case b1 :: b2 :: t -> ((qword) (EXTS(b2 : b1)), Some (t))
case _ -> ((qword) undefined, (ostream) None)
}
function (qword,ostream) immediate32 ((byte_stream) strm) =
switch strm {
case b1 :: b2 :: b3 :: b4 :: t ->
((qword) (EXTS(b4 : b3 : b2 : b1)), Some (t))
case _ -> ((qword) undefined, (ostream) None)
}
function (qword,ostream) immediate64 ((byte_stream) strm) =
switch strm {
case b1 :: b2 :: b3 :: b4 :: b5 :: b6 :: b7 :: b8 :: t ->
((qword) (EXTS(b8 : b7 : b6 : b5 : b4 : b3 : b2 : b1)), Some (t))
case _ -> ((qword) undefined, (ostream) None)
}
function (qword, ostream) immediate ((wsize) sz, (byte_stream) strm) =
switch sz {
case (Sz8 (_)) -> immediate8 (strm)
case Sz16 -> immediate16 (strm)
case _ -> immediate32 (strm)
}
function (qword, ostream) oimmediate ((wsize) sz, (ostream) strm) =
switch strm {
case (Some (s)) -> immediate (sz, s)
case None -> ((qword) undefined, (ostream) None)
}
function (qword, ostream) full_immediate ((wsize) sz, (byte_stream) strm) =
if sz == Sz64 then immediate64 (strm) else immediate (sz, strm)
(* - Parse ModR/M and SIB bytes --------------------------------------------- *)
typedef REX = register bits [3 : 0] {
3 : W;
2 : R;
1 : X;
0 : B
}
function regn rex_reg ((bit[1]) b, (bit[3]) r) = unsigned(b : r)
function (qword, ostream) read_displacement ((bit[2]) Mod, (byte_stream) strm) =
if Mod == 0b01
then immediate8 (strm)
else if Mod == 0b10
then immediate32 (strm)
else (0x0000000000000000, (Some (strm)))
function (qword, ostream)
read_sib_displacement ((bit[2]) Mod, (byte_stream) strm) =
if Mod == 0b01 then immediate8 (strm) else immediate32 (strm)
function (rm, ostream)
read_SIB ((REX) rex, (bit[2]) Mod, (byte_stream) strm) =
switch strm {
case ((bit[2]) SS : (bit[3]) Index : (bit[3]) Base) :: strm1 ->
(let bbase = rex_reg (rex.B, Base) in
let index = rex_reg (rex.X, Index) in
let scaled_index = if index == 4 (* RSP *) then
(option<scale_index>) None
else let x = (scale_index) (SS, index) in
Some (x) in
(if bbase == 5 (* RBP *)
then let (displacement, strm2) =
read_sib_displacement (Mod, strm1) in
let bbase = if Mod == 0b00 then NoBase else RegBase (bbase)
in
(Mem (scaled_index, bbase, displacement), strm2)
else let (displacement, strm2) = read_displacement (Mod, strm1) in
(Mem (scaled_index, RegBase (bbase), displacement), strm2)))
case _ -> ((rm) undefined, (ostream) None)
}
function (regn, rm, ostream) read_ModRM ((REX) rex, (byte_stream) strm) =
switch strm {
case (0b00 : (bit[3]) RegOpc : 0b101) :: strm1 ->
let (displacement, strm2) = immediate32 (strm1) in
(rex_reg (rex.R, RegOpc), Mem (None, RipBase, displacement), strm2)
case (0b11 : (bit[3]) REG : (bit[3]) RM) :: strm1 ->
(rex_reg (rex.R, REG), Reg (rex_reg (rex.B, RM)), Some (strm1))
case ((bit[2]) Mod : (bit[3]) RegOpc : 0b100) :: strm1 ->
let (sib, strm2) = read_SIB (rex, Mod, strm1) in
(rex_reg (rex.R, RegOpc), sib, strm2)
case ((bit[2]) Mod : (bit[3]) RegOpc : (bit[3]) RM) :: strm1 ->
let (displacement, strm2) = read_displacement (Mod, strm1) in
(rex_reg (rex.R, RegOpc),
Mem (None, RegBase (rex_reg (rex.B, RM)), displacement),
strm2)
case _ -> ((regn) undefined, (rm) undefined, (ostream) None)
}
function (bit[3], rm, ostream)
read_opcode_ModRM ((REX) rex, (byte_stream) strm) =
let (opcode, r, strm1) = read_ModRM (rex, strm) in
((bit[3]) (cast_int_vec((int) opcode mod 8)), r, strm1)
(* - Prefixes --------------------------------------------------------------- *)
typedef prefix = [|5|]
function prefix prefix_group ((byte) b) =
switch b {
case 0xf0 -> 1
case 0xf2 -> 1
case 0xf3 -> 1
case 0x26 -> 2
case 0x2e -> 2
case 0x36 -> 2
case 0x3e -> 2
case 0x64 -> 2
case 0x65 -> 2
case 0x66 -> 3
case 0x67 -> 4
case _ -> if b[7 .. 4] == 0b0100 then 5 else 0
}
typedef atuple = (byte_stream, bool, REX, byte_stream)
val (list<prefix>, byte_stream, byte_stream) -> option<atuple> effect {undef} read_prefix
function rec option<atuple> read_prefix
((list<prefix>) s, (byte_stream) p, (byte_stream) strm) =
switch strm {
case h :: strm1 ->
let group = prefix_group (h) in
if group == 0 then
let x = (p, false, (REX) 0b0000, strm) in Some (x)
else if group == 5 then
let x = (p, true, (REX) (h[3 .. 0]), strm1) in Some (x)
else if ismember (group, s) then
None
else
read_prefix (group :: s, h :: p, strm1)
case _ -> let x = (p, false, (REX) undefined, strm) in Some (x)
}
function option<atuple> read_prefixes ((byte_stream) strm) =
read_prefix ([||||], [||||], strm)
function wsize op_size ((bool) have_rex, (bit[1]) w, (bit[1]) v, (bool) override) =
if v == 1 then
Sz8 (have_rex)
else if w == 1 then
Sz64
else if override then
Sz16
else
Sz32
function bool is_mem ((rm) r) =
switch r {case (Mem (_, _, _)) -> true case _ -> false}
(* - Decoder ---------------------------------------------------------------- *)
function (ast, ostream) decode_aux
((byte_stream) strm, (bool) have_rex, (REX) rex, (bool) op_size_override) =
switch strm
{
case (0b00 : (bit[3]) opc : 0b0 : (bit[1]) x : (bit[1]) v) :: strm2 ->
let (reg, r, strm3) = read_ModRM (rex, strm2) in
let sz = op_size (have_rex, rex.W, v, op_size_override) in
let binop = opc_to_binop_name (EXTZ (opc)) in
let src_dst = if x == 0 then Rm_r (r, reg) else R_rm (reg, r) in
(Binop (binop, sz, src_dst), strm3)
case (0b00 : (bit[3]) opc : 0b10 : (bit[1]) v) :: strm2 ->
let sz = op_size (have_rex, rex.W, v, op_size_override) in
let binop = opc_to_binop_name (EXTZ (opc)) in
let (imm, strm3) = immediate (sz, strm2) in
(Binop (binop, sz, Rm_i (Reg (0), imm)), strm3)
case (0x5 : (bit[1]) b : (bit[3]) r) :: strm2 ->
let reg = Reg (([|15|]) (rex.B : r)) in
(if b == 0b0 then PUSH (Rm (reg)) else POP (reg), Some (strm2))
case 0x63 :: strm2 ->
let (reg, r, strm3) = read_ModRM (rex, strm2) in
(MOVSX (Sz32, R_rm (reg, r), Sz64), strm3)
case (0x6 : 0b10 : (bit[1]) b : 0b0) :: strm2 ->
let (imm, strm3) = if b == 1 then immediate8 (strm2)
else immediate32 (strm2) in
(PUSH (Imm (imm)), strm3)
case (0x7 : (bit[4]) c) :: strm2 ->
let (imm, strm3) = immediate8 (strm2) in
(Jcc (bv_to_cond (c), imm), strm3)
case (0x8 : 0b000 : (bit[1]) v) :: strm2 ->
let sz = op_size (have_rex, rex.W, v, op_size_override) in
let (opc, r, strm3) = read_opcode_ModRM (rex, strm2) in
let (imm, strm4) = oimmediate (sz, strm3) in
let binop = opc_to_binop_name (EXTZ (opc)) in
(Binop (binop, sz, Rm_i (r, imm)), strm4)
case 0x83 :: strm2 ->
let sz = op_size (have_rex, rex.W, 1, op_size_override) in
let (opc, r, strm3) = read_opcode_ModRM (rex, strm2) in
let (imm, strm4) = oimmediate (sz, strm3) in
let binop = opc_to_binop_name (EXTZ (opc)) in
(Binop (binop, sz, Rm_i (r, imm)), strm4)
case (0x8 : 0b010 : (bit[1]) v) :: strm2 ->
let sz = op_size (have_rex, rex.W, v, op_size_override) in
let (reg, r, strm3) = read_ModRM (rex, strm2) in
(Binop (Test, sz, Rm_r (r, reg)), strm3)
case (0x8 : 0b011 : (bit[1]) v) :: strm2 ->
let sz = op_size (have_rex, rex.W, v, op_size_override) in
let (reg, r, strm3) = read_ModRM (rex, strm2) in
(XCHG (sz, r, reg), strm3)
case (0x8 : 0b10 : (bit[1]) x : (bit[1]) v) :: strm2 ->
let (reg, r, strm3) = read_ModRM (rex, strm2) in
let sz = op_size (have_rex, rex.W, v, op_size_override) in
let src_dst = if x == 0 then Rm_r (r, reg) else R_rm (reg, r) in
(MOV (ALWAYS, sz, src_dst), strm3)
case 0x8d :: strm2 ->
let sz = op_size (true, rex.W, 1, op_size_override) in
let (reg, r, strm3) = read_ModRM (rex, strm2) in
if is_mem (r) then (LEA (sz, R_rm (reg, r)), strm3) else exit ()
case 0x8f :: strm2 ->
let (opc, r, strm3) = read_opcode_ModRM (rex, strm2) in
if opc == 0 then (POP (r), strm3) else exit ()
case (0x9 : 0b0 : (bit[3]) r) :: strm2 ->
let sz = op_size (true, rex.W, 1, op_size_override) in
let reg = rex_reg (rex.B, r) in
if reg == 0 then
(NOP (listlength (strm)), Some (strm2))
else
(XCHG (sz, Reg (0), reg), Some (strm2))
case (0xa : 0b100 : (bit[1]) v) :: strm2 ->
let sz = op_size (true, rex.W, v, op_size_override) in
let (imm, strm3) = immediate (sz, strm2) in
(Binop (Test, sz, Rm_i (Reg (0), imm)), strm3)
case (0xb : (bit[1]) v : (bit[3]) r) :: strm2 ->
let sz = op_size (have_rex, rex.W, v, op_size_override) in
let (imm, strm3) = full_immediate (sz, strm2) in
let reg = rex_reg (rex.B, r) in
(MOV (ALWAYS, sz, Rm_i (Reg (reg), imm)), strm3)
case (0xc : 0b000 : (bit[1]) v) :: strm2 ->
let sz = op_size (have_rex, rex.W, v, op_size_override) in
let (opc, r, strm3) = read_opcode_ModRM (rex, strm2) in
let (imm, strm4) = oimmediate8 (strm3) in
let binop = opc_to_binop_name (0b1 : opc) in
if opc == 0b110 then exit ()
else (Binop (binop, sz, Rm_i (r, imm)), strm4)
case (0xc : 0b001 : (bit[1]) v) :: strm2 ->
if v == 0 then
let (imm, strm3) = immediate16 (strm2) in (RET (imm), strm3)
else
(RET (0), Some (strm2))
case (0xc : 0b011 : (bit[1]) v) :: strm2 ->
let sz = op_size (have_rex, rex.W, v, op_size_override) in
let (opc, r, strm3) = read_opcode_ModRM (rex, strm2) in
let (imm, strm4) = oimmediate (sz, strm3) in
if opc == 0 then (MOV (ALWAYS, sz, Rm_i (r, imm)), strm4)
else exit ()
case 0xc9 :: strm2 ->
(LEAVE, Some (strm2))
case (0xd : 0b00 : (bit[1]) b : (bit[1]) v) :: strm2 ->
let sz = op_size (have_rex, rex.W, v, op_size_override) in
let (opc, r, strm3) = read_opcode_ModRM (rex, strm2) in
let shift = if b == 0 then Rm_i (r, 1) else Rm_r (r, 1) in
let binop = opc_to_binop_name (0b1 : opc) in
if opc == 0b110 then exit ()
else (Binop (binop, sz, shift), strm3)
case (0xe : 0b000 : (bit[1]) b) :: strm2 ->
let (imm, strm3) = immediate8 (strm2) in
let cnd = if b == 0 then NE else E in
(LOOP (cnd, imm), strm3)
case 0xe2 :: strm2 ->
let (imm, strm3) = immediate8 (strm2) in
(LOOP (ALWAYS, imm), strm3)
case 0xe8 :: strm2 ->
let (imm, strm3) = immediate32 (strm2) in
(CALL (Imm (imm)), strm3)
case (0xe : 0b10 : (bit[1]) b : 0b1) :: strm2 ->
let (imm, strm3) = if b == 0 then immediate32 (strm2)
else immediate8 (strm2) in
(Jcc (ALWAYS, imm), strm3)
case 0xf5 :: strm2 -> (CMC, Some (strm2))
case 0xf8 :: strm2 -> (CLC, Some (strm2))
case 0xf9 :: strm2 -> (STC, Some (strm2))
case (0xf : 0b011 : (bit[1]) v) :: strm2 ->
let sz = op_size (have_rex, rex.W, v, op_size_override) in
let (opc, r, strm3) = read_opcode_ModRM (rex, strm2) in
switch opc {
case 0b000 -> let (imm, strm4) = oimmediate (sz, strm3) in
(Binop (Test, sz, Rm_i (r, imm)), strm4)
case 0b010 -> (Monop (Not, sz, r), strm3)
case 0b011 -> (Monop (Neg, sz, r), strm3)
case 0b100 -> (MUL (sz, r), strm3)
case 0b110 -> (DIV (sz, r), strm3)
case _ -> exit ()
}
case 0xfe :: strm2 ->
let (opc, r, strm3) = read_opcode_ModRM (rex, strm2) in
switch opc {
case 0b000 -> (Monop (Inc, Sz8 (have_rex), r), strm3)
case 0b001 -> (Monop (Dec, Sz8 (have_rex), r), strm3)
case _ -> exit ()
}
case 0xff :: strm2 ->
let sz = op_size (have_rex, rex.W, 1, op_size_override) in
let (opc, r, strm3) = read_opcode_ModRM (rex, strm2) in
switch opc {
case 0b000 -> (Monop (Inc, sz, r), strm3)
case 0b001 -> (Monop (Dec, sz, r), strm3)
case 0b010 -> (CALL (Rm (r)), strm3)
case 0b100 -> (JMP (r), strm3)
case 0b110 -> (PUSH (Rm (r)), strm3)
case _ -> exit ()
}
case 0x0f :: opc :: strm2 ->
switch opc {
case 0x1f ->
let (opc, r, strm3) = read_opcode_ModRM (rex, strm2) in
(NOP (listlength (strm)), strm3)
case (0x4 : (bit[4]) c) ->
let sz = op_size (true, rex.W, 1, op_size_override) in
let (reg, r, strm3) = read_ModRM (rex, strm2) in
(MOV (bv_to_cond (c), sz, R_rm (reg, r)), strm3)
case (0x8 : (bit[4]) c) ->
let (imm, strm3) = immediate32 (strm2) in
(Jcc (bv_to_cond (c), imm), strm3)
case (0x9 : (bit[4]) c) ->
let (reg, r, strm3) = read_ModRM (rex, strm2) in
(SET (bv_to_cond (c), have_rex, r), strm3)
case (0xb : 0b000 : (bit[1]) v) ->
let sz = op_size (have_rex, rex.W, v, op_size_override) in
let (reg, r, strm3) = read_ModRM (rex, strm2) in
(CMPXCHG (sz, r, reg), strm3)
case (0xc : 0b000 : (bit[1]) v) ->
let sz = op_size (have_rex, rex.W, v, op_size_override) in
let (reg, r, strm3) = read_ModRM (rex, strm2) in
(XADD (sz, r, reg), strm3)
case (0xb : (bit[1]) s : 0b11 : (bit[1]) v) ->
let sz2 = op_size (have_rex, rex.W, 1, op_size_override) in
let sz = if v == 1 then Sz16 else Sz8 (have_rex) in
let (reg, r, strm3) = read_ModRM (rex, strm2) in
if s == 1 then
(MOVSX (sz, R_rm (reg, r), sz2), strm3)
else
(MOVZX (sz, R_rm (reg, r), sz2), strm3)
case _ -> exit ()
}
case _ -> exit ()
}
function (byte_stream, ast, nat) decode ((byte_stream) strm) =
switch read_prefixes (strm)
{
case None -> exit ()
case (Some (prefixes, have_rex, rex, strm1)) ->
let op_size_override = ismember (0x66, prefixes) in
if rex.W == 1 & op_size_override | ismember (0x67, prefixes) then
exit ()
else
switch decode_aux (strm1, have_rex, rex, op_size_override) {
case (instr, (Some (strm2))) -> (prefixes, instr, listlength (strm2))
case _ -> exit ()
}
}
*)
let (vector <0, 16, inc, string >) GPRstr =
["RAX","RCX","RDX","RBX","RSP","RBP","RSI","RDI","R8","R9","R10","R11","R12","R13","R14","R15"]
function (regfps) regfp_base ((base) b) =
switch b {
case NoBase -> [|| ||]
case RipBase -> [|| RFull("RIP") ||]
case (RegBase(b)) -> [|| RFull(GPRstr[b]) ||]
}
function (regfps) regfp_idx ((option<scale_index>) idx) =
switch idx {
case (None) -> [|| ||]
case (Some(scale, idx)) -> [|| RFull(GPRstr[idx]) ||]
}
function (bool, regfps, regfps) regfp_rm ((rm) r) =
switch r {
case (X86_Reg(n)) ->
(false, [|| RFull(GPRstr[n]) ||], [|| ||])
case (Mem(idx, b, d)) -> {
(true, [|| ||], append(regfp_idx(idx), regfp_base(b)))
}
}
function (instruction_kind, regfps, regfps, regfps) regfp_dest_src ((dest_src) ds) =
switch ds {
case (Rm_i (r_m, i)) ->
let (m,rd,ars) = regfp_rm(r_m) in
(if m then IK_mem_write(Write_plain) else IK_simple, ars, rd, ars)
case (Rm_r (r_m, r)) ->
let (m,rd,ars) = regfp_rm(r_m) in
(if m then IK_mem_write(Write_plain) else IK_simple, RFull(GPRstr[r]) :: ars, rd, ars)
case (R_rm (r, r_m)) ->
let (m,rs,ars) = regfp_rm(r_m) in
(if m then IK_mem_read(Read_plain) else IK_simple, append(rs, ars), [|| RFull(GPRstr[r]) ||], ars)
}
(* as above but where destination is also a source operand *)
function (instruction_kind, regfps, regfps, regfps) regfp_dest_src_rmw (locked, (dest_src) ds) =
let rk = if locked then Read_X86_locked else Read_plain in
let wk = if locked then Write_X86_locked else Write_plain in
switch ds {
case (Rm_i (r_m, i)) ->
let (m,rds, ars) = regfp_rm(r_m) in
(if m then IK_mem_rmw(rk, wk) else IK_simple, append(rds, ars), rds, ars)
case (Rm_r (r_m, r)) ->
let (m,rds, ars) = regfp_rm(r_m) in
(if m then IK_mem_rmw(rk, wk) else IK_simple, RFull(GPRstr[r]) :: append(rds, ars), rds, ars)
case (R_rm (r, r_m)) ->
let rds = [|| RFull(GPRstr[r]) ||] in
let (m,rs,ars) = regfp_rm(r_m) in
(if m then IK_mem_read(Read_plain) else IK_simple, append(rds, ars), rds, ars)
}
function (bool, regfps, regfps) regfp_imm_rm ((imm_rm) i_rm) =
switch i_rm {
case (Rm (v)) -> regfp_rm (v)
case (Imm (v)) -> (false, [|| ||], [|| ||])
}
let all_flags_but_cf_of = [|| RFull("AF"), RFull("PF"), RFull("SF"), RFull("ZF") ||]
let all_flags = append([|| RFull("CF"), RFull("OF") ||], all_flags_but_cf_of)
function (regfps) regfp_binop_flags ((binop_name) op) =
switch (op) {
case X86_Add -> all_flags
case X86_Sub -> all_flags
case X86_Cmp -> all_flags
case X86_Test -> all_flags_but_cf_of
case X86_And -> all_flags_but_cf_of
case X86_Xor -> all_flags_but_cf_of
case X86_Or -> all_flags_but_cf_of
case X86_Rol -> all_flags
case X86_Ror -> all_flags
case X86_Sar -> all_flags
case X86_Shl -> all_flags
case X86_Shr -> all_flags
case X86_Adc -> all_flags
case X86_Sbb -> all_flags
}
function (regfps) regfp_cond ((cond) c) =
switch c {
case X86_A -> [|| RFull("CF"), RFull("ZF") ||]
case X86_NB -> [|| RFull("CF") ||]
case X86_B -> [|| RFull("CF") ||]
case X86_NA -> [|| RFull("CF"), RFull("ZF") ||]
case X86_E -> [|| RFull("ZF") ||]
case X86_G -> [|| RFull("ZF"), RFull("SF"), RFull("OF") ||]
case X86_NL -> [|| RFull("SF"), RFull("OF") ||]
case X86_L -> [|| RFull("SF"), RFull("OF") ||]
case X86_NG -> [|| RFull("ZF"), RFull("SF"), RFull("OF") ||]
case X86_NE -> [|| RFull("ZF") ||]
case X86_NO -> [|| RFull("OF") ||]
case X86_NP -> [|| RFull("PF") ||]
case X86_NS -> [|| RFull("SF") ||]
case X86_O -> [|| RFull("OF") ||]
case X86_P -> [|| RFull("PF") ||]
case X86_S -> [|| RFull("SF") ||]
case X86_ALWAYS -> [|| ||]
}
function (regfps,regfps,regfps,niafps,diafp,instruction_kind) initial_analysis (instr) = {
iR := [|| ||];
oR := [|| ||];
aR := [|| ||];
ik := IK_simple;
Nias := [|| NIAFP_successor ||];
Dia := DIAFP_none;
switch instr {
case(Binop (locked, binop, sz, ds)) -> {
let flags = regfp_binop_flags (binop) in
let (ik', iRs, oRs, aRs) = regfp_dest_src_rmw(locked, ds) in {
ik := ik';
iR := append(iRs, iR);
oR := append(flags, append(oRs, oR));
aR := append(aRs, aR);
}
}
case(Bitop (locked, bitop, sz, bitoff)) -> {
let rk = if locked then Read_X86_locked else Read_plain in
let wk = if locked then Write_X86_locked else Write_plain in
let (ik', iRs, oRs, aRs) = switch(bitoff) {
case (Bit_rm_imm (r_m, imm)) ->
let (m, rs, ars) = regfp_rm(r_m) in
(if m then IK_mem_rmw(rk, wk) else IK_simple,
append(rs, ars), rs, ars)
case (Bit_rm_r (r_m, r)) ->
let rfp = RFull(GPRstr[r]) in
let (m, rs, ars) = regfp_rm(r_m) in
(if m then IK_mem_rmw(rk, wk) else IK_simple,
rfp::append(rs, ars), rs,
if m then (rfp::ars) else ars) (* in memory case r is a third input to address! *)
} in {
ik := ik';
iR := append(iRs, iR);
oR := RFull("CF")::append(oRs, oR);
aR := append(aRs, aR);
}
}
case(CALL (irm) ) ->
let (m, rs, ars) = regfp_imm_rm (irm) in {
ik := if m then IK_mem_rmw(Read_plain, Write_plain) else IK_mem_write(Write_plain);
iR := RFull("RIP") :: RFull("RSP") :: rs;
oR := RFull("RSP") :: oR;
aR := ars;
Nias := switch irm {
case (Rm (v)) -> NIAFP_indirect_address
case (Imm (v)) -> NIAFP_concrete_address(RIP + v)
} :: Nias;
}
case(CLC ) -> oR := RFull("CF") :: oR
case(CMC ) -> {
iR := RFull("CF") :: iR;
oR := RFull("CF") :: oR;
}
case(CMPXCHG (locked, sz, r_m, reg) ) ->
let rk = if locked then Read_X86_locked else Read_plain in
let wk = if locked then Write_X86_locked else Write_plain in
let (m, rs, aRs) = regfp_rm (r_m) in {
ik := if m then IK_mem_rmw (rk, wk) else IK_simple;
iR := RFull("RAX") :: RFull(GPRstr[reg]) :: append(rs, aRs);
oR := RFull("RAX") :: append(regfp_binop_flags(X86_Cmp), rs);
aR := aRs;
}
case(X86_DIV (sz, r_m) ) ->
let (m, rs, ars) = regfp_rm (r_m) in {
ik := if m then IK_mem_read (Read_plain) else IK_simple;
iR := RFull("RAX") :: RFull("RDX") :: append(rs, ars);
oR := RFull("RAX") :: RFull("RDX") :: append(oR, all_flags);
aR := ars;
}
case(HLT ) -> ()
case(Jcc (c, imm64) ) ->
let flags = regfp_cond(c) in {
ik := IK_branch;
iR := RFull("RIP") :: flags;
Nias := NIAFP_concrete_address(RIP + imm64) :: Nias;
}
case(JMP (r_m) ) ->
let (m, rs, ars) = regfp_rm (r_m) in {
ik := if m then IK_mem_read(Read_plain) else IK_simple;
iR := RFull("RIP")::append(rs, ars);
aR := ars;
Nias := NIAFP_indirect_address :: Nias;
}
case(LEA (sz, ds) ) ->
let (_, irs, ors, ars) = regfp_dest_src (ds) in {
iR := irs;
oR := ors;
aR := ars;
}
case(LEAVE ) -> {
ik := IK_mem_read(Read_plain);
iR := RFull("RBP") :: iR;
oR := RFull("RBP") :: RFull("RSP") :: oR;
aR := RFull("RBP") :: aR;
}
case(LOOP (c, imm64) ) ->
let flags = regfp_cond(c) in {
ik := IK_branch;
iR := RFull("RCX") :: flags;
oR := RFull("RCX") :: oR;
Nias := NIAFP_concrete_address(RIP + imm64) :: Nias;
}
case(MFENCE ) ->
ik := IK_barrier (Barrier_x86_MFENCE)
case(Monop (locked, monop, sz, r_m) ) ->
let rk = if locked then Read_X86_locked else Read_plain in
let wk = if locked then Write_X86_locked else Write_plain in
let (m, rds, ars) = regfp_rm(r_m) in {
ik := if m then IK_mem_rmw(rk, wk) else IK_simple;
iR := append(rds, ars);
oR := append(all_flags_but_cf_of, rds); (* XXX fix flags *)
aR := ars;
}
case(MOV (c, sz, ds) ) ->
let (ik', irs, ors, ars) = regfp_dest_src (ds) in
let flags = regfp_cond(c) in
{
ik := ik';
iR := append(irs, flags);
oR := ors;
aR := ars;
}
case(MOVSX (sz1, ds, sz2) ) ->
let (ik', irs, ors, ars) = regfp_dest_src (ds) in {
ik := ik';
iR := irs;
oR := ors;
aR := ars;
}
case(MOVZX (sz1, ds, sz2) ) ->
let (ik', irs, ors, ars) = regfp_dest_src (ds) in {
ik := ik';
iR := irs;
oR := ors;
aR := ars;
}
case(X86_MUL (sz, r_m) ) ->
let (m, rs, ars) = regfp_rm (r_m) in {
ik := if m then IK_mem_read (Read_plain) else IK_simple;
iR := RFull("RAX") :: append(rs, ars);
oR := RFull("RAX") :: RFull("RDX") :: append(oR, all_flags);
aR := ars;
}
case(NOP (_) ) -> ()
case(POP (r_m) ) ->
let (m, rd, ars) = regfp_rm (r_m) in {
ik := if m then IK_mem_rmw(Read_plain, Write_plain) else IK_mem_write(Write_plain);
iR := RFull("RSP") :: ars;
oR := RFull("RSP") :: rd;
aR := RFull("RSP") :: ars;
}
case(PUSH (irm) ) ->
let (m, rs, ars) = regfp_imm_rm (irm) in {
ik := if m then IK_mem_rmw(Read_plain, Write_plain) else IK_mem_write(Write_plain);
iR := RFull("RSP") :: append(rs, ars);
oR := RFull("RSP") :: oR;
aR := RFull("RSP") :: ars;
}
case(RET (imm64) ) -> {
ik := IK_mem_read(Read_plain);
iR := RFull("RSP") :: iR;
oR := RFull("RSP") :: oR;
aR := RFull("RSP") :: aR;
Nias := NIAFP_indirect_address :: Nias;
}
case(SET (c, b, r_m) ) ->
let flags = regfp_cond(c) in
let (m, rs, ars) = regfp_rm(r_m) in {
ik := if m then IK_mem_write(Write_plain) else IK_simple;
iR := append(flags, ars);
oR := rs;
aR := ars;
}
case(STC ) -> oR := [|| RFull("CF") ||]
case(XADD (locked, sz, r_m, reg) ) ->
let rk = if locked then Read_X86_locked else Read_plain in
let wk = if locked then Write_X86_locked else Write_plain in
let (m, rs, ars) = regfp_rm(r_m) in {
ik := if m then IK_mem_rmw(rk, wk) else IK_simple;
iR := RFull(GPRstr[reg]) :: append(rs, ars);
oR := RFull(GPRstr[reg]) :: append(rs, all_flags);
aR := ars;
}
case(XCHG (locked, sz, r_m, reg) ) ->
let rk = if locked then Read_X86_locked else Read_plain in
let wk = if locked then Write_X86_locked else Write_plain in
let (m, rs, ars) = regfp_rm(r_m) in {
ik := if m then IK_mem_rmw(rk, wk) else IK_simple;
iR := RFull(GPRstr[reg]) :: append(rs, ars);
oR := RFull(GPRstr[reg]) :: rs;
aR := ars;
}
};
(iR,oR,aR,Nias,Dia,ik)
}
|