1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
|
#ifndef ALIGNMENT_LIBRARY_HPP
#define ALIGNMENT_LIBRARY_HPP
extern "C" {
#include "io_lib/scram.h"
#include "io_lib/os.h"
#undef max
#undef min
}
// Our includes
#include "DistributionUtils.hpp"
#include "GCFragModel.hpp"
#include "SBModel.hpp"
#include "ClusterForest.hpp"
#include "Transcript.hpp"
#include "BAMQueue.hpp"
#include "SalmonUtils.hpp"
#include "LibraryFormat.hpp"
#include "LibraryTypeDetector.hpp"
#include "SalmonOpts.hpp"
#include "FragmentLengthDistribution.hpp"
#include "FragmentStartPositionDistribution.hpp"
#include "AlignmentGroup.hpp"
#include "ErrorModel.hpp"
#include "AlignmentModel.hpp"
#include "FASTAParser.hpp"
#include "concurrentqueue.h"
#include "EquivalenceClassBuilder.hpp"
#include "SpinLock.hpp" // RapMap's with try_lock
#include "ReadKmerDist.hpp"
#include "SimplePosBias.hpp"
// Boost includes
#include <boost/filesystem.hpp>
// Standard includes
#include <vector>
#include <memory>
#include <functional>
template <typename T>
class NullFragmentFilter;
/**
* This class represents a library of alignments used to quantify
* a set of target transcripts. The AlignmentLibrary contains info
* about both the alignment file and the target sequence (transcripts).
* It is used to group them together and track information about them
* during the quantification procedure.
*/
template <typename FragT>
class AlignmentLibrary {
public:
AlignmentLibrary(std::vector<boost::filesystem::path>& alnFiles,
const boost::filesystem::path& transcriptFile,
LibraryFormat libFmt,
SalmonOpts& salmonOpts) :
alignmentFiles_(alnFiles),
transcriptFile_(transcriptFile),
libFmt_(libFmt),
transcripts_(std::vector<Transcript>()),
fragStartDists_(5),
posBiasFW_(5),
posBiasRC_(5),
seqBiasModel_(1.0),
eqBuilder_(salmonOpts.jointLog),
quantificationPasses_(0),
expectedBias_(constExprPow(4, readBias_[0].getK()), 1.0),
expectedGC_( salmonOpts.numConditionalGCBins,
salmonOpts.numFragGCBins, distribution_utils::DistributionSpace::LOG),
observedGC_( salmonOpts.numConditionalGCBins,
salmonOpts.numFragGCBins, distribution_utils::DistributionSpace::LOG) {
namespace bfs = boost::filesystem;
// Make sure the alignment file exists.
for (auto& alignmentFile : alignmentFiles_) {
if (!bfs::exists(alignmentFile)) {
std::stringstream ss;
ss << "The provided alignment file: " << alignmentFile <<
" does not exist!\n";
throw std::invalid_argument(ss.str());
}
}
// Make sure the transcript file exists.
if (!bfs::exists(transcriptFile_)) {
std::stringstream ss;
ss << "The provided transcript file: " << transcriptFile_ <<
" does not exist!\n";
throw std::invalid_argument(ss.str());
}
// The alignment file existed, so create the alignment queue
size_t numParseThreads = salmonOpts.numParseThreads;
std::cerr << "parseThreads = " << numParseThreads << "\n";
bq = std::unique_ptr<BAMQueue<FragT>>(new BAMQueue<FragT>(alnFiles, libFmt_, numParseThreads,
salmonOpts.mappingCacheMemoryLimit));
std::cerr << "Checking that provided alignment files have consistent headers . . . ";
if (! salmon::utils::headersAreConsistent(bq->headers()) ) {
std::stringstream ss;
ss << "\nThe multiple alignment files provided had inconsistent headers.\n";
ss << "Currently, we require that if multiple SAM/BAM files are provided,\n";
ss << "they must have identical @SQ records.\n";
throw std::invalid_argument(ss.str());
}
std::cerr << "done\n";
SAM_hdr* header = bq->header();
// The transcript file existed, so load up the transcripts
double alpha = 0.005;
for (size_t i = 0; i < header->nref; ++i) {
transcripts_.emplace_back(i, header->ref[i].name, header->ref[i].len, alpha);
}
FASTAParser fp(transcriptFile.string());
fmt::print(stderr, "Populating targets from aln = {}, fasta = {} . . .",
alnFiles.front(), transcriptFile_);
fp.populateTargets(transcripts_, salmonOpts);
for (auto& txp : transcripts_) {
// Length classes taken from
// ======
// Roberts, Adam, et al.
// "Improving RNA-Seq expression estimates by correcting for fragment bias."
// Genome Biol 12.3 (2011): R22.
// ======
// perhaps, define these in a more data-driven way
if (txp.RefLength <= 1334) {
txp.lengthClassIndex(0);
} else if (txp.RefLength <= 2104) {
txp.lengthClassIndex(0);
} else if (txp.RefLength <= 2988) {
txp.lengthClassIndex(0);
} else if (txp.RefLength <= 4389) {
txp.lengthClassIndex(0);
} else {
txp.lengthClassIndex(0);
}
}
fmt::print(stderr, "done\n");
// Create the cluster forest for this set of transcripts
clusters_.reset(new ClusterForest(transcripts_.size(), transcripts_));
// Initialize the fragment length distribution
size_t maxFragLen = salmonOpts.fragLenDistMax;
size_t meanFragLen = salmonOpts.fragLenDistPriorMean;
size_t fragLenStd = salmonOpts.fragLenDistPriorSD;
size_t fragLenKernelN = 4;
double fragLenKernelP = 0.5;
flDist_.reset(new
FragmentLengthDistribution(
1.0, maxFragLen,
meanFragLen, fragLenStd,
fragLenKernelN,
fragLenKernelP, 1)
);
alnMod_.reset(new AlignmentModel(1.0, salmonOpts.numErrorBins));
alnMod_->setLogger(salmonOpts.jointLog);
// Start parsing the alignments
NullFragmentFilter<FragT>* nff = nullptr;
bool onlyProcessAmbiguousAlignments = false;
bq->start(nff, onlyProcessAmbiguousAlignments);
}
EquivalenceClassBuilder& equivalenceClassBuilder() {
return eqBuilder_;
}
// TODO: Make same as mapping-based
void updateTranscriptLengthsAtomic(std::atomic<bool>& done) {
if (sl_.try_lock()) {
if (!done) {
auto fld = flDist_.get();
// Convert the PMF to non-log scale
std::vector<double> logPMF;
size_t minVal;
size_t maxVal;
fld->dumpPMF(logPMF, minVal, maxVal);
double sum = salmon::math::LOG_0;
for (auto v : logPMF) {
sum = salmon::math::logAdd(sum, v);
}
for (auto& v : logPMF) {
v -= sum;
}
// Create the non-logged distribution.
// Here, we multiply by 100 to discourage small
// numbers in the correctionFactorsfromCounts call
// below.
std::vector<double> pmf(maxVal + 1, 0.0);
for (size_t i = minVal; i < maxVal; ++i) {
pmf[i] = 100.0 * std::exp(logPMF[i - minVal]);
}
using distribution_utils::DistributionSpace;
// We compute the factors in linear space (since we've de-logged the pmf)
auto correctionFactors = distribution_utils::correctionFactorsFromMass(pmf, DistributionSpace::LINEAR);
// Since we'll continue treating effective lengths in log space, populate them as such
distribution_utils::computeSmoothedEffectiveLengths(pmf.size(), transcripts_, correctionFactors, DistributionSpace::LOG);
/*
// Update the effective length of *every* transcript
for( auto& t : transcripts_ ) {
t.updateEffectiveLength(logPMF, logFLDMean, minVal, maxVal);
}
*/
// then declare that we are done
done = true;
sl_.unlock();
}
}
}
std::vector<Transcript>& transcripts() { return transcripts_; }
const std::vector<Transcript>& transcripts() const { return transcripts_; }
inline bool getAlignmentGroup(AlignmentGroup<FragT>*& ag) { return bq->getAlignmentGroup(ag); }
//inline t_pool* threadPool() { return threadPool_.get(); }
inline SAM_hdr* header() { return bq->header(); }
inline std::vector<FragmentStartPositionDistribution>& fragmentStartPositionDistributions() {
return fragStartDists_;
}
inline FragmentLengthDistribution* fragmentLengthDistribution() const {
return flDist_.get();
}
inline AlignmentModel& alignmentModel() {
return *alnMod_.get();
}
SequenceBiasModel& sequenceBiasModel() {
return seqBiasModel_;
}
// inline tbb::concurrent_queue<FragT*>& fragmentQueue() {
inline tbb::concurrent_queue<FragT*>& fragmentQueue() {
return bq->getFragmentQueue();
}
// inline tbb::concurrent_bounded_queue<AlignmentGroup<FragT*>*>& alignmentGroupQueue() {
inline moodycamel::ConcurrentQueue<AlignmentGroup<FragT*>*>& alignmentGroupQueue() {
return bq->getAlignmentGroupQueue();
}
inline BAMQueue<FragT>& getAlignmentGroupQueue() { return *bq.get(); }
inline size_t upperBoundHits() { return bq->numMappedFragments(); }
inline size_t numObservedFragments() const { return bq->numObservedFragments(); }
inline size_t numMappedFragments() const { return bq->numMappedFragments(); }
inline size_t numUniquelyMappedFragments() { return bq->numUniquelyMappedFragments(); }
inline double effectiveMappingRate() const {
return static_cast<double>(numMappedFragments()) / numObservedFragments();
}
//const boost::filesystem::path& alignmentFile() { return alignmentFile_; }
ClusterForest& clusterForest() { return *clusters_.get(); }
template <typename FilterT>
bool reset(bool incPasses=true, FilterT filter=nullptr, bool onlyProcessAmbiguousAlignments=false) {
namespace bfs = boost::filesystem;
for (auto& alignmentFile : alignmentFiles_) {
if (!bfs::is_regular_file(alignmentFile)) {
return false;
}
}
bq->reset();
bq->start(filter, onlyProcessAmbiguousAlignments);
if (incPasses) {
quantificationPasses_++;
fmt::print(stderr, "Current iteration = {}\n", quantificationPasses_);
}
return true;
}
inline LibraryFormat format() { return libFmt_; }
inline const LibraryFormat format() const { return libFmt_; }
/**
* If this is set, attempt to automatically detect this library's type
*/
void enableAutodetect() {
// if auto detection is not already enabled, and we're enabling it
if (!detector_){
detector_.reset(new LibraryTypeDetector(libFmt_.type));
}
}
bool autoDetect() const { return (detector_.get() != nullptr);}
LibraryTypeDetector* getDetector() { return detector_.get(); }
LibraryFormat& getFormat() { return libFmt_; }
const LibraryFormat& getFormat() const { return libFmt_; }
void setGCFracForward(double fracForward) { gcFracFwd_ = fracForward; }
double gcFracFwd() const { return gcFracFwd_; }
double gcFracRC() const { return 1.0 - gcFracFwd_; }
std::vector<double>& expectedSeqBias() {
return expectedBias_;
}
const std::vector<double>& expectedSeqBias() const {
return expectedBias_;
}
void setExpectedGCBias(const GCFragModel& expectedBiasIn) {
expectedGC_ = expectedBiasIn;
}
GCFragModel& expectedGCBias() {
return expectedGC_;
}
const GCFragModel& expectedGCBias() const {
return expectedGC_;
}
const GCFragModel& observedGC() const {
return observedGC_;
}
GCFragModel& observedGC() {
return observedGC_;
}
std::vector<SimplePosBias>& posBias(salmon::utils::Direction dir) {
return (dir == salmon::utils::Direction::FORWARD) ? posBiasFW_ : posBiasRC_;
}
const std::vector<SimplePosBias>& posBias(salmon::utils::Direction dir) const {
return (dir == salmon::utils::Direction::FORWARD) ? posBiasFW_ : posBiasRC_;
}
ReadKmerDist<6, std::atomic<uint32_t>>& readBias(salmon::utils::Direction dir) {
return (dir == salmon::utils::Direction::FORWARD) ? readBias_[0] : readBias_[1];
}
const ReadKmerDist<6, std::atomic<uint32_t>>& readBias(salmon::utils::Direction dir) const {
return (dir == salmon::utils::Direction::FORWARD) ? readBias_[0] : readBias_[1];
}
SBModel& readBiasModelObserved(salmon::utils::Direction dir) {
return (dir == salmon::utils::Direction::FORWARD) ? readBiasModelObserved_[0] : readBiasModelObserved_[1];
}
const SBModel& readBiasModelObserved(salmon::utils::Direction dir) const {
return (dir == salmon::utils::Direction::FORWARD) ? readBiasModelObserved_[0] : readBiasModelObserved_[1];
}
SBModel& readBiasModelExpected(salmon::utils::Direction dir) {
return (dir == salmon::utils::Direction::FORWARD) ? readBiasModelExpected_[0] : readBiasModelExpected_[1];
}
const SBModel& readBiasModelExpected(salmon::utils::Direction dir) const {
return (dir == salmon::utils::Direction::FORWARD) ? readBiasModelExpected_[0] : readBiasModelExpected_[1];
}
void setReadBiasModelExpected(SBModel&& model, salmon::utils::Direction dir) {
size_t idx = (dir == salmon::utils::Direction::FORWARD) ? 0 : 1;
readBiasModelExpected_[idx] = std::move(model);
}
private:
/**
* The file from which the alignments will be read.
* This can be a SAM or BAM file, and can be a regular
* file or a fifo.
*/
std::vector<boost::filesystem::path> alignmentFiles_;
/**
* The file from which the transcripts are read.
* This is expected to be a FASTA format file.
*/
boost::filesystem::path transcriptFile_;
/**
* Describes the expected format of the sequencing
* fragment library.
*/
LibraryFormat libFmt_;
/**
* The targets (transcripts) to be quantified.
*/
std::vector<Transcript> transcripts_;
/**
* A pointer to the queue from which the fragments
* will be read.
*/
//std::unique_ptr<t_pool, std::function<void(t_pool*)>> threadPool_;
std::unique_ptr<BAMQueue<FragT>> bq;
SequenceBiasModel seqBiasModel_;
/**
* The cluster forest maintains the dynamic relationship
* defined by transcripts and reads --- if two transcripts
* share an ambiguously mapped read, then they are placed
* in the same cluster.
*/
std::unique_ptr<ClusterForest> clusters_;
/**
* The emperical fragment start position distribution
*/
std::vector<FragmentStartPositionDistribution> fragStartDists_;
/**
* The emperical fragment length distribution.
*
*/
std::unique_ptr<FragmentLengthDistribution> flDist_;
/**
* The emperical error model
*/
std::unique_ptr<AlignmentModel> alnMod_;
/** Keeps track of the number of passes that have been
* made through the alignment file.
*/
size_t quantificationPasses_;
SpinLock sl_;
EquivalenceClassBuilder eqBuilder_;
/** Positional bias things**/
std::vector<SimplePosBias> posBiasFW_;
std::vector<SimplePosBias> posBiasRC_;
/** GC-fragment bias things **/
// One bin for each percentage GC content
double gcFracFwd_;
GCFragModel observedGC_;
GCFragModel expectedGC_;
// Since multiple threads can touch this dist, we
// need atomic counters.
std::array<ReadKmerDist<6, std::atomic<uint32_t>>, 2> readBias_;
std::array<SBModel, 2> readBiasModelObserved_;
std::array<SBModel, 2> readBiasModelExpected_;
//ReadKmerDist<6, std::atomic<uint32_t>> readBias_;
std::vector<double> expectedBias_;
std::unique_ptr<LibraryTypeDetector> detector_{nullptr};
};
#endif // ALIGNMENT_LIBRARY_HPP
|