File: BAMQueue.tpp

package info (click to toggle)
salmon 0.7.2%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 4,352 kB
  • ctags: 5,243
  • sloc: cpp: 42,341; ansic: 6,252; python: 228; makefile: 207; sh: 190
file content (824 lines) | stat: -rw-r--r-- 32,085 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
#include "BAMQueue.hpp"
#include "IOUtils.hpp"
#include <boost/config.hpp> // for BOOST_LIKELY/BOOST_UNLIKELY
#include <chrono>

template <typename FragT>
BAMQueue<FragT>::BAMQueue(std::vector<boost::filesystem::path>& fnames, LibraryFormat& libFmt,
                          uint32_t numParseThreads, uint32_t cacheSize):
    files_(std::vector<AlignmentFile>()),
    libFmt_(libFmt), totalAlignments_(0),
    numUnaligned_(0), numMappedReads_(0), 
    numUniquelyMappedReads_(0),
    //fragmentQueue_(2000000),
    alnGroupPool_(2000000),
    alnGroupQueue_(1000000),
    doneParsing_(false),
    exhaustedAlnGroupPool_(false) {
        namespace bfs = boost::filesystem;

        logger_ = spdlog::get("jointLog");

        uint32_t localCacheSize = std::max(uint32_t{2000000}, cacheSize);
        uint32_t capacity{localCacheSize};
        for (size_t i = 0; i < capacity; ++i) {
            // avoid r-value ref until we figure out what's
            // up with TBB 4.3
            auto* fragPtr = new FragT;
            fragmentQueue_.push(fragPtr);
        }

        size_t groupCapacity = localCacheSize;
        //alnGroupPool_.set_capacity(groupCapacity);
        for (size_t i = 0; i < groupCapacity; ++i) {
            // avoid r-value ref until we figure out what's
            // up with TBB 4.3
            auto* agrpPtr = new AlignmentGroup<FragT*>; 
            alnGroupPool_.enqueue(agrpPtr);
        }

        bool firstFile = true;
        for (auto& fname : fnames) {
            if (bfs::is_regular_file(fname)) {
               if (bfs::is_empty(fname)) {
                    logger_->error("file [{}] appears to be empty "
                        "(i.e. it has size 0).  This is likely an error. "
                        "Please re-run salmon with a corrected input file.\n\n", 
                        fname);
                    std::exit(1);
               }
            }
            readMode_ = "r";
            if (fname.extension() == ".bam") {
                readMode_ = "rb";
            }
            auto* fp = scram_open(fname.c_str(), readMode_.c_str());
            // If this is the first file, then we'll be parsing it soon.
            // set the number of parse threads.
            if (firstFile) {
                scram_set_option(fp, CRAM_OPT_NTHREADS, numParseThreads);
            }
            auto* header = scram_get_header(fp);
            sam_hdr_incr_ref(header);
            // If this isn't the first file, then close it.
            // We'll open it again when we need it.
            if (!firstFile) {
                scram_close(fp);
                fp = nullptr;
            }
            files_.push_back({fname, readMode_, fp, header, numParseThreads});
            firstFile = false;
        }
}

template <typename FragT>
void BAMQueue<FragT>::reset() {
  fmt::print(stderr, "Resetting BAMQueue from file(s) [ ");
  parsingThread_->join();
  for (auto& file : files_) {
      fmt::print(stderr, "{} ", file.fileName);
      // make sure that all of the current files are closed
      if (file.fp != nullptr) {
          scram_close(file.fp);
          // but make sure we still have a reference to the header!
          if (file.header == nullptr or file.header->ref_count <= 0) {
              fmt::MemoryWriter errstr;
              errstr << "The header for file " << file.fileName.c_str() 
                     << " was deleted.  This should not happen! exiting!\n";
              logger_->warn(errstr.str());
              std::exit(1);
          }
      }
  }

  // re-open the first file
  auto& file = files_.front();
  file.fp = scram_open(file.fileName.c_str(), file.readMode.c_str());

  // If we couldn't open the file, then report this and exit.
  if (file.fp == NULL) {
    fmt::MemoryWriter errstr;
    errstr << "ERROR: Failed to open file " << file.fileName.c_str() << ", exiting!\n";
    logger_->warn(errstr.str());
    std::exit(1);
  }
  scram_set_option(file.fp, CRAM_OPT_NTHREADS, file.numParseThreads);

  fmt::print(stderr, "] . . . done\n");
  totalAlignments_ = 0;
  numUnaligned_ = 0;
  numMappedReads_ = 0;
  numUniquelyMappedReads_ = 0;
  doneParsing_ = false;
  batchNum_ = 0;
}

template <typename FragT>
BAMQueue<FragT>::~BAMQueue() {
    fmt::print(stderr, "\nFreeing memory used by read queue . . . ");
    parsingThread_->join();
    fmt::print(stderr, "\nJoined parsing thread . . . ");
  
    for (auto& file : files_) {
        fmt::print(stderr, "{} ", file.fileName);
        // make sure that all of the current files are closed
        if (file.fp != nullptr) {
            scram_close(file.fp);
            file.fp = nullptr;
       }
       // free the remaining reference to the header
       if (file.header == nullptr or file.header->ref_count <= 0) {
            fmt::MemoryWriter errstr;
            errstr << "The header for file " << file.fileName.c_str() 
                << " was deleted.  This should not happen! exiting!\n";
            logger_->warn(errstr.str());
            std::exit(1);
        } else {
            sam_hdr_decr_ref(file.header); 
            file.header = nullptr;
        }
    }

    fmt::print(stderr, "\nClosed all files . . . ");
    // Free the structure holding all of the reads
    FragT* frag;
    //while (!fragmentQueue_.empty()) { 
    while (fragmentQueue_.try_pop(frag)) { 
        delete frag;
        frag = nullptr;
    }
    //}
    fmt::print(stderr, "\nEmptied frag queue. . . ");

    AlignmentGroup<FragT*>* grp;
    //while(!alnGroupPool_.empty()) { alnGroupPool_.pop(grp); delete grp; grp = nullptr; }
    while(alnGroupPool_.try_dequeue(grp)) { delete grp; grp = nullptr; }
    fmt::print(stderr, "\nEmptied Alignemnt Group Pool. . ");
    while(alnGroupQueue_.try_dequeue(grp)) { delete grp; grp = nullptr; }
    fmt::print(stderr, "\nEmptied Alignment Group Queue. . . ");
    fmt::print(stderr, "done\n");
}

/*
 * Tries _numTries_ times to get work from _workQueue_.  It returns
 * true immediately if it was able to find work, and false otherwise.
 */
template <typename FragT>
inline bool tryToGetWork(moodycamel::ReaderWriterQueue<AlignmentGroup<FragT*>*>& workQueue,
                         AlignmentGroup<FragT*>*& group,
                         uint32_t numTries) {
    uint32_t attempts{1};
    bool foundWork = workQueue.try_dequeue(group);
    while (!foundWork and attempts < numTries) {
        foundWork = workQueue.try_dequeue(group);
        ++attempts;
    }
    return foundWork;
}




template <typename FragT>
inline bool BAMQueue<FragT>::getAlignmentGroup(AlignmentGroup<FragT*>*& group) {
    while (!doneParsing_) {
        while (alnGroupQueue_.try_dequeue(group)) {
            return true;
        }
/*
#if not defined(__APPLE__)
{
            std::unique_lock<std::mutex> l(agMutex_);
            workAvailable_.wait(l, [&group, this]() { 
                                    return this->alnGroupQueue_.try_dequeue(group) or this->doneParsing_; 
                                });
            return !doneParsing_;
}
#endif
    }
*/
    }

    while (alnGroupQueue_.try_dequeue(group)) {
        return true;
    }
    return false;
}

template <typename FragT>
void BAMQueue<FragT>::forceEndParsing() { doneParsing_ = true; }

template <typename FragT>
SAM_hdr* BAMQueue<FragT>::header() { return files_.front().header; } 

template <typename FragT>
std::vector<SAM_hdr*> BAMQueue<FragT>::headers() { 
    std::vector<SAM_hdr*> hs;
    for (auto& file : files_) {
        hs.push_back(file.header);
    }
    return hs;
}

template <typename FragT>
template <typename FilterT>
void BAMQueue<FragT>::start(FilterT filt, bool onlyProcessAmbiguousAlignments) {
    // Start the parsing thread that will fill the queue
    parsingThread_.reset(new std::thread([this, filt, onlyProcessAmbiguousAlignments]()-> void {
            this->fillQueue_(filt, onlyProcessAmbiguousAlignments);
    }));
}

template <typename FragT>
tbb::concurrent_queue<FragT*>& BAMQueue<FragT>::getFragmentQueue() {
//moodycamel::ConcurrentQueue<FragT*>& BAMQueue<FragT>::getFragmentQueue() {
    return fragmentQueue_;
}

template <typename FragT>
//tbb::concurrent_bounded_queue<AlignmentGroup<FragT*>*>& BAMQueue<FragT>::getAlignmentGroupQueue() {
moodycamel::ConcurrentQueue<AlignmentGroup<FragT*>*>& BAMQueue<FragT>::getAlignmentGroupQueue() {
    return alnGroupPool_;
}

inline bool checkProperPairedNames_(const char* qname1, const char* qname2, const uint32_t nameLen) {
    bool same{true};
    bool sameEnd{true};
    if (BOOST_LIKELY(nameLen > 1)) {
        same = (memcmp(qname1, qname2, nameLen - 1) == 0);
        sameEnd = qname1[nameLen-1] == qname2[nameLen-1];
        same = same and (sameEnd or qname1[nameLen-1] == '1' or qname1[nameLen-1] == '2');
        same = same and (sameEnd or qname2[nameLen-1] == '2' or qname2[nameLen-1] == '1');
    } else {
        same = (memcmp(qname1, qname2, nameLen) == 0);
    }
    return same;
}


/**
* This set of functions checks if two reads have the same name.  If the reads
* are paired-end, it allows them to differ in the last character if they end in 1/2.
* If the reads are single-end, the strings must be identical.
*/
template <typename T>
inline bool sameReadName_(const char* qname1, const char* qname2, const uint32_t nameLen); // (OSX) clang can't handle this? = delete;


// Specialization for unpaired reads.
template <>
inline bool sameReadName_<UnpairedRead>(const char* qname1, const char* qname2, const uint32_t nameLen) {
    return (memcmp(qname1, qname2, nameLen) == 0);
}

// Specialization for paired reads.
template <>
inline bool sameReadName_<ReadPair>(const char* qname1, const char* qname2, const uint32_t nameLen) {
    return checkProperPairedNames_(qname1, qname2, nameLen);
}

enum class AlignmentType : uint8_t {
    UnmappedOrphan = 0,
    MappedOrphan = 1,
    MappedDiscordantPair = 2,
    MappedConcordantPair = 3,
    UnmappedPair = 4
};

inline AlignmentType getPairedAlignmentType_(bam_seq_t* aln) {
    bool readIsMapped = !(bam_flag(aln) & BAM_FUNMAP);
    bool mateIsMapped = !(bam_flag(aln) & BAM_FMUNMAP);

    if (readIsMapped and mateIsMapped) {
        if ( bam_flag(aln) & BAM_FPROPER_PAIR ) {
            if (bam_ref(aln) == bam_mate_ref(aln)) {
                return AlignmentType::MappedConcordantPair;
            } else {
                // NOTE: It seems like some aligners (e.g. SNAP), currently mark
                // discordant reads as proper pairs in the alignment file.  Here,
                // we check that both pairs map to the same target.
                // If the aligner insists they are both mapped, but reports 
                // alignments to different targets, we will treat them as 
                // mapped orphans 
                return AlignmentType::MappedOrphan;
            }
        } else {
            // FIXME
            // NOTE: Since (currently) discordant pairs can cause us to
            // drop alignments that should be sampled, treat these guys 
            // as orphans for the time being.
            // return AlignmentType::MappedDiscordantPair;
            return AlignmentType::MappedOrphan;
        }
    }

    if (readIsMapped and !mateIsMapped) {
        return AlignmentType::MappedOrphan;
    }
    if (mateIsMapped and !readIsMapped) {
        return AlignmentType::UnmappedOrphan;
    }
    if (!mateIsMapped and !readIsMapped) {
        return AlignmentType::UnmappedPair;
    }
    std::cerr << "\n\n\nEncountered unknown alignemnt type; this should not happen!\n"
              << "Please file a bug report on GitHub. Exiting.\n";
    std::exit(1);
}

inline uint32_t getPairedNameLen(bam_seq_t* read) {
        uint32_t l = bam_name_len(read);
        char* r = bam_name(read);
        if ( l > 2  and r[l-2] == '/') {
            return l-2;
        }
        return l;
}

template <typename FragT>
template <typename FilterT>
inline bool BAMQueue<FragT>::getFrag_(ReadPair& rpair, FilterT filt) {
    bool haveValidPair{false};
    bool didRead1{false};
    bool didRead2{false};
    rpair.orphanStatus = salmon::utils::OrphanStatus::LeftOrphan;

    // Until we get a valid pair of reads
    while (!haveValidPair) {
        // Consume a single read
        didRead1 = (scram_get_seq(fp_, &rpair.read1) >= 0);
        AlignmentType alnType;
        // If we were able to obtain a read, determine what type
        // of alignment it came from.
        while (didRead1) {
            alnType = getPairedAlignmentType_(rpair.read1);
            // If this read is part of a concordantly mapped pair, or an
            // unmapped pair, then go get the other read.
            if ( (alnType == AlignmentType::MappedConcordantPair)
                    or (alnType == AlignmentType::UnmappedPair)) { break; }
            
            bool isFwd{false};
            uint32_t startPos;

            switch (alnType) {
                case AlignmentType::UnmappedOrphan:
                    ++numUnaligned_;
                    if (filt != nullptr) {
                        rpair.orphanStatus = salmon::utils::OrphanStatus::LeftOrphan;
                        filt->processFrag(&rpair);
                    }
                    break;
                    // === end of UnmappedOrphan case
                case AlignmentType::MappedOrphan:
                    isFwd = !(bam_strand(rpair.read1));
                    startPos = bam_pos(rpair.read1); 
                    rpair.libFmt = salmon::utils::hitType(startPos, isFwd);
                    rpair.orphanStatus = (bam_flag(rpair.read1) & BAM_FREAD1) ?
                        salmon::utils::OrphanStatus::LeftOrphan :
                        salmon::utils::OrphanStatus::RightOrphan;
                    rpair.logProb = salmon::math::LOG_0;
                    return true;
                    // === end of MappedOrphan case
                case AlignmentType::MappedDiscordantPair:
                    // The discordant mapped pair case is sort of a nightmare
                    // it requires arbitrary look-ahead followed by a pairing
                    // of the ends once all of the records for a read have been
                    // consumed. For the time being, we don't support discordant
                    // mappings --- just skip over them.
                    // Don't even pass them to the filter right now!
                    /*
                       if (filt != nullptr) {
                       rpair.orphanStatus = salmon::utils::OrphanStatus::LeftOrphan;
                       filt->processFrag(&rpair);
                       }
                     */
                    break;
                    // === end if MappedDiscordantPair case
                default:
                    logger_->error("\n\n\nEncountered unknown alignemnt type; this should not happen!\n"
                                   "Please file a bug report on GitHub. Exiting.\n");
                    std::exit(1);
                    break;
            }
            // If this was not a properly mapped orphan read, then grab the next
            // read.
            didRead1 = (scram_get_seq(fp_, &rpair.read1) >= 0);
        }

        didRead2 = (scram_get_seq(fp_, &rpair.read2) >=0);

        // If we didn't get a read, then we've exhausted this file. 
        // NOTE: I'm not sure about the *or* condition here. In some cases, we
        // may be discarding a single read, but it won't be properly paired
        // anyway. Figure out what the right thing is to do here.
        if (!didRead1 or !didRead2) { 
            // close the current file
            scram_close(currFile_->fp);
            currFile_->fp = nullptr;
            // increment the file iterator
            currFile_++;
            // If this is the last file, then we're done
            if (currFile_ == files_.end()) { return false; }
            // Otherwise, start parsing the next file.
            fp_ = scram_open(currFile_->fileName.c_str(), currFile_->readMode.c_str());
            hdr_ = currFile_->header;
            continue;
        }

        // If we expected a paired read, but didn't find one
        // then flip out and quit!
        if (BOOST_UNLIKELY((
                        !(bam_flag(rpair.read1) & BAM_FPAIRED) or
                        !(bam_flag(rpair.read2) & BAM_FPAIRED))
                    )) {
            fmt::MemoryWriter errmsg;
            errmsg << "\n\n"
                    << ioutils::SET_RED << "ERROR: " << ioutils::RESET_COLOR
                    << "Found unpaired read in a paired-end library. "
                    << "The read was marked as unpaired in sequencing (not just unmapped)."
                    << "The two ends of a paired-end read should be adjacent. "
                    << "Don't know how to proceed; exiting!\n\n";
            logger_->warn(errmsg.str());
            std::exit(-1);
        }
        // We've observed two, consecutive paired reads; now check if our reads
        // have the same name.
        // The names must first have the same length.
        //bool sameName = getPairedNameLen(rpair.read1) == getPairedNameLen(rpair.read2);
        bool sameName = (bam_name_len(rpair.read1) == bam_name_len(rpair.read2));
        
        // If the lengths are the same, check the actual strings. Use
        // memcmp for efficiency since we know the length.
        if (BOOST_LIKELY(sameName)) {
            //auto nameLen = getPairedNameLen(rpair.read1);
            auto nameLen = bam_name_len(rpair.read1);
            char* qname1 = bam_name(rpair.read1);
            char* qname2 = bam_name(rpair.read2);
            sameName = (memcmp(qname1, qname2, nameLen) == 0);
        }
        // If we've gotten this far, then the read should be a pair (same name)
        // and should either be concordantly aligned (proper pair) or both unaligned.
        if (BOOST_UNLIKELY(
                    !sameName or ((bam_flag(rpair.read1) & BAM_FPROPER_PAIR) != (bam_flag(rpair.read2) & BAM_FPROPER_PAIR)))) {
            
            fmt::MemoryWriter errmsg;
            errmsg << "\n\n\n";
            errmsg << "WARNING: Detected suspicious pair --- \n";
            if (!sameName) {
                errmsg << "\tThe names are different:\n";
                errmsg << "\tread1 : " << bam_name(rpair.read1) << "\n";
                errmsg << "\tread2 : " << bam_name(rpair.read2) << "\n";
            }
            if((bam_flag(rpair.read1) & BAM_FPROPER_PAIR) != (bam_flag(rpair.read2) & BAM_FPROPER_PAIR)) {
                errmsg << "\tThe proper-pair statuses are inconsistent:\n";
                errmsg << "read1 [" << bam_name(rpair.read1) << "] : " 
                    << (!(bam_flag(rpair.read1) & BAM_FPROPER_PAIR) ? "no " : "") << "proper-pair; "
                    << ((bam_flag(rpair.read1) & BAM_FUNMAP) ? "not " : "") << "mapped; mate"
                    << ((bam_flag(rpair.read1) & BAM_FMUNMAP) ? "not " : "") << "mapped\n\n";
                errmsg << "read2 : [" << bam_name(rpair.read1) << "] : " 
                    << (!(bam_flag(rpair.read2) & BAM_FPROPER_PAIR) ? "no " : "") << "proper-pair; "
                    << ((bam_flag(rpair.read2) & BAM_FUNMAP) ? "not " : "") << "mapped; mate"
                    << ((bam_flag(rpair.read2) & BAM_FMUNMAP) ? "not " : "") << "mapped\n\n";
            }
            logger_->warn(errmsg.str());
        }


        bool isFwd1 = false;
        uint32_t startPos1 = 0;
        bool isFwd2 = false;
        uint32_t startPos2 = 0;

        switch (alnType) {
            case AlignmentType::MappedConcordantPair:
                haveValidPair = true;
                if (bam_flag(rpair.read1) & BAM_FREAD2) {
                    std::swap(rpair.read1, rpair.read2);
                }

                // if the "fragment" is from the forward strand,
                // the read will map to the reverse strand, and vice-versa
                isFwd1 = !(bam_flag(rpair.read1) & BAM_FREVERSE);
                startPos1 = bam_pos(rpair.read1); 
                isFwd2 = !(bam_flag(rpair.read2) & BAM_FREVERSE);
                startPos2 = bam_pos(rpair.read2); 
 
                rpair.libFmt = salmon::utils::hitType(startPos1, isFwd1, 
                                                      startPos2, isFwd2);

                rpair.orphanStatus = salmon::utils::OrphanStatus::Paired;
                break;
            case AlignmentType::UnmappedPair:
                ++numUnaligned_;
                if ((filt != nullptr) and sameName) {
                    rpair.orphanStatus = salmon::utils::OrphanStatus::Paired;
                    filt->processFrag(&rpair);
                }
                break;
            default:
                logger_->error("\n\n\nEncountered unknown alignemnt type; this should not happen!\n"
                               "Please file a bug report on GitHub. Exiting.\n");
                std::exit(1);
                break;
        }
        ++totalAlignments_;
    }
    rpair.logProb = salmon::math::LOG_0;
    return true;
}

template <typename FragT>
template <typename FilterT>
inline bool BAMQueue<FragT>::getFrag_(UnpairedRead& sread, FilterT filt) {
    bool haveValidRead{false};

    while (!haveValidRead) {
        bool didRead = (scram_get_seq(fp_, &sread.read) >= 0);
        // If we didn't get a read, then we've exhausted this file
        if (!didRead) { 
            // close the current file
            scram_close(currFile_->fp);
            currFile_->fp = nullptr;
            currFile_++;
            // If this is the last file, then we're done
            if (currFile_ == files_.end()) { return false; }
            // Otherwise, start parsing the next file.
            fp_ = scram_open(currFile_->fileName.c_str(), currFile_->readMode.c_str());
            hdr_ = currFile_->header;
            continue;
        }

        if (!(bam_flag(sread.read) & BAM_FDUP) and
            !(bam_flag(sread.read) & BAM_FQCFAIL) and
            !(bam_flag(sread.read) & BAM_FUNMAP) and
            sread.transcriptID() >= 0) {
            haveValidRead = true;
        }

        if (!haveValidRead) { 
            if (filt != nullptr) {
                filt->processFrag(&sread);
            }
            ++numUnaligned_; 
        }
        ++totalAlignments_;
    }

    sread.logProb = salmon::math::LOG_0;
    return true;
}

template <typename FragT>
size_t BAMQueue<FragT>::numObservedAlignments(){ return totalAlignments_; }

template <typename FragT>
size_t BAMQueue<FragT>::numObservedFragments(){ return numMappedReads_ + numUnaligned_; }

template <typename FragT>
size_t BAMQueue<FragT>::numMappedFragments(){ 
    return numMappedReads_;
}

template <typename FragT>
size_t BAMQueue<FragT>::numUniquelyMappedFragments(){ 
    return numUniquelyMappedReads_;
}


template <typename FragT>
template <typename FilterT>
void BAMQueue<FragT>::fillQueue_(FilterT filt, bool onlyProcessAmbiguousAlignments) {
    size_t n{0};
    size_t numFragAlloc{0};
    AlignmentGroup<FragT*>* alngroup;
    //alnGroupPool_.pop(alngroup);
    while (!alnGroupPool_.try_dequeue(alngroup));
    bool notified{false};

    currFile_ = files_.begin();
    fp_ = currFile_->fp;
    hdr_ = currFile_->header;

    FragT* f;
    if (!fragmentQueue_.try_pop(f)) {
        f = new FragT;
    }

    uint32_t prevLen{1};
    char* prevReadName = new char[255];
    bool readAlignsUniquely{false};
    int32_t prevTranscriptId{std::numeric_limits<int32_t>::min()};

    while(getFrag_(*f, filt)) {

        char* readName = f->getName();
        uint32_t currLen = f->getNameLength();
        // if this is a new read
        if ( (currLen != prevLen) or
            !sameReadName_<UnpairedRead>(readName, prevReadName, currLen) ) {

            if (alngroup->size() > 0) {

                // If we only wish to process ambiguous alignments,
                // and the current read aligns uniquely, then return 
                // what we parsed to the appropriate queue and continue
                if (onlyProcessAmbiguousAlignments and 
                        readAlignsUniquely) {
                   // return the fragments
                   for (auto aln : alngroup->alignments()) {
                       fragmentQueue_.push(aln); aln = nullptr;
                   }
                   // clear the alignments vector
                   alngroup->alignments().clear();
                   // continue to use this alignment group
                   numUniquelyMappedReads_++;
                } else {
                    // push the align group
                    while(!alnGroupQueue_.try_enqueue(alngroup));
                    alngroup = nullptr;
                    if (!alnGroupPool_.try_dequeue(alngroup)) {  
                        exhaustedAlnGroupPool_ = true;
                        //alnGroupPool_.pop(alngroup);
                        while(!alnGroupPool_.try_dequeue(alngroup));
                    }
                }
            }
            
            if (readAlignsUniquely) { numUniquelyMappedReads_++; }
            readAlignsUniquely = true;

            alngroup->addAlignment(f);
            memcpy(prevReadName, readName, currLen);
            prevLen = currLen;
            prevTranscriptId = f->transcriptID();
            f = nullptr;
            numMappedReads_++;
        } else { // otherwise, this is another alignment for the same read

            // If the new alignment for the read is to a 
            // different transcript, then it's not a unique mapper
            if (readAlignsUniquely and f->transcriptID() != prevTranscriptId) {
                readAlignsUniquely = false;
            }

            alngroup->addAlignment(f);
            f = nullptr;
       }

        while (!fragmentQueue_.try_pop(f)) {
            if (!exhaustedAlnGroupPool_) {
                f = new FragT;
                ++numFragAlloc;
                break;
            }
        }

       if (!notified and exhaustedAlnGroupPool_) { 
          logger_->info("\n\nThe alignment group queue pool has been exhausted.  {} extra fragments were allocated "
                        "on the heap to saturate the pool.  No new fragments will be allocated\n\n", numFragAlloc);
          notified = true;
       }
       ++n;
    }

    // If we popped a fragment structure off the queue, but didn't add it 
    // to an alignment group, then reclaim it here
    if (f != nullptr) { fragmentQueue_.push(f); f = nullptr; }

    // If the last alignment group is non-empty, then send 
    // it off to be processed.
    if (alngroup->size() > 0) { 

        // If we only wish to process ambiguous alignments,
        // and the current read aligns uniquely, then return 
        // what we parsed to the appropriate queue and continue
        if (onlyProcessAmbiguousAlignments and 
                readAlignsUniquely) {
            // return the fragments
            for (auto aln : alngroup->alignments()) {
                fragmentQueue_.push(aln); aln = nullptr;
            }
            // clear the alignments vector
            alngroup->alignments().clear();
            // return the alignment group itself 
            alnGroupPool_.enqueue(alngroup);
            numUniquelyMappedReads_++;
        } else {
            while(!alnGroupQueue_.try_enqueue(alngroup));
            alngroup = nullptr;
        }
    } else { // otherwise, reclaim the alignment group structure here
        //alnGroupPool_.push(alngroup);
        alnGroupPool_.enqueue(alngroup);
    }

    delete [] prevReadName;
    // We're at the end of the list of input files
    // and we're done parsing (for now).
    currFile_ = files_.end();
    fp_ = nullptr;
    hdr_ = nullptr;
    doneParsing_ = true;
    return;
}

///////// Proper BAM parsing graveyard

/* 
        // If the reads don't have the same name, then the pair was not
        // consecutive in the file --- complain and skip!
        if (BOOST_UNLIKELY(!sameName)) {

            // Flag stores whether or not we've consumed all of the 
            // alignment records in the current file.
            bool consumedFile{false};

            // Consume reads until we find a pair with the same name
            while (!sameName) {
                // Complain if this is supposed to be a paired read
                fmt::print(stderr, "{}WARNING:{} The mate of read [{}] did not "
                        "appear next to it in the file. The next read was [{}].  "
                        "Skipping the first read\n\n", 
                        ioutils::SET_RED, 
                        ioutils::RESET_COLOR, 
                        bam1_qname(rpair.read1),
                        bam1_qname(rpair.read2));

                rpair.read1 = rpair.read2; 
                didRead2 = (sam_read1(fp_, hdr_, rpair.read2) >= 0);
                // If we hit the end of the file --- skip to the top of the loop
                // to see if we need to move on to another file.
                if (!didRead2) { consumedFile = true; continue; }

                // As above, if we encounter a non-paired read, then, for the
                // time being, flip out and quit.
                if (BOOST_UNLIKELY(!(rpair.read2->core.flag & BAM_FPAIRED))) {
                    fmt::MemoryWriter errmsg;
                    errmsg << "\n\n" 
                        << ioutils::SET_RED << "ERROR: " << ioutils::RESET_COLOR 
                        << "Saw adjacent reads, at least one of which was unpaired. "
                        << "The two ends of a paired-end read should be adjacent. "
                        << "Don't know how to proceed; exiting!\n\n";
                    std::cerr << errmsg.str();
                    std::exit(-1);
                } else { std::cerr << "BLARGHHH\n\n\n"; }
                // As above, check first that the lengths of the names are the
                // same and then that the names are, in fact, identical.
                sameName = (rpair.read1->core.l_qname == rpair.read2->core.l_qname);
                if (BOOST_LIKELY(sameName)) {
                    auto nameLen = rpair.read1->core.l_qname;
                    char* qname1 = bam1_qname(rpair.read1);
                    char* qname2 = bam1_qname(rpair.read2);
                    sameName = checkProperPairedNames_(qname1, qname2, nameLen);
                }
            } // end while (!sameName)

            // If we consumed all of the current file, break to the top of the
            // loop.
            if (BOOST_UNLIKELY(consumedFile)) { continue; } 
        }

        bool read1IsValid{false};
        if ( !(rpair.read1->core.flag & BAM_FUNMAP) 
              and (rpair.read1->core.flag & BAM_FPROPER_PAIR)
             //and !(rpair.read1->core.flag & BAM_FDUP) 
             //and !(rpair.read1->core.flag & BAM_FQCFAIL)
            ) {
            read1IsValid = true;
        }

        bool read2IsValid{false};
        if ( !(rpair.read2->core.flag & BAM_FUNMAP) 
              and (rpair.read2->core.flag & BAM_FPROPER_PAIR)
             //and !(rpair.read2->core.flag & BAM_FDUP) 
             //and !(rpair.read2->core.flag & BAM_FQCFAIL)
            ) {
            read2IsValid = true;
        }

        haveValidPair = read1IsValid and read2IsValid and
                        (rpair.read1->core.tid == rpair.read2->core.tid) and 
                        sameName;
        
        // If the pair was not properly mapped 
        if (!haveValidPair) { 
            ++numUnaligned_; 
            // If we have an active output filter, and the reads were not 
            // a valid alignment (*but were a proper pair*), then pass them
            // to the output filter.
            if ((filt != nullptr) and sameName) {
                filt->processFrag(&rpair);
            }
        } else {
            // Make sure read1 is read1 and read2 is read2; else swap
            if (rpair.read1->core.flag & BAM_FREAD2) {
                std::swap(rpair.read1, rpair.read2);
            }
            rpair.orphanStatus = salmon::utils::OrphanStatus::Paired;

            ++propPaired;
        }
        */