1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
#ifndef __CLUSTER_FOREST_HPP__
#define __CLUSTER_FOREST_HPP__
#include <boost/pending/disjoint_sets.hpp>
#include "Transcript.hpp"
#include "TranscriptCluster.hpp"
#include "SalmonSpinLock.hpp"
#include <unordered_set>
#include <vector>
#include <mutex>
/** A forest of transcript clusters */
class ClusterForest {
public:
ClusterForest(size_t numTranscripts, std::vector<Transcript>& refs) :
rank_(std::vector<size_t>(numTranscripts, 0)),
parent_(std::vector<size_t>(numTranscripts, 0)),
disjointSets_(&rank_[0], &parent_[0]),
clusters_(std::vector<TranscriptCluster>(numTranscripts))
{
// Initially make a unique set for each transcript
for(size_t tnum = 0; tnum < numTranscripts; ++tnum) {
disjointSets_.make_set(tnum);
clusters_[tnum].members_.push_front(tnum);
clusters_[tnum].addMass(refs[tnum].mass());
}
}
template <typename FragT>
void mergeClusters(typename std::vector<FragT>::iterator start,
typename std::vector<FragT>::iterator finish) {
// Use a lock_guard to ensure this is a locked (and exception-safe) operation
#if defined __APPLE__
spin_lock::scoped_lock sl(clusterMutex_);
#else
std::lock_guard<std::mutex> lock(clusterMutex_);
#endif
size_t firstCluster, otherCluster;
auto firstTranscriptID = start->transcriptID();
++start;
for (auto it = start; it != finish; ++it) {
firstCluster = disjointSets_.find_set(firstTranscriptID);
otherCluster = disjointSets_.find_set(it->transcriptID());
if (otherCluster != firstCluster) {
disjointSets_.link(firstCluster, otherCluster);
auto parentClust = disjointSets_.find_set(it->transcriptID());
auto childClust = (parentClust == firstCluster) ? otherCluster : firstCluster;
if (parentClust == firstCluster or parentClust == otherCluster) {
clusters_[parentClust].merge(clusters_[childClust]);
clusters_[childClust].deactivate();
} else { std::cerr << "DANGER\n"; }
}
}
}
template <typename FragT>
void mergeClusters(typename std::vector<FragT*>::iterator start,
typename std::vector<FragT*>::iterator finish) {
// Use a lock_guard to ensure this is a locked (and exception-safe) operation
#if defined __APPLE__
spin_lock::scoped_lock sl(clusterMutex_);
#else
std::lock_guard<std::mutex> lock(clusterMutex_);
#endif
auto firstTranscriptID = (*start)->transcriptID();
decltype(firstTranscriptID) firstCluster, otherCluster;
++start;
for (auto it = start; it != finish; ++it) {
firstCluster = disjointSets_.find_set(firstTranscriptID);
otherCluster = disjointSets_.find_set((*it)->transcriptID());
if (otherCluster != firstCluster) {
disjointSets_.link(firstCluster, otherCluster);
auto parentClust = disjointSets_.find_set((*it)->transcriptID());
auto childClust = (parentClust == firstCluster) ? otherCluster : firstCluster;
if (parentClust == firstCluster or parentClust == otherCluster) {
clusters_[parentClust].merge(clusters_[childClust]);
clusters_[childClust].deactivate();
} else { std::cerr << "DANGER\n"; }
}
}
}
/*
void mergeClusters(AlignmentBatch<ReadPair>::iterator start, AlignmentBatch<ReadPair>::iterator finish) {
// Use a lock_guard to ensure this is a locked (and exception-safe) operation
std::lock_guard<std::mutex> lock(clusterMutex_);
size_t firstCluster, otherCluster;
auto firstTranscriptID = start->read1->core.tid;
++start;
for (auto it = start; it != finish; ++it) {
firstCluster = disjointSets_.find_set(firstTranscriptID);
otherCluster = disjointSets_.find_set(it->read1->core.tid);
if (otherCluster != firstCluster) {
disjointSets_.link(firstCluster, otherCluster);
auto parentClust = disjointSets_.find_set(it->read1->core.tid);
auto childClust = (parentClust == firstCluster) ? otherCluster : firstCluster;
if (parentClust == firstCluster or parentClust == otherCluster) {
clusters_[parentClust].merge(clusters_[childClust]);
clusters_[childClust].deactivate();
} else { std::cerr << "DANGER\n"; }
}
}
}
*/
void updateCluster(size_t memberTranscript, size_t newCount, double logNewMass, bool updateCount) {
// Use a lock_guard to ensure this is a locked (and exception-safe) operation
#if defined __APPLE__
spin_lock::scoped_lock sl(clusterMutex_);
#else
std::lock_guard<std::mutex> lock(clusterMutex_);
#endif
auto clusterID = disjointSets_.find_set(memberTranscript);
auto& cluster = clusters_[clusterID];
if (updateCount) {
cluster.incrementCount(newCount);
}
cluster.addMass(logNewMass);
}
std::vector<TranscriptCluster*> getClusters() {
std::vector<TranscriptCluster*> clusters;
std::unordered_set<size_t> observedReps;
for (size_t i = 0; i < clusters_.size(); ++i) {
auto rep = disjointSets_.find_set(i);
if (observedReps.find(rep) == observedReps.end()) {
if (!clusters_[rep].isActive()) {
std::cerr << "returning a non-active cluster!\n";
std::exit(1);
}
clusters.push_back(&clusters_[rep]);
observedReps.insert(rep);
}
}
return clusters;
}
private:
std::vector<size_t> rank_;
std::vector<size_t> parent_;
boost::disjoint_sets<size_t*, size_t*> disjointSets_;
std::vector<TranscriptCluster> clusters_;
#if defined __APPLE__
spin_lock clusterMutex_;
#else
std::mutex clusterMutex_;
#endif
};
#endif // __CLUSTER_FOREST_HPP__
|