File: LightweightAlignmentDefs.hpp

package info (click to toggle)
salmon 0.7.2%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 4,352 kB
  • ctags: 5,243
  • sloc: cpp: 42,341; ansic: 6,252; python: 228; makefile: 207; sh: 190
file content (1497 lines) | stat: -rw-r--r-- 61,849 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
#ifndef LIGHTWEIGHT_ALIGNMENT_DEFS_HPP
#define LIGHTWEIGHT_ALIGNMENT_DEFS_HPP


#include "BWAMemStaticFuncs.hpp"
#include "RapMapUtils.hpp"

class SMEMAlignment {
    public:
        SMEMAlignment() :
            pos(0),
            fwd(false),
            mateIsFwd(false),
            transcriptID_(std::numeric_limits<TranscriptID>::max()),
            format_(LibraryFormat::formatFromID(0)),
            score_(0.0),
            fragLength_(0),
            logProb(salmon::math::LOG_0),
            logBias(salmon::math::LOG_0){}

        SMEMAlignment(TranscriptID transcriptIDIn, LibraryFormat format,
                  double scoreIn = 0.0,
                  int32_t hitPosIn = 0,
                  uint32_t fragLengthIn= 0,
                  double logProbIn = salmon::math::LOG_0) :
            pos(hitPosIn), fwd(false), mateIsFwd(false), transcriptID_(transcriptIDIn),
            format_(format), score_(scoreIn),
            fragLength_(fragLengthIn), fragLen(fragLengthIn), logProb(logProbIn) {}

        SMEMAlignment(const SMEMAlignment& o) = default;
        SMEMAlignment(SMEMAlignment&& o) = default;
        SMEMAlignment& operator=(SMEMAlignment& o) = default;
        SMEMAlignment& operator=(SMEMAlignment&& o) = default;


        inline TranscriptID transcriptID() const { return transcriptID_; }
        inline uint32_t fragLength() const { return fragLength_; }
        inline uint32_t fragLengthPedantic(uint32_t txpLen) const { return fragLength_; }
        inline LibraryFormat libFormat() const { return format_; }
        inline double score() const { return score_; }
        inline int32_t hitPos() const { return pos; }
        // inline double coverage() {  return static_cast<double>(kmerCount) / fragLength_; };
        uint32_t kmerCount;
        double logProb;
        double logBias;
        template <typename Archive>
        void save(Archive& archive) const {
            archive(transcriptID_, format_.formatID(), score_, pos, fragLength_);
        }

        template <typename Archive>
        void load(Archive& archive) {
            uint8_t formatID;
            archive(transcriptID_, formatID, score_, pos, fragLength_);
            format_ = LibraryFormat::formatFromID(formatID);
        }

        rapmap::utils::MateStatus mateStatus;
        int32_t pos;
        int32_t matePos; // JUST FOR COMPATIBILITY WITH QUASI!
        bool fwd;
        bool mateIsFwd;
        uint32_t readLen;
        uint32_t mateLen;
        uint32_t fragLen;
    private:
        TranscriptID transcriptID_;
        LibraryFormat format_;
        double score_;
        uint32_t fragLength_;
};

uint32_t basesCovered(std::vector<uint32_t>& kmerHits) {
    std::sort(kmerHits.begin(), kmerHits.end());
    uint32_t covered{0};
    uint32_t lastHit{0};
    uint32_t kl{20};
    for (auto h : kmerHits) {
        covered += std::min(h - lastHit, kl);
        lastHit = h;
    }
    return covered;
}

uint32_t basesCovered(std::vector<uint32_t>& posLeft, std::vector<uint32_t>& posRight) {
    return basesCovered(posLeft) + basesCovered(posRight);
}

class KmerVote {
    public:
        KmerVote(int32_t vp, uint32_t rp, uint32_t vl) : votePos(vp), readPos(rp), voteLen(vl) {}
        int32_t votePos{0};
        uint32_t readPos{0};
        uint32_t voteLen{0};
        /*
        std::string str(){
            return "<" + votePos  + ", "  + readPos  + ", "  + voteLen + ">";
        }
        */
};
class MatchFragment {
    public:
        MatchFragment(uint32_t refStart_, uint32_t queryStart_, uint32_t length_) :
            refStart(refStart_), queryStart(queryStart_), length(length_) {}

        uint32_t refStart, queryStart, length;
        uint32_t weight;
        double score;
};

bool precedes(const MatchFragment& a, const MatchFragment& b) {
    return (a.refStart + a.length) < b.refStart and
           (a.queryStart + a.length) < b.queryStart;
}


class TranscriptHitList {
    public:
        int32_t bestHitPos{0};
        uint32_t bestHitCount{0};
        double bestHitScore{0.0};

        std::vector<KmerVote> votes;
        std::vector<KmerVote> rcVotes;

        uint32_t targetID;
        uint32_t fwdCov{0};
        uint32_t revCov{0};

        bool isForward_{true};

        void addFragMatch(uint32_t tpos, uint32_t readPos, uint32_t voteLen) {
            int32_t votePos = static_cast<int32_t>(tpos) - static_cast<int32_t>(readPos);
            votes.emplace_back(votePos, readPos, voteLen);
            fwdCov += voteLen;
        }

        void addFragMatchRC(uint32_t tpos, uint32_t readPos, uint32_t voteLen, uint32_t readLen) {
            //int32_t votePos = static_cast<int32_t>(tpos) - (readPos) + voteLen;
            int32_t votePos = static_cast<int32_t>(tpos) - (readLen - readPos);
            rcVotes.emplace_back(votePos, readPos, voteLen);
            revCov += voteLen;
        }

        uint32_t totalNumHits() { return std::max(votes.size(), rcVotes.size()); }

        bool computeBestLocFast_(std::vector<KmerVote>& sVotes, Transcript& transcript,
                                 std::string& read, bool isRC,
                                 int32_t& maxClusterPos, uint32_t& maxClusterCount, double& maxClusterScore) {
            bool updatedMaxScore{true};
            if (sVotes.size() == 0) { return updatedMaxScore; }
            uint32_t readLen = read.length();
            uint32_t votePos = sVotes.front().votePos;

            uint32_t cov = isRC ? revCov : fwdCov;
            if (cov > maxClusterCount) {
                maxClusterCount = cov;
                maxClusterPos = votePos;
                maxClusterScore = maxClusterCount / static_cast<double>(readLen);
                updatedMaxScore = true;
            }
            return updatedMaxScore;

        }

        bool computeBestLoc_(std::vector<KmerVote>& sVotes, Transcript& transcript,
                             std::string& read, bool isRC,
                             int32_t& maxClusterPos, uint32_t& maxClusterCount, double& maxClusterScore) {
            // Did we update the highest-scoring cluster? This will be set to
            // true iff we have a cluster of a higher score than the score
            // currently given in maxClusterCount.
            bool updatedMaxScore{false};

            if (sVotes.size() == 0) { return updatedMaxScore; }

            struct VoteInfo {
                uint32_t coverage = 0;
                int32_t rightmostBase = 0;
            };

            uint32_t readLen = read.length();

            boost::container::flat_map<uint32_t, VoteInfo> hitMap;
            int32_t currClust{static_cast<int32_t>(sVotes.front().votePos)};

            for (size_t j = 0; j < sVotes.size(); ++j) {

                int32_t votePos = sVotes[j].votePos;
                uint32_t readPos = sVotes[j].readPos;
                uint32_t voteLen = sVotes[j].voteLen;

                if (votePos >= currClust) {
                    if (votePos - currClust > 10) {
                        currClust = votePos;
                    }
                    auto& hmEntry = hitMap[currClust];

                    hmEntry.coverage += std::min(voteLen, (votePos + readPos + voteLen) - hmEntry.rightmostBase);
                    hmEntry.rightmostBase = votePos + readPos + voteLen;
                } else if (votePos < currClust) {
                    std::cerr << "Should not have votePos = " << votePos << " <  currClust = " << currClust << "\n";
                    std::exit(1);
                }

                if (hitMap[currClust].coverage > maxClusterCount) {
                    maxClusterCount = hitMap[currClust].coverage;
                    maxClusterPos = currClust;
                    maxClusterScore = maxClusterCount / static_cast<double>(readLen);
                    updatedMaxScore = true;
                }

            }
            return updatedMaxScore;
        }

        bool computeBestLoc2_(std::vector<KmerVote>& sVotes, uint32_t tlen,
                              int32_t& maxClusterPos, uint32_t& maxClusterCount, double& maxClusterScore) {

            bool updatedMaxScore{false};

            if (sVotes.size() == 0) { return updatedMaxScore; }

            double weights[] = { 1.0, 0.983471453822, 0.935506985032,
                0.860707976425, 0.765928338365, 0.6592406302, 0.548811636094,
                0.441902209585, 0.344153786865, 0.259240260646,
                0.188875602838};

            uint32_t maxGap = 4;
            uint32_t leftmost = (sVotes.front().votePos > maxGap) ? (sVotes.front().votePos - maxGap) : 0;
            uint32_t rightmost = std::min(sVotes.back().votePos + maxGap, tlen);

            uint32_t span = (rightmost - leftmost);
            std::vector<double> probAln(span, 0.0);
            double kwidth = 1.0 / (2.0 * maxGap);

            size_t nvotes = sVotes.size();
            for (size_t j = 0; j < nvotes; ++j) {
                uint32_t votePos = sVotes[j].votePos;
                uint32_t voteLen = sVotes[j].voteLen;

                auto x = j + 1;
                while (x < nvotes and sVotes[x].votePos == votePos) {
                    voteLen += sVotes[x].voteLen;
                    j += 1;
                    x += 1;
                }


                uint32_t dist{0};
                size_t start = (votePos >= maxGap) ? (votePos - maxGap - leftmost) : (votePos - leftmost);
                size_t mid = votePos - leftmost;
                size_t end = std::min(votePos + maxGap - leftmost, rightmost - leftmost);
                for (size_t k = start; k < end; k += 1) {
                    dist = (mid > k) ? mid - k : k - mid;
                    probAln[k] += weights[dist] * voteLen;
                    if (probAln[k] > maxClusterScore) {
                        maxClusterScore = probAln[k];
                        maxClusterPos = k + leftmost;
                        updatedMaxScore = true;
                    }
                }
            }

            return updatedMaxScore;
        }


        inline uint32_t numSampledHits_(Transcript& transcript, std::string& readIn,
                                        int32_t votePos, int32_t posInRead, int32_t voteLen, bool isRC, uint32_t numTries) {


            // The read starts at this position in the transcript (may be negative!)
            int32_t readStart = votePos;
            // The (uncorrected) length of the read
            int32_t readLen = readIn.length();
            // Pointer to the sequence of the read
            const char* read = readIn.c_str();
            // Don't mess around with unsigned arithmetic here
            int32_t tlen = transcript.RefLength;

            // If the read starts before the first base of the transcript,
            // trim off the initial overhang  and correct the other variables
            if (readStart < 0) {
                if (isRC) {
                    uint32_t correction = -readStart;
                    //std::cerr << "readLen = " << readLen << ", posInRead = " << posInRead << ", voteLen = " << voteLen << ", correction = " << correction << "\n";
                    //std::cerr << "tlen = " << tlen << ", votePos = " << votePos << "\n";
                    read += correction;
                    readLen -= correction;
                    posInRead -= correction;
                    readStart = 0;
                } else {
                    uint32_t correction = -readStart;
                    read += correction;
                    readLen -= correction;
                    posInRead -= correction;
                    readStart = 0;
                }
            }
            // If the read hangs off the end of the transcript,
            // shorten its effective length.
            if (readStart + readLen >= tlen) {
                if (isRC) {
                    uint32_t correction = (readStart + readLen) - transcript.RefLength + 1;
                    //std::cerr << "Trimming RC hit: correction = " << correction << "\n";
                    //std::cerr << "untrimmed read : "  << read << "\n";
                    read += correction;
                    readLen -= correction;
                    if (voteLen > readLen) { voteLen = readLen; }
                    posInRead = 0;
                } else {
                    readLen = tlen - (readStart + 1);
                    voteLen = std::max(voteLen, readLen - (posInRead + voteLen));
                }
            }
            // Finally, clip any reverse complement reads starting at 0
            if (isRC) {

                if (voteLen > readStart) {
                    readLen -= (readLen - (posInRead + voteLen));
                }

            }

            // If the read is too short, it's not useful
            if (readLen <= 15) { return 0; }
            // The step between sample centers (given the number of samples we're going to take)
            double step = (readLen - 1) / static_cast<double>(numTries-1);
            // The strand of the transcript from which we'll extract sequence
            auto dir = (isRC) ? salmon::stringtools::strand::reverse :
                                salmon::stringtools::strand::forward;

            bool superVerbose{false};

            if (superVerbose) {
                std::stringstream ss;
                ss << "Supposed hit " << (isRC ? "RC" : "") << "\n";
                ss << "info: votePos = " << votePos << ", posInRead = " << posInRead
                    << ", voteLen = " << voteLen << ", readLen = " << readLen
                    << ", tran len = " << tlen << ", step = " << step << "\n";
                if (readStart + readLen > tlen ) {
                    ss << "ERROR!!!\n";
                    std::cerr << "[[" << ss.str() << "]]";
                    std::exit(1);
                }
                ss << "Transcript name = " << transcript.RefName << "\n";
                ss << "T : ";
                try {
                    for ( size_t j = 0; j < readLen; ++j) {
                        if (isRC) {
                            if (j == posInRead) {
                                char red[] = "\x1b[30m";
                                red[3] = '0' + static_cast<char>(fmt::RED);
                                ss << red;
                            }

                            if (j == posInRead + voteLen) {
                                const char RESET_COLOR[] = "\x1b[0m";
                                ss << RESET_COLOR;
                            }
                            ss << transcript.charBaseAt(readStart+readLen-j,dir);
                        } else {
                            if (j == posInRead ) {
                                char red[] = "\x1b[30m";
                                red[3] = '0' + static_cast<char>(fmt::RED);
                                ss << red;
                            }

                            if (j == posInRead + voteLen) {
                                const char RESET_COLOR[] = "\x1b[0m";
                                ss << RESET_COLOR;
                            }

                            ss << transcript.charBaseAt(readStart+j);
                        }
                    }
                    ss << "\n";
                    char red[] = "\x1b[30m";
                    red[3] = '0' + static_cast<char>(fmt::RED);
                    const char RESET_COLOR[] = "\x1b[0m";

                    ss << "R : " << std::string(read, posInRead) << red << std::string(read + posInRead, voteLen) << RESET_COLOR;
                    if (readLen > posInRead + voteLen) { ss << std::string(read + posInRead + voteLen); }
                    ss << "\n\n";
                } catch (std::exception& e) {
                    std::cerr << "EXCEPTION !!!!!! " << e.what() << "\n";
                }
                std::cerr << ss.str() << "\n";
                ss.clear();
            }

            // The index of the current sample within the read
            int32_t readIndex = 0;

            // The number of loci in the subvotes and their
            // offset patternns
            size_t lpos = 3;
            int leftPattern[] = {-4, -2, 0};
            int rightPattern[] = {0, 2, 4};
            int centerPattern[] = {-4, 0, 4};

            // The number of subvote hits we've had
            uint32_t numHits = 0;
            // Take the samples
            for (size_t i  = 0; i < numTries; ++i) {
                // The sample will be centered around this point
                readIndex = static_cast<uint32_t>(std::round(readStart + i * step)) - readStart;

                // The number of successful sub-ovtes we have
                uint32_t subHit = 0;
                // Select the center sub-vote pattern, unless we're near the end of a read
                int* pattern = &centerPattern[0];
                if (readIndex + pattern[0] < 0) {
                    pattern = &rightPattern[0];
                } else if (readIndex + pattern[lpos-1] >= readLen) {
                    pattern = &leftPattern[0];
                }

                // collect the subvotes
                for (size_t j = 0; j < lpos; ++j) {
                    // the pattern offset
                    int offset = pattern[j];
                    // and sample position it implies within the read
                    int readPos = readIndex + offset;

                    if (readStart + readPos >= tlen) {
                        std::cerr  << "offset = " << offset << ", readPos = " << readPos << ", readStart = " << readStart << ", readStart + readPos = " << readStart + readPos << ", tlen = " << transcript.RefLength << "\n";
                    }

                    subHit += (isRC) ?
                        (transcript.charBaseAt(readStart + readLen - readPos, dir) == salmon::stringtools::charCanon[read[readPos]]) :
                        (transcript.charBaseAt(readStart + readPos               ) == salmon::stringtools::charCanon[read[readPos]]);
                }
                // if the entire subvote was successful, this is a hit
                numHits += (subHit == lpos);
            }
            // return the number of hits we had
            return numHits;
        }



        bool computeBestLoc3_(std::vector<KmerVote>& sVotes, Transcript& transcript,
                              std::string& read, bool isRC,
                              int32_t& maxClusterPos, uint32_t& maxClusterCount, double& maxClusterScore) {

            bool updatedMaxScore{false};

            if (sVotes.size() == 0) { return updatedMaxScore; }

            struct LocHitCount {
                int32_t loc;
                uint32_t nhits;
            };

            uint32_t numSamp = 15;
            std::vector<LocHitCount> hitCounts;
            size_t nvotes = sVotes.size();
            int32_t prevPos = -std::numeric_limits<int32_t>::max();
            for (size_t j = 0; j < nvotes; ++j) {
                int32_t votePos = sVotes[j].votePos;
                int32_t posInRead = sVotes[j].readPos;
                int32_t voteLen = sVotes[j].voteLen;
                if (prevPos == votePos) { continue; }
                auto numHits = numSampledHits_(transcript, read, votePos, posInRead, voteLen, isRC, numSamp);
                hitCounts.push_back({votePos, numHits});
                prevPos = votePos;
            }

            uint32_t maxGap = 8;
            uint32_t hitIdx = 0;
            uint32_t accumHits = 0;
            int32_t hitLoc = hitCounts[hitIdx].loc;
            while (hitIdx < hitCounts.size()) {
                uint32_t idx2 = hitIdx;
                while (idx2 < hitCounts.size() and std::abs(hitCounts[idx2].loc - hitLoc) <= maxGap) {
                    accumHits += hitCounts[idx2].nhits;
                    ++idx2;
                }

                double score = static_cast<double>(accumHits) / numSamp;
                if (score > maxClusterScore) {
                    maxClusterCount = accumHits;
                    maxClusterScore = score;
                    maxClusterPos = hitCounts[hitIdx].loc;
                    updatedMaxScore = true;
                }
                accumHits = 0;
                ++hitIdx;
                hitLoc = hitCounts[hitIdx].loc;
            }

            return updatedMaxScore;
        }


        bool computeBestChain(Transcript& transcript, std::string& read) {
            std::sort(votes.begin(), votes.end(),
                    [](const KmerVote& v1, const KmerVote& v2) -> bool {
                        if (v1.votePos == v2.votePos) {
                            return v1.readPos < v2.readPos;
                        }
                        return v1.votePos < v2.votePos;
                    });

            std::sort(rcVotes.begin(), rcVotes.end(),
                    [](const KmerVote& v1, const KmerVote& v2) -> bool {
                        if (v1.votePos == v2.votePos) {
                            return v1.readPos < v2.readPos;
                        }
                        return v1.votePos < v2.votePos;
                    });

            int32_t maxClusterPos{0};
            uint32_t maxClusterCount{0};
            double maxClusterScore{0.0};

            // we don't need the return value from the first call
            static_cast<void>(computeBestLoc_(votes, transcript, read, false, maxClusterPos, maxClusterCount, maxClusterScore));
            bool revIsBest = computeBestLoc_(rcVotes, transcript, read, true, maxClusterPos, maxClusterCount, maxClusterScore);
            isForward_ = not revIsBest;

            bestHitPos = maxClusterPos;
            bestHitCount = maxClusterCount;
            bestHitScore = maxClusterScore;
            return true;
        }

        bool isForward() { return isForward_; }

};


template <typename AlnT>
void processMiniBatch(
        ReadExperiment& readExp,
        ForgettingMassCalculator& fmCalc,
        uint64_t firstTimestepOfRound,
        ReadLibrary& readLib,
        const SalmonOpts& salmonOpts,
        AlnGroupVecRange<AlnT> batchHits,
        std::vector<Transcript>& transcripts,
        ClusterForest& clusterForest,
        FragmentLengthDistribution& fragLengthDist,
        BiasParams& observedGCParams,
        std::atomic<uint64_t>& numAssignedFragments,
        std::default_random_engine& randEng,
        bool initialRound,
        std::atomic<bool>& burnedIn,
        double& maxZeroFrac
        );

template <typename CoverageCalculator>
inline void collectHitsForRead(SalmonIndex* sidx, const bwtintv_v* a, smem_aux_t* auxHits,
                        mem_opt_t* memOptions, const SalmonOpts& salmonOpts, const uint8_t* read, uint32_t readLen,
                        std::vector<CoverageCalculator>& hits) {
                        //std::unordered_map<uint64_t, CoverageCalculator>& hits) {

    bwaidx_t* idx = sidx->bwaIndex();
    mem_collect_intv(salmonOpts, memOptions, sidx, readLen, read, auxHits);

    // For each MEM
    int firstSeedLen{-1};
    for (int i = 0; i < auxHits->mem.n; ++i ) {
        // A pointer to the interval of the MEMs occurences
        bwtintv_t* p = &auxHits->mem.a[i];
        // The start and end positions in the query string (i.e. read) of the MEM
        int qstart = p->info>>32;
        uint32_t qend = static_cast<uint32_t>(p->info);
        int step, count, slen = (qend - qstart); // seed length

        /*
        if (firstSeedLen > -1) {
            if (slen < firstSeedLen) { return; }
        } else {
            firstSeedLen = slen;
        }
        */

        int64_t k;
        step = p->x[2] > memOptions->max_occ? p->x[2] / memOptions->max_occ : 1;
        // For every occurrence of the MEM
        for (k = count = 0; k < p->x[2] && count < memOptions->max_occ; k += step, ++count) {
            bwtint_t pos;
            bwtint_t startPos, endPos;
            int len, isRev, isRevStart, isRevEnd, refID, refIDStart, refIDEnd;
            int queryStart = qstart;
            len = slen;
            uint32_t rlen = readLen;

            // Get the position in the reference index of this MEM occurrence
            int64_t refStart = bwt_sa(idx->bwt, p->x[0] + k);

            pos = startPos = bns_depos(idx->bns, refStart, &isRevStart);
            endPos = bns_depos(idx->bns, refStart + slen - 1, &isRevEnd);
            // If we span the forward/reverse boundary, discard the hit
            if (isRevStart != isRevEnd) {
                continue;
            }
            // Otherwise, isRevStart = isRevEnd so just assign isRev = isRevStart
            isRev = isRevStart;

            // If the hit is reversed --- swap the start and end
            if (isRev) {
                if (endPos > startPos) {
                    salmonOpts.jointLog->warn("Hit is supposedly reversed, "
                                              "but startPos = {} < endPos = {}",
                                              startPos, endPos);
                }
                auto temp = startPos;
                startPos = endPos;
                endPos = temp;
            }
            // Get the ID of the reference sequence in which it occurs
            refID = refIDStart = bns_pos2rid(idx->bns, startPos);
            refIDEnd = bns_pos2rid(idx->bns, endPos);

            if (refID < 0) { continue; } // bridging multiple reference sequences or the forward-reverse boundary;

            auto tlen = idx->bns->anns[refID].len;

            // The refence sequence-relative (e.g. transcript-relative) position of the MEM
            long hitLoc = static_cast<long>(isRev ? endPos : startPos) - idx->bns->anns[refID].offset;

            if ((refIDStart != refIDEnd)) {
                // If a seed spans two transcripts

                // If we're not considering splitting such seeds, then
                // just discard this seed and continue.
                if (not salmonOpts.splitSpanningSeeds) { continue; }

                //std::cerr << "Seed spans two transcripts! --- attempting to split: \n";
                if (!isRev) {
                    // If it's going forward, we have a situation like this
                    // packed transcripts: t1 ===========|t2|==========>
                    // hit:                          |==========>

                    // length of hit in t1
                    auto len1 = tlen - hitLoc;
                    // length of hit in t2
                    auto len2 = slen - len1;
                    if (std::max(len1, len2) < memOptions->min_seed_len) { continue; }

                    /** Keeping this here for now in case I need to debug splitting seeds again
                    std::cerr << "\t hit is in the forward direction: ";
                    std::cerr << "t1 part has length " << len1 << ", t2 part has length " << len2 << "\n";
                    */

                    // If the part in t1 is larger then just cut off the rest
                    if (len1 >= len2) {
                        slen = len1;
                        int32_t votePos = static_cast<int32_t>(hitLoc) - queryStart;
                        //std::cerr << "\t\t t1 (of length " << tlen << ") has larger hit --- new hit length = " << len1 << "; starts at pos " << queryStart << " in the read (votePos will be " << votePos << ")\n";
                    } else {
                        // Otherwise, make the hit be in t2.
                        // Because the hit spans the boundary where t2 begins,
                        // the new seed begins matching at position 0 of
                        // transcript t2
                        hitLoc = 0;
                        slen = len2;
                        // The seed originally started at position q, now it starts  len1 characters to the  right of that
                        queryStart += len1;
                        refID = refIDEnd;
                        int32_t votePos = static_cast<int32_t>(hitLoc) - queryStart;
                        tlen = idx->bns->anns[refID].len;
                        //std::cerr << "\t\t t2 (of length " << tlen << ") has larger hit --- new hit length = " << len2 << "; starts at pos " << queryStart << " in the read (votePos will be " << votePos << ")\n";
                    }
                } else {

                    // If it's going in the reverse direction, we have a situation like this
                    // packed transcripts: t1 <===========|t2|<==========
                    // hit:                          X======Y>======Z>
                    // Which means we have
                    // packed transcripts: t1 <===========|t2|<==========
                    // hit:                          <Z=====Y<======X
                    // length of hit in t1

                    auto len2 = endPos - idx->bns->anns[refIDEnd].offset;
                    auto len1 = slen - len2;
                    if (std::max(len1, len2) < memOptions->min_seed_len) { continue; }

                    /** Keeping this here for now in case I need to debug splitting seeds again
                    std::cerr << "\t hit is in the reverse direction: ";
                    std::cerr << "\n\n";
                    std::cerr << "startPos = " << startPos << ", endPos = " << endPos << ", offset[refIDStart] = "
                              <<  idx->bns->anns[refIDStart].offset << ", offset[refIDEnd] = " << idx->bns->anns[refIDEnd].offset << "\n";
                    std::cerr << "\n\n";
                    std::cerr << "t1 part has length " << len1 << ", t2 part has length " << len2 << "\n\n";
                    */

                    if (len1 >= len2) {
                        slen = len1;
                        hitLoc = tlen - len2;
                        queryStart += len2;
                        rlen -= len2;
                        int32_t votePos = static_cast<int32_t>(hitLoc) - (rlen - queryStart);
                        //std::cerr << "\t\t t1 (hitLoc: " << hitLoc << ") (of length " << tlen << ") has larger hit --- new hit length = " << len1 << "; starts at pos " << queryStart << " in the read (votePos will be " << votePos << ")\n";
                    } else {
                        slen = len2;
                        refID = bns_pos2rid(idx->bns, endPos);
                        tlen = idx->bns->anns[refID].len;
                        hitLoc = len2;
                        rlen = hitLoc + queryStart;
                        int32_t votePos = static_cast<int32_t>(hitLoc) - (rlen - queryStart);
                        //std::cerr << "\t\t t2 (of length " << tlen << ") (hitLoc: " << hitLoc << ") has larger hit --- new hit length = " << len2 << "; starts at pos " << queryStart << " in the read (votePos will be " << votePos << ")\n";
                    }
                }

            }

            auto hitIt = std::find_if(hits.begin(), hits.end(), [refID](CoverageCalculator& c) -> bool { return c.targetID == refID; });
            if (isRev) {
                if (hitIt == hits.end()) {
                    CoverageCalculator hit;
                    hit.targetID = refID;
                    hit.addFragMatchRC(hitLoc, queryStart, slen, rlen);
                    hits.emplace_back(hit);
                } else {
                    hitIt->addFragMatchRC(hitLoc, queryStart , slen, rlen);
                    //hits[refID].addFragMatchRC(hitLoc, queryStart , slen, rlen);
                }
            } else {
                if (hitIt == hits.end()) {
                    CoverageCalculator hit;
                    hit.targetID = refID;
                    hit.addFragMatch(hitLoc, queryStart, slen);
                    hits.emplace_back(hit);
                } else {
                    hitIt->addFragMatch(hitLoc, queryStart , slen);
                    //hits[refID].addFragMatch(hitLoc, queryStart, slen);
                }
            }
        } // for k
    }
}

inline bool consistentNames(header_sequence_qual& r) {
    return true;
}

bool consistentNames(std::pair<header_sequence_qual, header_sequence_qual>& rp) {
        auto l1 = rp.first.header.length();
        auto l2 = rp.second.header.length();
        char* sptr = static_cast<char*>(memchr(&rp.first.header[0], ' ', l1));

        bool compat = false;
        // If we didn't find a space in the name of read1
        if (sptr == NULL) {
            if (l1 > 1) {
                compat = (l1 == l2);
                compat = compat and (memcmp(&rp.first.header[0], &rp.second.header[0], l1-1) == 0);
                compat = compat and ((rp.first.header[l1-1] == '1' and rp.second.header[l2-1] == '2')
                                or   (rp.first.header[l1-1] == rp.second.header[l2-1]));
            } else {
                compat = (l1 == l2);
                compat = compat and (rp.first.header[0] == rp.second.header[0]);
            }
        } else {
            size_t offset = sptr - (&rp.first.header[0]);

            // If read2 matches read1 up to and including the space
            if (offset + 1 < l2) {
                compat = memcmp(&rp.first.header[0], &rp.second.header[0], offset) == 0;
                // and after the space, read1 and read2 have an identical character or
                // read1 has a '1' and read2 has a '2', then this is a consistent pair.
                compat = compat and ((rp.first.header[offset+1] == rp.second.header[offset+1])
                                or   (rp.first.header[offset+1] == '1' and rp.second.header[offset+1] == '2'));
            } else {
                compat = false;
            }
        }
        return compat;
}

/**
 *  Returns true if the @hit is within @cutoff bases of the end of
 *  transcript @txp and false otherwise.
 */
template <typename CoverageCalculator>
inline bool nearEndOfTranscript(
            CoverageCalculator& hit,
            Transcript& txp,
            int32_t cutoff=std::numeric_limits<int32_t>::max()) {
	// check if hit appears close to the end of the given transcript
    bool isForward = hit.isForward();
	int32_t hitPos = static_cast<int32_t>(hit.bestHitPos);
    return (hitPos <= cutoff or std::abs(static_cast<int32_t>(txp.RefLength) - hitPos) <= cutoff);
}

template <typename CoverageCalculator>
inline void getHitsForFragment(
                               fastx_parser::ReadPair& frag,
                               //std::pair<header_sequence_qual, header_sequence_qual>& frag,
                        SalmonIndex* sidx,
                        smem_i *itr,
                        const bwtintv_v *a,
                        smem_aux_t* auxHits,
                        mem_opt_t* memOptions,
                        ReadExperiment& readExp,
                        const SalmonOpts& salmonOpts,
                        double coverageThresh,
                        uint64_t& upperBoundHits,
                        AlignmentGroup<SMEMAlignment>& hitList,
                        uint64_t& hitListCount,
                        std::vector<Transcript>& transcripts) {

    //std::unordered_map<uint64_t, CoverageCalculator> leftHits;
    //std::unordered_map<uint64_t, CoverageCalculator> rightHits;

    std::vector<CoverageCalculator> leftHits;
    std::vector<CoverageCalculator> rightHits;


    uint32_t leftReadLength{0};
    uint32_t rightReadLength{0};

    auto& eqBuilder = readExp.equivalenceClassBuilder();
    bool allowOrphans{salmonOpts.allowOrphans};

    /**
    * As soon as we can decide on an acceptable way to validate read names,
    * we'll inform the user and quit if we see something inconsistent.  However,
    * we first need a reasonable way to verify potential naming formats from
    * many different sources.
    */
    /*
    if (!consistentNames(frag)) {
        fmt::MemoryWriter errstream;

        errstream << "Inconsistent paired-end reads!\n";
        errstream << "mate1 : " << frag.first.header << "\n";
        errstream << "mate2 : " << frag.second.header << "\n";
        errstream << "Paired-end reads should appear consistently in their respective files.\n";
        errstream << "Please fix the paire-end input before quantifying with salmon; exiting.\n";

        std::cerr << errstream.str();
        std::exit(-1);
    }
    */

    //---------- End 1 ----------------------//
    {
        std::string readStr   = frag.first.seq;
        uint32_t readLen      = readStr.size();

        leftReadLength = readLen;

        for (int p = 0; p < readLen; ++p) {
            readStr[p] = nst_nt4_table[static_cast<int>(readStr[p])];
        }

        collectHitsForRead(sidx, a, auxHits,
                            memOptions,
                            salmonOpts,
                            reinterpret_cast<const uint8_t*>(readStr.c_str()),
                            readLen,
                            leftHits);
    }

    //---------- End 2 ----------------------//
    {
        std::string readStr   = frag.second.seq;
        uint32_t readLen      = readStr.size();

        rightReadLength = readLen;

        for (int p = 0; p < readLen; ++p) {
            readStr[p] = nst_nt4_table[static_cast<int>(readStr[p])];
        }

        collectHitsForRead(sidx, a, auxHits,
                            memOptions,
                            salmonOpts,
                            reinterpret_cast<const uint8_t*>(readStr.c_str()),
                            readLen,
                            rightHits);
     } // end right

    size_t numTrivialHits = (leftHits.size() + rightHits.size() > 0) ? 1 : 0;
    upperBoundHits += (leftHits.size() + rightHits.size() > 0) ? 1 : 0;
    size_t readHits{0};
    auto& alnList = hitList.alignments();
    hitList.isUniquelyMapped() = true;
    alnList.clear();
    // nothing more to do
    if (numTrivialHits == 0) { return; }


    double cutoffLeft{ coverageThresh };//* leftReadLength};
    double cutoffRight{ coverageThresh };//* rightReadLength};

    uint64_t leftHitCount{0};

    // Fraction of the optimal coverage that a lightweight alignment
    // must obtain in order to be retained.
    float fOpt{0.95};

    // First, see if there are transcripts where both ends of the
    // fragments map
    auto& minHitList = (leftHits.size() < rightHits.size()) ? leftHits : rightHits;
    auto& maxHitList = (leftHits.size() < rightHits.size()) ? rightHits : leftHits;

    struct JointHitPtr {
        uint32_t transcriptID;
        size_t leftIndex;
        size_t rightIndex;
    };

    std::vector<JointHitPtr> jointHits; // haha (variable name)!
    jointHits.reserve(minHitList.size());

    // vector-based code
    // Sort the left and right hits
    std::sort(leftHits.begin(), leftHits.end(),
              [](const CoverageCalculator& c1, const CoverageCalculator& c2) -> bool {
                return c1.targetID < c2.targetID;
               });
    std::sort(rightHits.begin(), rightHits.end(),
              [](const CoverageCalculator& c1, const CoverageCalculator& c2) -> bool {
                return c1.targetID < c2.targetID;
               });
    // Take the intersection of these two hit lists
    // Adopted from : http://en.cppreference.com/w/cpp/algorithm/set_intersection
    {
        auto leftIt = leftHits.begin();
        auto leftEnd = leftHits.end();
        auto rightIt = rightHits.begin();
        auto rightEnd = rightHits.end();
        while (leftIt != leftEnd && rightIt != rightEnd) {
            if (leftIt->targetID < rightIt->targetID) {
                ++leftIt;
            } else {
                if (!(rightIt->targetID < leftIt->targetID)) {
                    jointHits.push_back({leftIt->targetID,
                                         static_cast<size_t>(std::distance(leftHits.begin(), leftIt)),
                                         static_cast<size_t>(std::distance(rightHits.begin(), rightIt))});
                    ++leftIt;
                }
                ++rightIt;
            }
        }
    }
    // End vector-based code

    /* map based code
    {
        auto notFound = maxHitList.end();
        for (auto& kv : minHitList) {
            uint64_t refID = kv.first;
            if (maxHitList.find(refID) != notFound) {
                jointHits.emplace_back(refID);
            }
        }
    }
    */

    // Check if the fragment generated orphaned
    // lightweight alignments.
    bool isOrphan = (jointHits.size() == 0);

    uint32_t firstTranscriptID = std::numeric_limits<uint32_t>::max();
    double bestScore = -std::numeric_limits<double>::max();
    bool sortedByTranscript = true;
    int32_t lastTranscriptId = std::numeric_limits<int32_t>::min();

    if (BOOST_UNLIKELY(isOrphan and allowOrphans)) {
        //std::vector<CoverageCalculator> allHits;
        //allHits.reserve(totalHits);
        bool foundValidHit{false};

        // search for a hit on the left
        for (auto& tHitList : leftHits) {
            auto transcriptID = tHitList.targetID;
            auto& covChain = tHitList;
            Transcript& t = transcripts[transcriptID];
            if (!t.hasAnchorFragment()) { continue; }

            covChain.computeBestChain(t, frag.first.seq);
            double score = covChain.bestHitScore;

    	    // make sure orphaned fragment is near the end of the transcript
	    	// if (!nearEndOfTranscript(covChain, t, 1000)) { continue; }

            if (score >= fOpt * bestScore and score >= cutoffLeft) {
                foundValidHit = true;

        		if (score > bestScore) { bestScore = score; }
                bool isForward = covChain.isForward();
                int32_t hitPos = covChain.bestHitPos;
                auto fmt = salmon::utils::hitType(hitPos, isForward);

                if (leftHitCount == 0) {
                    firstTranscriptID = transcriptID;
                } else if (hitList.isUniquelyMapped() and transcriptID != firstTranscriptID) {
                    hitList.isUniquelyMapped() = false;
                }

                if (transcriptID  < lastTranscriptId) {
                    sortedByTranscript = false;
                }

                alnList.emplace_back(transcriptID, fmt, score, hitPos);
                alnList.back().fwd = isForward;
                alnList.back().mateStatus = rapmap::utils::MateStatus::PAIRED_END_LEFT;
                readHits += score;
                ++hitListCount;
                ++leftHitCount;
            }
        }

        // search for a hit on the right
        for (auto& tHitList : rightHits) {
            // Prior
            // auto transcriptID = tHitList.first;
            auto transcriptID = tHitList.targetID;
            auto& covChain = tHitList;
            Transcript& t = transcripts[transcriptID];
            if (!t.hasAnchorFragment()) { continue; }

            covChain.computeBestChain(t, frag.second.seq);
            double score = covChain.bestHitScore;

            // make sure orphaned fragment is near the end of the transcript
            // if (!nearEndOfTranscript(covChain, t, 1000)) { continue; }

            if (score >= fOpt * bestScore and score >= cutoffRight) {
                if (score > bestScore) { bestScore = score; }
                foundValidHit = true;
                bool isForward = covChain.isForward();
                int32_t hitPos = covChain.bestHitPos;
                auto fmt = salmon::utils::hitType(hitPos, isForward);
                if (leftHitCount == 0) {
                    firstTranscriptID = transcriptID;
                } else if (hitList.isUniquelyMapped() and transcriptID != firstTranscriptID) {
                    hitList.isUniquelyMapped() = false;
                }

                alnList.emplace_back(transcriptID, fmt, score, hitPos);
                alnList.back().fwd = isForward;
                alnList.back().mateStatus = rapmap::utils::MateStatus::PAIRED_END_RIGHT;
                readHits += score;
                ++hitListCount;
                ++leftHitCount;
            }
        }

        if (alnList.size() > 0) {
            auto newEnd = std::stable_partition(alnList.begin(), alnList.end(),
                           [bestScore, fOpt](SMEMAlignment& aln) -> bool {
                                return aln.score() >= fOpt * bestScore;
                           });
            alnList.resize(std::distance(alnList.begin(), newEnd));
            if (!sortedByTranscript) {
                std::sort(alnList.begin(), alnList.end(),
                          [](const SMEMAlignment& x, const SMEMAlignment& y) -> bool {
                           return x.transcriptID() < y.transcriptID();
                          });
            }
        } else {
            return;
            /*
            // If we didn't have any *significant* hits --- add any *trivial* orphan hits
            size_t totalHits = leftHits.size() + rightHits.size();
            std::vector<uint32_t> txpIDs;
            txpIDs.reserve(totalHits);
            std::vector<double> auxProbs;
            auxProbs.reserve(totalHits);

            size_t txpIDsHash{0};
            std::vector<CoverageCalculator> allHits;
            allHits.reserve(totalHits);
            std::merge(leftHits.begin(), leftHits.end(),
                       rightHits.begin(), rightHits.end(),
                       std::back_inserter(allHits),
                       [](CoverageCalculator& c1, CoverageCalculator& c2) -> bool {
                        return c1.targetID < c2.targetID;
                       });
            double totProb{0.0};
            for (auto& h : allHits) {
                boost::hash_combine(txpIDsHash, h.targetID);
                txpIDs.push_back(h.targetID);
                double refLen =  std::max(1.0, static_cast<double>(transcripts[h.targetID].RefLength));
                double startProb = 1.0 / refLen;
                auxProbs.push_back(startProb);
                totProb += startProb;
            }
            if (totProb > 0.0) {
                double norm = 1.0 / totProb;
                for (auto& p : auxProbs) { p *= norm; }

                TranscriptGroup tg(txpIDs, txpIDsHash);
                eqBuilder.addGroup(std::move(tg), auxProbs);
            } else {
                salmonOpts.jointLog->warn("Unexpected empty hit group [orphaned]");
            }
            */
        }
    } else { // Not an orphan
        for (auto jhp : jointHits) {
            auto& jointHitPtr = jhp;
            auto transcriptID = jhp.transcriptID;
            Transcript& t = transcripts[transcriptID];
            auto& leftHitList = leftHits[jhp.leftIndex];
            leftHitList.computeBestChain(t, frag.first.seq);
            if (leftHitList.bestHitScore >= cutoffLeft) {
                auto& rightHitList = rightHits[jhp.rightIndex];

                rightHitList.computeBestChain(t, frag.second.seq);
                if (rightHitList.bestHitScore < cutoffRight) { continue; }

                auto end1Start = leftHitList.bestHitPos;
                auto end2Start = rightHitList.bestHitPos;

                double score = (leftHitList.bestHitScore + rightHitList.bestHitScore) * 0.5;
                if (score < fOpt * bestScore) { continue; }

                if (score > bestScore) {
                    bestScore = score;
                }

                uint32_t fragLength = std::abs(static_cast<int32_t>(end1Start) -
                                               static_cast<int32_t>(end2Start)) + rightReadLength;

                bool end1IsForward = leftHitList.isForward();
                bool end2IsForward = rightHitList.isForward();

                uint32_t end1Pos = (end1IsForward) ? leftHitList.bestHitPos : leftHitList.bestHitPos + leftReadLength;
                uint32_t end2Pos = (end2IsForward) ? rightHitList.bestHitPos : rightHitList.bestHitPos + rightReadLength;
        		bool canDovetail = false;
                auto fmt = salmon::utils::hitType(end1Pos, end1IsForward, leftReadLength, end2Pos, end2IsForward, rightReadLength, canDovetail);

                if (readHits == 0) {
                    firstTranscriptID = transcriptID;
                } else if (hitList.isUniquelyMapped() and transcriptID != firstTranscriptID) {
                     hitList.isUniquelyMapped() = false;
                }

                int32_t minHitPos = std::min(end1Pos, end2Pos);
                if (transcriptID  < lastTranscriptId) {
                    sortedByTranscript = false;
                }
                // ANCHOR TEST
                t.setAnchorFragment();
                alnList.emplace_back(transcriptID, fmt, score, minHitPos, fragLength);
                alnList.back().fwd = end1IsForward;
                alnList.back().mateIsFwd = end2IsForward;
                alnList.back().mateStatus = rapmap::utils::MateStatus::PAIRED_END_PAIRED;
                ++readHits;
                ++hitListCount;
            }
        } // end for jointHits
        if (alnList.size() > 0) {
            auto newEnd = std::stable_partition(alnList.begin(), alnList.end(),
                           [bestScore, fOpt](SMEMAlignment& aln) -> bool {
                                return aln.score() >= fOpt * bestScore;
                           });
            alnList.resize(std::distance(alnList.begin(), newEnd));
            if (!sortedByTranscript) {
                std::sort(alnList.begin(), alnList.end(),
                          [](const SMEMAlignment& x, const SMEMAlignment& y) -> bool {
                           return x.transcriptID() < y.transcriptID();
                          });
            }
        } else {
            // If we didn't have any *significant* hits --- add any *trivial* joint hits
            return;
            /*
            std::vector<uint32_t> txpIDs;
            txpIDs.reserve(jointHits.size());
            std::vector<double> auxProbs;
            auxProbs.reserve(jointHits.size());

            size_t txpIDsHash{0};
            double totProb{0.0};
            for (auto& h : jointHits) {
                boost::hash_combine(txpIDsHash, h.transcriptID);
                txpIDs.push_back(h.transcriptID);
                double refLen =  std::max(1.0, static_cast<double>(transcripts[h.transcriptID].RefLength));
                double startProb = 1.0 / refLen;
                auxProbs.push_back(startProb);
                totProb += startProb;
            }
            if (totProb > 0.0) {
            double norm = 1.0 / totProb;
            for (auto& p : auxProbs) { p *= norm; }

            TranscriptGroup tg(txpIDs, txpIDsHash);
            eqBuilder.addGroup(std::move(tg), auxProbs);
            } else {
                salmonOpts.jointLog->warn("Unexpected empty hit group [paired]");
            }
            */
        }

    } // end else
}

/**
  *   Get hits for single-end fragment
  *
  *
  */
template <typename CoverageCalculator>
inline void getHitsForFragment(fastx_parser::ReadSeq& frag,
                               //jellyfish::header_sequence_qual& frag,
                        SalmonIndex* sidx,
                        smem_i *itr,
                        const bwtintv_v *a,
                        smem_aux_t* auxHits,
                        mem_opt_t* memOptions,
                        ReadExperiment& readExp,
                        const SalmonOpts& salmonOpts,
                        double coverageThresh,
                        uint64_t& upperBoundHits,
                        AlignmentGroup<SMEMAlignment>& hitList,
                        uint64_t& hitListCount,
                        std::vector<Transcript>& transcripts) {

    uint64_t leftHitCount{0};

    //std::unordered_map<uint64_t, CoverageCalculator> hits;
    std::vector<CoverageCalculator> hits;

    auto& eqBuilder = readExp.equivalenceClassBuilder();

    uint32_t readLength{0};

    //---------- get hits ----------------------//
    {
        std::string readStr   = frag.seq;
        uint32_t readLen      = frag.seq.size();

        readLength = readLen;

        for (int p = 0; p < readLen; ++p) {
            readStr[p] = nst_nt4_table[static_cast<int>(readStr[p])];
        }

        char* readPtr = const_cast<char*>(readStr.c_str());

        collectHitsForRead(sidx, a, auxHits,
                            memOptions,
                            salmonOpts,
                            reinterpret_cast<const uint8_t*>(readStr.c_str()),
                            readLen,
                            hits);

    }

    upperBoundHits += (hits.size() > 0) ? 1 : 0;

    int32_t lastTranscriptId = std::numeric_limits<int32_t>::min();
    bool sortedByTranscript{true};
    double fOpt{0.95};
    double bestScore = -std::numeric_limits<double>::max();

    size_t readHits{0};
    auto& alnList = hitList.alignments();
    hitList.isUniquelyMapped() = true;
    alnList.clear();

    uint32_t firstTranscriptID = std::numeric_limits<uint32_t>::max();
    double cutoff{ coverageThresh };//* readLength};
    for (auto& tHitList : hits) {
        // Prior
        // auto hitID = tHitList.first;
        // auto& covVec = tHitList.second;
        auto hitID = tHitList.targetID;
        auto& covVec = tHitList;

        // Coverage score
        Transcript& t = transcripts[hitID];
        covVec.computeBestChain(t, frag.seq);
        double score = covVec.bestHitScore;
        if (score >= fOpt * bestScore and covVec.bestHitScore >= cutoff) {

            bool isForward = covVec.isForward();
            if (score < fOpt * bestScore) { continue; }

        	if (score > bestScore) { bestScore = score; }

            auto hitPos = covVec.bestHitPos;
            auto fmt = salmon::utils::hitType(hitPos, isForward);

            if (leftHitCount == 0) {
                firstTranscriptID = hitID;
            } else if (hitList.isUniquelyMapped() and hitID != firstTranscriptID) {
                hitList.isUniquelyMapped() = false;
            }

            auto transcriptID = hitID;

            if (transcriptID  < lastTranscriptId) {
                sortedByTranscript = false;
            }

            alnList.emplace_back(transcriptID, fmt, score, hitPos);
            alnList.back().fwd = isForward;
            alnList.back().mateStatus = rapmap::utils::MateStatus::SINGLE_END;
            readHits += score;
            ++hitListCount;
            ++leftHitCount;
        }
    }
    if (alnList.size() > 0) {
        auto newEnd = std::stable_partition(alnList.begin(), alnList.end(),
                [bestScore, fOpt](SMEMAlignment& aln) -> bool {
                return aln.score() >= fOpt * bestScore;
                });
        alnList.resize(std::distance(alnList.begin(), newEnd));
        if (!sortedByTranscript) {
            std::sort(alnList.begin(), alnList.end(),
                    [](const SMEMAlignment& x, const SMEMAlignment& y) -> bool {
                     return x.transcriptID() < y.transcriptID();
                    });
        }
    }
    else {
        // If we didn't have any *significant* hits --- add any *trivial* joint hits
        return;
        /*
        std::vector<uint32_t> txpIDs;
        txpIDs.reserve(hits.size());
        double uniProb = 1.0 / hits.size();
        std::vector<double> auxProbs(hits.size(), uniProb);

        size_t txpIDsHash{0};
        for (auto& h : hits) {
            boost::hash_combine(txpIDsHash, h.targetID);
            txpIDs.push_back(h.targetID);
        }

        TranscriptGroup tg(txpIDs, txpIDsHash);
        eqBuilder.addGroup(std::move(tg), auxProbs);
        */
    }


}

// To use the parser in the following, we get "jobs" until none is
// available. A job behaves like a pointer to the type
// jellyfish::sequence_list (see whole_sequence_parser.hpp).
template <typename ParserT, typename CoverageCalculator>
void processReadsMEM(ParserT* parser,
               ReadExperiment& readExp,
               ReadLibrary& rl,
               AlnGroupVec<QuasiAlignment>& structureVec,
               std::atomic<uint64_t>& numObservedFragments,
               std::atomic<uint64_t>& numAssignedFragments,
               std::atomic<uint64_t>& validHits,
               std::atomic<uint64_t>& upperBoundHits,
               SalmonIndex* sidx,
               std::vector<Transcript>& transcripts,
               ForgettingMassCalculator& fmCalc,
               ClusterForest& clusterForest,
               FragmentLengthDistribution& fragLengthDist,
               BiasParams& observedGCParams,
               mem_opt_t* memOptions,
               const SalmonOpts& salmonOpts,
               double coverageThresh,
	           std::mutex& iomutex,
               bool initialRound,
               std::atomic<bool>& burnedIn,
               volatile bool& writeToCache) {
    	// ERROR
	salmonOpts.jointLog->error("Quasimapping cannot be used with the FMD index --- please report this bug on GitHub");
	std::exit(1);
}

template <typename ParserT, typename CoverageCalculator>
void processReadsMEM(ParserT* parser,
               ReadExperiment& readExp,
               ReadLibrary& rl,
               AlnGroupVec<SMEMAlignment>& structureVec,
               std::atomic<uint64_t>& numObservedFragments,
               std::atomic<uint64_t>& numAssignedFragments,
               std::atomic<uint64_t>& validHits,
               std::atomic<uint64_t>& upperBoundHits,
               SalmonIndex* sidx,
               std::vector<Transcript>& transcripts,
               ForgettingMassCalculator& fmCalc,
               ClusterForest& clusterForest,
               FragmentLengthDistribution& fragLengthDist,
               BiasParams& observedGCParams,
               mem_opt_t* memOptions,
               const SalmonOpts& salmonOpts,
               double coverageThresh,
	           std::mutex& iomutex,
               bool initialRound,
               std::atomic<bool>& burnedIn,
               volatile bool& writeToCache) {
  uint64_t count_fwd = 0, count_bwd = 0;
  // Seed with a real random value, if available
  std::random_device rd;

  // Create a random uniform distribution
  std::default_random_engine eng(rd());

  uint64_t prevObservedFrags{1};
  uint64_t leftHitCount{0};
  uint64_t hitListCount{0};

  // Super-MEM iterator
  smem_i *itr = smem_itr_init(sidx->bwaIndex()->bwt);
  const bwtintv_v *a = nullptr;
  smem_aux_t* auxHits = smem_aux_init();

  auto expectedLibType = rl.format();

  uint64_t firstTimestepOfRound = fmCalc.getCurrentTimestep();

  size_t locRead{0};
  uint64_t localUpperBoundHits{0};
  size_t rangeSize{0};
  double maxZeroFrac{0.0};
  auto rg = parser->getReadGroup();
  while (parser->refill(rg)) {
      rangeSize = rg.size();

      /*
  while(true) {
      
    typename ParserT::job j(*parser); // Get a job from the parser: a bunch of read (at most max_read_group)
    if(j.is_empty()) break;           // If got nothing, quit
    rangeSize = j->nb_filled;
      */
    if (rangeSize > structureVec.size()) {
        salmonOpts.jointLog->error("rangeSize = {}, but structureVec.size() = {} --- this shouldn't happen.\n"
                                   "Please report this bug on GitHub", rangeSize, structureVec.size());
        std::exit(1);
    }

    for(size_t i = 0; i < rangeSize; ++i) { // For all the read in this batch
        localUpperBoundHits = 0;

        auto& hitList = structureVec[i];
        getHitsForFragment<CoverageCalculator>(rg[i],
                                               //j->data[i], 
                                               sidx, itr, a,
                                               auxHits,
                                               memOptions,
                                               readExp,
                                               salmonOpts,
                                               coverageThresh,
                                               localUpperBoundHits,
                                               hitList, hitListCount,
                                               transcripts);
        if (initialRound) {
            upperBoundHits += localUpperBoundHits;
        }

        // If the read mapped to > maxReadOccs places, discard it
        if (hitList.size() > salmonOpts.maxReadOccs ) { hitList.alignments().clear(); }
        validHits += hitList.size();
        locRead++;
        ++numObservedFragments;
        if (numObservedFragments % 50000 == 0) {
    	    iomutex.lock();
            const char RESET_COLOR[] = "\x1b[0m";
            char green[] = "\x1b[30m";
            green[3] = '0' + static_cast<char>(fmt::GREEN);
            char red[] = "\x1b[30m";
            red[3] = '0' + static_cast<char>(fmt::RED);
            if (initialRound) {
                fmt::print(stderr, "\033[A\r\r{}processed{} {} {}fragments{}\n", green, red, numObservedFragments, green, RESET_COLOR);
                fmt::print(stderr, "hits: {}; hits per frag:  {}",
                           validHits,
                           validHits / static_cast<float>(prevObservedFrags));
            } else {
                fmt::print(stderr, "\r\r{}processed{} {} {}fragments{}", green, red, numObservedFragments, green, RESET_COLOR);
            }
    	    iomutex.unlock();
        }


    } // end for i < j->nb_filled

    prevObservedFrags = numObservedFragments;
    AlnGroupVecRange<SMEMAlignment> hitLists = boost::make_iterator_range(structureVec.begin(), structureVec.begin() + rangeSize);
    processMiniBatch<SMEMAlignment>(readExp, fmCalc,firstTimestepOfRound, rl, salmonOpts, hitLists, transcripts, clusterForest,
                                    fragLengthDist, observedGCParams, numAssignedFragments, eng, initialRound, burnedIn, maxZeroFrac);
    
  }

  if (maxZeroFrac > 0.0) {
      salmonOpts.jointLog->info("Thread saw mini-batch with a maximum of {0:.2f}\% zero probability fragments", 
                                maxZeroFrac);
  }

  smem_aux_destroy(auxHits);
  smem_itr_destroy(itr);
}



#endif // LIGHTWEIGHT_ALIGNMENT_DEFS_HPP