1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
|
#ifndef EXPERIMENT_HPP
#define EXPERIMENT_HPP
extern "C" {
#include "bwa.h"
#include "bwamem.h"
#include "kvec.h"
#include "utils.h"
}
// Our includes
#include "ClusterForest.hpp"
#include "DistributionUtils.hpp"
#include "GCFragModel.hpp"
#include "Transcript.hpp"
#include "ReadLibrary.hpp"
#include "FragmentLengthDistribution.hpp"
#include "FragmentStartPositionDistribution.hpp"
#include "SequenceBiasModel.hpp"
#include "SalmonOpts.hpp"
#include "SalmonIndex.hpp"
#include "SalmonUtils.hpp"
#include "EquivalenceClassBuilder.hpp"
#include "SpinLock.hpp" // RapMap's with try_lock
#include "UtilityFunctions.hpp"
#include "ReadKmerDist.hpp"
#include "SBModel.hpp"
#include "SimplePosBias.hpp"
// Logger includes
#include "spdlog/spdlog.h"
// Boost includes
#include <boost/filesystem.hpp>
#include <boost/range/irange.hpp>
// Cereal includes
#include "cereal/archives/json.hpp"
// Standard includes
#include <vector>
#include <memory>
#include <fstream>
/**
* This class represents a library of alignments used to quantify
* a set of target transcripts. The AlignmentLibrary contains info
* about both the alignment file and the target sequence (transcripts).
* It is used to group them together and track information about them
* during the quantification procedure.
*/
class ReadExperiment {
public:
ReadExperiment(std::vector<ReadLibrary>& readLibraries,
//const boost::filesystem::path& transcriptFile,
const boost::filesystem::path& indexDirectory,
SalmonOpts& sopt) :
readLibraries_(readLibraries),
//transcriptFile_(transcriptFile),
transcripts_(std::vector<Transcript>()),
totalAssignedFragments_(0),
fragStartDists_(5),
posBiasFW_(5),
posBiasRC_(5),
seqBiasModel_(1.0),
eqBuilder_(sopt.jointLog),
expectedBias_(constExprPow(4, readBias_[0].getK()), 1.0),
expectedGC_( sopt.numConditionalGCBins,
sopt.numFragGCBins, distribution_utils::DistributionSpace::LOG),
observedGC_( sopt.numConditionalGCBins,
sopt.numFragGCBins, distribution_utils::DistributionSpace::LOG)
{
namespace bfs = boost::filesystem;
// Make sure the read libraries are valid.
for (auto& rl : readLibraries_) { rl.checkValid(); }
size_t maxFragLen = sopt.fragLenDistMax;
size_t meanFragLen = sopt.fragLenDistPriorMean;
size_t fragLenStd = sopt.fragLenDistPriorSD;
size_t fragLenKernelN = 4;
double fragLenKernelP = 0.5;
fragLengthDist_.reset(new FragmentLengthDistribution(1.0, maxFragLen,
meanFragLen, fragLenStd,
fragLenKernelN,
fragLenKernelP, 1));
// Make sure the transcript file exists.
/*
if (!bfs::exists(transcriptFile_)) {
std::stringstream ss;
ss << "The provided transcript file: " << transcriptFile_ <<
" does not exist!\n";
throw std::invalid_argument(ss.str());
}
*/
// ==== Figure out the index type
boost::filesystem::path versionPath = indexDirectory / "versionInfo.json";
SalmonIndexVersionInfo versionInfo;
versionInfo.load(versionPath);
if (versionInfo.indexVersion() == 0) {
fmt::MemoryWriter infostr;
infostr << "Error: The index version file " << versionPath.string()
<< " doesn't seem to exist. Please try re-building the salmon "
"index.";
throw std::invalid_argument(infostr.str());
}
// Check index version compatibility here
auto indexType = versionInfo.indexType();
// ==== Figure out the index type
salmonIndex_.reset(new SalmonIndex(sopt.jointLog, indexType));
salmonIndex_->load(indexDirectory);
// Now we'll have either an FMD-based index or a QUASI index
// dispatch on the correct type.
switch (salmonIndex_->indexType()) {
case SalmonIndexType::QUASI:
if (salmonIndex_->is64BitQuasi()) {
if (salmonIndex_->isPerfectHashQuasi()) {
loadTranscriptsFromQuasi(salmonIndex_->quasiIndexPerfectHash64(), sopt);
} else {
loadTranscriptsFromQuasi(salmonIndex_->quasiIndex64(), sopt);
}
} else {
if (salmonIndex_->isPerfectHashQuasi()) {
loadTranscriptsFromQuasi(salmonIndex_->quasiIndexPerfectHash32(), sopt);
} else {
loadTranscriptsFromQuasi(salmonIndex_->quasiIndex32(), sopt);
}
}
break;
case SalmonIndexType::FMD:
loadTranscriptsFromFMD();
break;
}
// Create the cluster forest for this set of transcripts
clusters_.reset(new ClusterForest(transcripts_.size(), transcripts_));
}
EquivalenceClassBuilder& equivalenceClassBuilder() {
return eqBuilder_;
}
std::vector<Transcript>& transcripts() { return transcripts_; }
const std::vector<Transcript>& transcripts() const { return transcripts_; }
void updateTranscriptLengthsAtomic(std::atomic<bool>& done) {
if (sl_.try_lock()) {
if (!done) {
auto fld = fragLengthDist_.get();
// Convert the PMF to non-log scale
std::vector<double> logPMF;
size_t minVal;
size_t maxVal;
fld->dumpPMF(logPMF, minVal, maxVal);
double sum = salmon::math::LOG_0;
for (auto v : logPMF) {
sum = salmon::math::logAdd(sum, v);
}
for (auto& v : logPMF) {
v -= sum;
}
// Create the non-logged distribution.
// Here, we multiply by 100 to discourage small
// numbers in the correctionFactorsfromCounts call
// below.
std::vector<double> pmf(maxVal + 1, 0.0);
for (size_t i = minVal; i < maxVal; ++i) {
pmf[i] = 100.0 * std::exp(logPMF[i - minVal]);
}
using distribution_utils::DistributionSpace;
// We compute the factors in linear space (since we've de-logged the pmf)
auto correctionFactors = distribution_utils::correctionFactorsFromMass(pmf, DistributionSpace::LINEAR);
// Since we'll continue treating effective lengths in log space, populate them as such
distribution_utils::computeSmoothedEffectiveLengths(pmf.size(), transcripts_, correctionFactors, DistributionSpace::LOG);
/*
// Update the effective length of *every* transcript
for( auto& t : transcripts_ ) {
t.updateEffectiveLength(logPMF, logFLDMean, minVal, maxVal);
}
*/
// then declare that we are done
done = true;
sl_.unlock();
}
}
}
uint64_t numAssignedFragments() { return numAssignedFragments_; }
uint64_t numMappedFragments() const { return numAssignedFragments_; }
uint64_t upperBoundHits() { return upperBoundHits_; }
void setUpperBoundHits(uint64_t ubh) { upperBoundHits_ = ubh; }
std::atomic<uint64_t>& numAssignedFragmentsAtomic() { return numAssignedFragments_; }
void setNumObservedFragments(uint64_t numObserved) { numObservedFragments_ = numObserved; }
void updateShortFrags(salmon::utils::ShortFragStats& fs) {
sl_.lock();
shortFragStats_.numTooShort += fs.numTooShort;
shortFragStats_.shortest = (fs.shortest < shortFragStats_.shortest) ? fs.shortest : shortFragStats_.shortest;
sl_.unlock();
}
salmon::utils::ShortFragStats getShortFragStats() const { return shortFragStats_; }
uint64_t numObservedFragments() const {
return numObservedFragments_;
}
double mappingRate() {
if (quantificationPasses_ > 0) {
return static_cast<double>(numAssignedFragsInFirstPass_) / numObservedFragsInFirstPass_;
} else {
return static_cast<double>(numAssignedFragments_) / numObservedFragments_;
}
}
SalmonIndex* getIndex() { return salmonIndex_.get(); }
template <typename QuasiIndexT>
void loadTranscriptsFromQuasi(QuasiIndexT* idx_, const SalmonOpts& sopt) {
size_t numRecords = idx_->txpNames.size();
auto log = spdlog::get("jointLog");
log->info("Index contained {} targets", numRecords);
//transcripts_.resize(numRecords);
double alpha = 0.005;
for (auto i : boost::irange(size_t(0), numRecords)) {
uint32_t id = i;
const char* name = idx_->txpNames[i].c_str();
uint32_t len = idx_->txpLens[i];
// copy over the length, then we're done.
transcripts_.emplace_back(id, name, len, alpha);
auto& txp = transcripts_.back();
// The transcript sequence
//auto txpSeq = idx_->seq.substr(idx_->txpOffsets[i], len);
// Set the transcript sequence
txp.setSequenceBorrowed(idx_->seq.c_str() + idx_->txpOffsets[i],
sopt.gcBiasCorrect, sopt.gcSampFactor);
// Length classes taken from
// https://github.com/cole-trapnell-lab/cufflinks/blob/master/src/biascorrection.cpp
// ======
// Roberts, Adam, et al.
// "Improving RNA-Seq expression estimates by correcting for fragment bias."
// Genome Biol 12.3 (2011): R22.
// ======
// perhaps, define these in a more data-driven way
if (txp.RefLength <= 791) {
txp.lengthClassIndex(0);
} else if (txp.RefLength <= 1265) {
txp.lengthClassIndex(1);
} else if (txp.RefLength <= 1707) {
txp.lengthClassIndex(2);
} else if (txp.RefLength <= 2433) {
txp.lengthClassIndex(3);
} else {
txp.lengthClassIndex(4);
}
}
// ====== Done loading the transcripts from file
}
void loadTranscriptsFromFMD() {
bwaidx_t* idx_ = salmonIndex_->bwaIndex();
size_t numRecords = idx_->bns->n_seqs;
std::vector<Transcript> transcripts_tmp;
auto log = spdlog::get("jointLog");
//transcripts_tmp.reserve(numRecords);
//transcripts_.reserve(numRecords);
log->info("Index contained {} targets", numRecords);
//transcripts_.resize(numRecords);
for (auto i : boost::irange(size_t(0), numRecords)) {
uint32_t id = i;
char* name = idx_->bns->anns[i].name;
uint32_t len = idx_->bns->anns[i].len;
// copy over the length, then we're done.
transcripts_tmp.emplace_back(id, name, len);
}
std::sort(transcripts_tmp.begin(), transcripts_tmp.end(),
[](const Transcript& t1, const Transcript& t2) -> bool {
return t1.id < t2.id;
});
double alpha = 0.005;
char nucTab[256];
nucTab[0] = 'A'; nucTab[1] = 'C'; nucTab[2] = 'G'; nucTab[3] = 'T';
for (size_t i = 4; i < 256; ++i) { nucTab[i] = 'N'; }
size_t tnum = 0;
// Load the transcript sequence from file
for (auto& t : transcripts_tmp) {
transcripts_.emplace_back(t.id, t.RefName.c_str(), t.RefLength, alpha);
/* from BWA */
uint8_t* rseq = nullptr;
int64_t tstart, tend, compLen, l_pac = idx_->bns->l_pac;
tstart = idx_->bns->anns[t.id].offset;
tend = tstart + t.RefLength;
rseq = bns_get_seq(l_pac, idx_->pac, tstart, tend, &compLen);
if (compLen != t.RefLength) {
fmt::print(stderr,
"For transcript {}, stored length ({}) != computed length ({}) --- index may be corrupt. exiting\n",
t.RefName, compLen, t.RefLength);
std::exit(1);
}
std::string seq(t.RefLength, ' ');
if (rseq != 0) {
for (int64_t i = 0; i < compLen; ++i) { seq[i] = nucTab[rseq[i]]; }
}
auto& txp = transcripts_.back();
// allocate space for the new copy
char* seqCopy = new char[seq.length()+1];
std::strcpy(seqCopy, seq.c_str());
txp.setSequenceOwned(seqCopy);
txp.setSAMSequenceOwned(salmon::stringtools::encodeSequenceInSAM(seq.c_str(), t.RefLength));
// Length classes taken from
// https://github.com/cole-trapnell-lab/cufflinks/blob/master/src/biascorrection.cpp
// ======
// Roberts, Adam, et al.
// "Improving RNA-Seq expression estimates by correcting for fragment bias."
// Genome Biol 12.3 (2011): R22.
// ======
// perhaps, define these in a more data-driven way
if (txp.RefLength <= 791) {
txp.lengthClassIndex(0);
} else if (txp.RefLength <= 1265) {
txp.lengthClassIndex(1);
} else if (txp.RefLength <= 1707) {
txp.lengthClassIndex(2);
} else if (txp.RefLength <= 2433) {
txp.lengthClassIndex(3);
} else {
txp.lengthClassIndex(4);
}
free(rseq);
/* end BWA code */
++tnum;
}
// Since we have the de-coded reference sequences, we no longer need
// the encoded sequences, so free them.
/** TEST OPT **/
// free(idx_->pac); idx_->pac = nullptr;
/** END TEST OPT **/
transcripts_tmp.clear();
// ====== Done loading the transcripts from file
}
template <typename CallbackT>
bool processReads(const uint32_t& numThreads, const SalmonOpts& sopt, CallbackT& processReadLibrary) {
std::atomic<bool> burnedIn{totalAssignedFragments_ + numAssignedFragments_ > sopt.numBurninFrags};
for (auto& rl : readLibraries_) {
processReadLibrary(rl, salmonIndex_.get(), transcripts_, clusterForest(),
*(fragLengthDist_.get()), numAssignedFragments_,
numThreads, burnedIn);
}
return true;
}
~ReadExperiment() {
// ---- Get rid of things we no longer need --------
// bwa_idx_destroy(idx_);
}
ClusterForest& clusterForest() { return *clusters_.get(); }
std::string readFilesAsString() {
std::stringstream sstr;
size_t ln{0};
size_t numReadLibraries{readLibraries_.size()};
for (auto &rl : readLibraries_) {
sstr << rl.readFilesAsString();
if (ln++ < numReadLibraries) { sstr << "; "; }
}
return sstr.str();
}
uint64_t numAssignedFragsInFirstPass() {
return numAssignedFragsInFirstPass_;
}
uint64_t numObservedFragsInFirstPass() {
return numObservedFragsInFirstPass_;
}
double effectiveMappingRate() const {
return effectiveMappingRate_;
}
void setEffectiveMappingRate(double emr) {
effectiveMappingRate_ = emr;
}
std::vector<FragmentStartPositionDistribution>& fragmentStartPositionDistributions() {
return fragStartDists_;
}
SequenceBiasModel& sequenceBiasModel() {
return seqBiasModel_;
}
bool softReset() {
if (quantificationPasses_ == 0) {
numAssignedFragsInFirstPass_ = numAssignedFragments_;
numObservedFragsInFirstPass_ = numObservedFragments_;
}
numObservedFragments_ = 0;
totalAssignedFragments_ += numAssignedFragments_;
numAssignedFragments_ = 0;
quantificationPasses_++;
return true;
}
bool reset() {
namespace bfs = boost::filesystem;
for (auto& rl : readLibraries_) {
if (!rl.isRegularFile()) { return false; }
}
if (quantificationPasses_ == 0) {
numAssignedFragsInFirstPass_ = numAssignedFragments_;
numObservedFragsInFirstPass_ = numObservedFragments_;
}
numObservedFragments_ = 0;
totalAssignedFragments_ += numAssignedFragments_;
numAssignedFragments_ = 0;
quantificationPasses_++;
return true;
}
void summarizeLibraryTypeCounts(boost::filesystem::path& opath){
LibraryFormat fmt1(ReadType::SINGLE_END, ReadOrientation::NONE, ReadStrandedness::U);
LibraryFormat fmt2(ReadType::SINGLE_END, ReadOrientation::NONE, ReadStrandedness::U);
std::ofstream os(opath.string());
cereal::JSONOutputArchive oa(os);
//std::ofstream ofile(opath.string());
fmt::MemoryWriter errstr;
auto log = spdlog::get("jointLog");
uint64_t numFmt1{0};
uint64_t numFmt2{0};
uint64_t numAgree{0};
uint64_t numDisagree{0};
for (auto& rl : readLibraries_) {
auto fmt = rl.format();
auto& counts = rl.libTypeCounts();
// If the format is un-stranded, check that
// we have a similar number of mappings in both
// directions and then aggregate the forward and
// reverse counts.
if (fmt.strandedness == ReadStrandedness::U) {
std::vector<ReadStrandedness> strands;
switch (fmt.orientation) {
case ReadOrientation::SAME:
case ReadOrientation::NONE:
strands.push_back(ReadStrandedness::S);
strands.push_back(ReadStrandedness::A);
break;
case ReadOrientation::AWAY:
case ReadOrientation::TOWARD:
strands.push_back(ReadStrandedness::AS);
strands.push_back(ReadStrandedness::SA);
break;
}
fmt1.type = fmt.type; fmt1.orientation = fmt.orientation;
fmt1.strandedness = strands[0];
fmt2.type = fmt.type; fmt2.orientation = fmt.orientation;
fmt2.strandedness = strands[1];
numFmt1 = 0;
numFmt2 = 0;
numAgree = 0;
numDisagree = 0;
for (size_t i = 0; i < counts.size(); ++i) {
if (i == fmt1.formatID()) {
numFmt1 = counts[i];
} else if (i == fmt2.formatID()) {
numFmt2 = counts[i];
} else {
numDisagree += counts[i];
}
}
numAgree = numFmt1 + numFmt2;
double ratio = static_cast<double>(numFmt1) / (numFmt1 + numFmt2);
if ( std::abs(ratio - 0.5) > 0.01) {
errstr << "NOTE: Read Lib [" << rl.readFilesAsString() << "] :\n";
errstr << "\nDetected a *potential* strand bias > 1\% in an unstranded protocol "
<< "check the file: " << opath.string() << " for details\n";
log->warn(errstr.str());
errstr.clear();
}
oa(cereal::make_nvp("read_files", rl.readFilesAsString()));
std::string expectedFormat = rl.format().toString();
oa(cereal::make_nvp("expected_format", expectedFormat));
double compatFragmentRatio = rl.numCompat() / static_cast<double>(numAssignedFragments_);
oa(cereal::make_nvp("compatible_fragment_ratio", compatFragmentRatio));
oa(cereal::make_nvp("num_compatible_fragments", rl.numCompat()));
oa(cereal::make_nvp("num_assigned_fragments", numAssignedFragments_.load()));
oa(cereal::make_nvp("num_consistent_mappings", numAgree));
oa(cereal::make_nvp("num_inconsistent_mappings", numDisagree));
oa(cereal::make_nvp("strand_mapping_bias", ratio));
} else {
numAgree = 0;
numDisagree = 0;
for (size_t i = 0; i < counts.size(); ++i) {
if (i == fmt.formatID()) {
numAgree = counts[i];
} else {
numDisagree += counts[i];
}
} // end for
oa(cereal::make_nvp("read_files", rl.readFilesAsString()));
std::string expectedFormat = rl.format().toString();
oa(cereal::make_nvp("expected_format", expectedFormat));
double compatFragmentRatio = rl.numCompat() / static_cast<double>(numAssignedFragments_);
oa(cereal::make_nvp("compatible_fragment_ratio", compatFragmentRatio));
oa(cereal::make_nvp("num_compatible_fragments", rl.numCompat()));
oa(cereal::make_nvp("num_assigned_fragments", numAssignedFragments_.load()));
oa(cereal::make_nvp("num_consistent_mappings", numAgree));
oa(cereal::make_nvp("num_inconsistent_mappings", numDisagree));
} //end else
double compatFragmentRatio = rl.numCompat() / static_cast<double>(numAssignedFragments_);
double disagreeRatio = 1.0 - compatFragmentRatio;
if (disagreeRatio > 0.05) {
errstr << "NOTE: Read Lib [" << rl.readFilesAsString() << "] :\n";
errstr << "\nGreater than 5\% of the fragments "
<< "disagreed with the provided library type; "
<< "check the file: " << opath.string() << " for details\n";
log->warn(errstr.str());
errstr.clear();
}
for (size_t i = 0; i < counts.size(); ++i) {
std::string desc = LibraryFormat::formatFromID(i).toString();
if (!desc.empty()) {
oa(cereal::make_nvp(desc, counts[i].load()));
}
}
}
}
std::vector<ReadLibrary>& readLibraries() { return readLibraries_; }
const std::vector<ReadLibrary>& readLibraries() const { return readLibraries_; }
FragmentLengthDistribution* fragmentLengthDistribution() const { return fragLengthDist_.get(); }
void setGCFracForward(double fracForward) { gcFracFwd_ = fracForward; }
double gcFracFwd() const { return gcFracFwd_; }
double gcFracRC() const { return 1.0 - gcFracFwd_; }
std::vector<double>& expectedSeqBias() {
return expectedBias_;
}
const std::vector<double>& expectedSeqBias() const {
return expectedBias_;
}
void setExpectedGCBias(const GCFragModel& expectedBiasIn) {
expectedGC_ = expectedBiasIn;
}
GCFragModel& expectedGCBias() {
return expectedGC_;
}
const GCFragModel& expectedGCBias() const {
return expectedGC_;
}
const GCFragModel& observedGC() const {
return observedGC_;
}
GCFragModel& observedGC() {
return observedGC_;
}
std::vector<SimplePosBias>& posBias(salmon::utils::Direction dir) {
return (dir == salmon::utils::Direction::FORWARD) ? posBiasFW_ : posBiasRC_;
}
const std::vector<SimplePosBias>& posBias(salmon::utils::Direction dir) const {
return (dir == salmon::utils::Direction::FORWARD) ? posBiasFW_ : posBiasRC_;
}
ReadKmerDist<6, std::atomic<uint32_t>>& readBias(salmon::utils::Direction dir) {
return (dir == salmon::utils::Direction::FORWARD) ? readBias_[0] : readBias_[1];
}
const ReadKmerDist<6, std::atomic<uint32_t>>& readBias(salmon::utils::Direction dir) const {
return (dir == salmon::utils::Direction::FORWARD) ? readBias_[0] : readBias_[1];
}
SBModel& readBiasModelObserved(salmon::utils::Direction dir) {
return (dir == salmon::utils::Direction::FORWARD) ? readBiasModelObserved_[0] : readBiasModelObserved_[1];
}
const SBModel& readBiasModelObserved(salmon::utils::Direction dir) const {
return (dir == salmon::utils::Direction::FORWARD) ? readBiasModelObserved_[0] : readBiasModelObserved_[1];
}
SBModel& readBiasModelExpected(salmon::utils::Direction dir) {
return (dir == salmon::utils::Direction::FORWARD) ? readBiasModelExpected_[0] : readBiasModelExpected_[1];
}
const SBModel& readBiasModelExpected(salmon::utils::Direction dir) const {
return (dir == salmon::utils::Direction::FORWARD) ? readBiasModelExpected_[0] : readBiasModelExpected_[1];
}
void setReadBiasModelExpected(SBModel&& model, salmon::utils::Direction dir) {
size_t idx = (dir == salmon::utils::Direction::FORWARD) ? 0 : 1;
readBiasModelExpected_[idx] = std::move(model);
}
private:
/**
* The file from which the alignments will be read.
* This can be a SAM or BAM file, and can be a regular
* file or a fifo.
*/
std::vector<ReadLibrary> readLibraries_;
/**
* The file from which the transcripts are read.
* This is expected to be a FASTA format file.
*/
//boost::filesystem::path transcriptFile_;
/**
* The targets (transcripts) to be quantified.
*/
std::vector<Transcript> transcripts_;
/**
* The index we've built on the set of transcripts.
*/
std::unique_ptr<SalmonIndex> salmonIndex_{nullptr};
//bwaidx_t *idx_{nullptr};
/**
* The cluster forest maintains the dynamic relationship
* defined by transcripts and reads --- if two transcripts
* share an ambiguously mapped read, then they are placed
* in the same cluster.
*/
std::unique_ptr<ClusterForest> clusters_;
/**
*
*
*/
std::vector<FragmentStartPositionDistribution> fragStartDists_;
SequenceBiasModel seqBiasModel_;
/** Keeps track of the number of passes that have been
* made through the alignment file.
*/
salmon::utils::ShortFragStats shortFragStats_;
std::atomic<uint64_t> numObservedFragments_{0};
std::atomic<uint64_t> numAssignedFragments_{0};
uint64_t totalAssignedFragments_{0};
size_t quantificationPasses_{0};
uint64_t numAssignedFragsInFirstPass_{0};
uint64_t numObservedFragsInFirstPass_{0};
uint64_t upperBoundHits_{0};
double effectiveMappingRate_{0.0};
SpinLock sl_;
std::unique_ptr<FragmentLengthDistribution> fragLengthDist_;
EquivalenceClassBuilder eqBuilder_;
/** Positional bias things**/
std::vector<SimplePosBias> posBiasFW_;
std::vector<SimplePosBias> posBiasRC_;
/** GC-fragment bias things **/
// One bin for each percentage GC content
double gcFracFwd_{-1.0};
GCFragModel observedGC_;
GCFragModel expectedGC_;
/** Sequence specific bias things **/
// Since multiple threads can touch this dist, we
// need atomic counters.
std::array<ReadKmerDist<6, std::atomic<uint32_t>>, 2> readBias_;
std::array<SBModel, 2> readBiasModelObserved_;
std::array<SBModel, 2> readBiasModelExpected_;
//std::array<std::vector<double>, 2> expectedBias_;
std::vector<double> expectedBias_;
};
#endif // EXPERIMENT_HPP
|