1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
|
#ifndef __SAMPLER__HPP__
#define __SAMPLER__HPP__
extern "C" {
#include "io_lib/scram.h"
#include "io_lib/os.h"
#undef max
#undef min
}
// for cpp-format
#include "spdlog/spdlog.h"
#include "spdlog/fmt/fmt.h"
#include <tbb/atomic.h>
#include <iostream>
#include <fstream>
#include <atomic>
#include <vector>
#include <random>
#include <memory>
#include <exception>
#include <thread>
#include <unordered_map>
#include <unordered_set>
#include <mutex>
#include <thread>
#include <condition_variable>
#include <tbb/concurrent_queue.h>
#include <boost/config.hpp>
#include <boost/timer/timer.hpp>
#include <boost/filesystem.hpp>
#include <boost/math/special_functions/digamma.hpp>
#include <boost/program_options.hpp>
#include <boost/pending/disjoint_sets.hpp>
#include <boost/math/distributions/normal.hpp>
#include "ClusterForest.hpp"
#include "AlignmentLibrary.hpp"
#include "MiniBatchInfo.hpp"
#include "BAMQueue.hpp"
#include "SalmonMath.hpp"
#include "FASTAParser.hpp"
#include "LibraryFormat.hpp"
#include "Transcript.hpp"
#include "ReadPair.hpp"
#include "ErrorModel.hpp"
#include "AlignmentModel.hpp"
#include "FragmentLengthDistribution.hpp"
#include "TranscriptCluster.hpp"
#include "SailfishUtils.hpp"
#include "SalmonUtils.hpp"
#include "SalmonConfig.hpp"
#include "SalmonOpts.hpp"
#include "OutputUnmappedFilter.hpp"
namespace salmon {
namespace sampler {
namespace bfs = boost::filesystem;
using salmon::math::LOG_0;
using salmon::math::LOG_1;
using salmon::math::logAdd;
using salmon::math::logSub;
template <typename FragT>
using AlignmentBatch = std::vector<FragT>;
template <typename FragT>
using MiniBatchQueue = tbb::concurrent_queue<MiniBatchInfo<FragT>*>;
template <typename FragT>
using OutputQueue = tbb::concurrent_bounded_queue<FragT*>;
template <typename FragT>
void sampleMiniBatch(AlignmentLibrary<FragT>& alnLib,
MiniBatchQueue<AlignmentGroup<FragT*>>& workQueue,
std::condition_variable& workAvailable,
std::mutex& cvmutex,
volatile bool& doneParsing,
std::atomic<size_t>& activeBatches,
const SalmonOpts& salmonOpts,
bool& burnedIn,
std::atomic<size_t>& processedReads,
OutputQueue<FragT>& outputQueue) {
// Seed with a real random value, if available
std::random_device rd;
auto log = spdlog::get("jointLog");
// Create a random uniform distribution
std::default_random_engine eng(rd());
std::uniform_real_distribution<> uni(0.0, 1.0 + std::numeric_limits<double>::min());
using salmon::math::LOG_0;
using salmon::math::logAdd;
using salmon::math::logSub;
bool useFSPD{salmonOpts.useFSPD};
auto& refs = alnLib.transcripts();
auto& clusterForest = alnLib.clusterForest();
auto& fragmentQueue = alnLib.fragmentQueue();
auto& alignmentGroupQueue = alnLib.alignmentGroupQueue();
auto& fragLengthDist = *(alnLib.fragmentLengthDistribution());
auto& alnMod = alnLib.alignmentModel();
std::vector<FragmentStartPositionDistribution>& fragStartDists =
alnLib.fragmentStartPositionDistributions();
const auto expectedLibraryFormat = alnLib.format();
std::chrono::microseconds sleepTime(1);
MiniBatchInfo<AlignmentGroup<FragT*>>* miniBatch = nullptr;
size_t numTranscripts = refs.size();
while (!doneParsing or !workQueue.empty()) {
bool foundWork = workQueue.try_pop(miniBatch);
// If work wasn't immediately available, then wait for it.
if (!foundWork) {
std::unique_lock<std::mutex> l(cvmutex);
workAvailable.wait(l, [&miniBatch, &workQueue, &doneParsing]() { return workQueue.try_pop(miniBatch) or doneParsing; });
}
if (miniBatch != nullptr) {
++activeBatches;
size_t batchReads{0};
std::vector<AlignmentGroup<FragT*>*>& alignmentGroups = *(miniBatch->alignments);
using TranscriptID = size_t;
using HitIDVector = std::vector<size_t>;
using HitProbVector = std::vector<double>;
std::unordered_map<TranscriptID, std::vector<FragT*>> hitList;
// Each alignment group corresponds to all of the potential
// mapping locations of a multi-mapping read
for (auto alnGroup : alignmentGroups) {
// Score all of these alignments and sample according to
// their probabilities
for (auto a : alnGroup->alignments()) {
auto transcriptID = a->transcriptID();
if (transcriptID < 0 or transcriptID >= refs.size()) {
log->warn("Invalid Transcript ID: {}\n", transcriptID);
}
hitList[transcriptID].emplace_back(a);
}
}
{
// Iterate over each group of alignments (a group consists of all alignments reported
// for a single read).
for (auto alnGroup : alignmentGroups) {
double sumOfAlignProbs{LOG_0};
// update the cluster-level properties
bool transcriptUnique{true};
auto firstTranscriptID = alnGroup->alignments().front()->transcriptID();
for (auto& aln : alnGroup->alignments()) {
auto transcriptID = aln->transcriptID();
auto& transcript = refs[transcriptID];
transcriptUnique = transcriptUnique and (transcriptID == firstTranscriptID);
double refLength = transcript.RefLength > 0 ? transcript.RefLength : 1.0;
double logFragProb = salmon::math::LOG_1;
if (!salmonOpts.noFragLengthDist) {
if(aln->fragLen() == 0) {
if (aln->isLeft() and transcript.RefLength - aln->left() < fragLengthDist.maxVal()) {
logFragProb = fragLengthDist.cmf(transcript.RefLength - aln->left());
} else if (aln->isRight() and aln->right() < fragLengthDist.maxVal()) {
logFragProb = fragLengthDist.cmf(aln->right());
}
} else {
logFragProb = fragLengthDist.pmf(static_cast<size_t>(aln->fragLen()));
}
}
// The alignment probability is the product of a
// transcript-level term (based on abundance and) an
// alignment-level term.
double logRefLength{salmon::math::LOG_0};
if (salmonOpts.noEffectiveLengthCorrection or !burnedIn) {
logRefLength = std::log(transcript.RefLength);
} else {
logRefLength = transcript.getCachedLogEffectiveLength();
}
double logAlignCompatProb =
(salmonOpts.useReadCompat) ?
(salmon::utils::logAlignFormatProb(
aln->libFormat(),
expectedLibraryFormat,
aln->pos(),
aln->fwd(), aln->mateStatus(), salmonOpts.incompatPrior)
) : LOG_1;
// Adjustment to the likelihood due to the
// error model
double errLike = salmon::math::LOG_1;
if (burnedIn and salmonOpts.useErrorModel) {
errLike = alnMod.logLikelihood(*aln, transcript);
}
// Allow for a non-uniform fragment start position distribution
double startPosProb = -logRefLength;
auto hitPos = aln->left();
if (useFSPD and burnedIn and hitPos < refLength) {
auto& fragStartDist =
fragStartDists[transcript.lengthClassIndex()];
startPosProb = fragStartDist(hitPos, refLength, logRefLength);
}
double auxProb = startPosProb + logFragProb +
aln->logQualProb() +
errLike + logAlignCompatProb;
double transcriptLogCount = transcript.mass(false);
if ( transcriptLogCount != LOG_0 and
auxProb != LOG_0 ) {
aln->logProb = transcriptLogCount + auxProb;
sumOfAlignProbs = logAdd(sumOfAlignProbs, aln->logProb);
} else {
aln->logProb = LOG_0;
}
}
// normalize the hits
if (sumOfAlignProbs == LOG_0) {
auto aln = alnGroup->alignments().front();
log->warn("0 probability fragment [{}] "
"encountered\n", aln->getName());
continue;
}
if (transcriptUnique) {
// avoid r-value ref until we figure out what's
// up with TBB 4.3
auto* alnPtr = alnGroup->alignments().front()->clone();
outputQueue.push(alnPtr);
} else { // read maps to multiple transcripts
double r = uni(eng);
double currentMass{0.0};
double massInc{0.0};
bool choseAlignment{false};
for (auto& aln : alnGroup->alignments()) {
if (aln->logProb == LOG_0) { continue; }
aln->logProb -= sumOfAlignProbs;
massInc = std::exp(aln->logProb);
if (currentMass <= r and currentMass + massInc > r) {
// Write out this read
// avoid r-value ref until we figure out what's
// up with TBB 4.3
auto* alnPtr = aln->clone();
outputQueue.push(alnPtr);
currentMass += massInc;
choseAlignment = true;
break;
}
currentMass += massInc;
} // end alignment group
if (BOOST_UNLIKELY(!choseAlignment)) {
log->warn("[Sampler.hpp]: Failed to sample an alignment for this read; "
"this shouldn't happen\n"
"currentMass = {}, r = {}\n", currentMass, r);
}
} // non-unique read
++batchReads;
} // end read group
}// end timer
miniBatch->release(fragmentQueue, alignmentGroupQueue);
delete miniBatch;
--activeBatches;
processedReads += batchReads;
}
miniBatch = nullptr;
} // nothing left to process
}
/**
* Sample the alignments in the provided library given in current
* estimates of transcript abundance.
*/
template <typename FragT>
bool sampleLibrary(
AlignmentLibrary<FragT>& alnLib,
const SalmonOpts& salmonOpts,
bool burnedIn,
bfs::path& sampleFilePath,
bool sampleUnaligned) {
fmt::MemoryWriter msgStr;
auto log = spdlog::get("jointLog");
msgStr << "Sampling alignments; outputting results to "
<< sampleFilePath.string() << "\n";
log->info(msgStr.str());
auto& refs = alnLib.transcripts();
size_t numTranscripts = refs.size();
size_t miniBatchSize{1000};
size_t numObservedFragments{0};
MiniBatchQueue<AlignmentGroup<FragT*>> workQueue;
double logForgettingMass{std::log(1.0)};
double forgettingFactor{0.60};
size_t batchNum{0};
/**
* Output queue
*/
volatile bool consumedAllInput{false};
size_t defaultCapacity = 2000000;
OutputQueue<FragT> outQueue;
outQueue.set_capacity(defaultCapacity);
std::unique_ptr<OutputUnmappedFilter<FragT>> outFilt = nullptr;
if (sampleUnaligned) {
outFilt.reset(new OutputUnmappedFilter<FragT>(&outQueue));
}
// Reset our reader to the beginning
if (!alnLib.reset(false, outFilt.get())) {
fmt::print(stderr,
"\n\n======== WARNING ========\n"
"A provided alignment file "
"is not a regular file and therefore can't be read from "
"more than once.\n\n"
"Therefore, we cannot provide sample output alignments "
"from this file. No sampled BAM file will be generated. "
"Please consider re-running Salmon with these alignments "
"as a regular file!\n"
"==========================\n\n");
return false;
}
volatile bool doneParsing{false};
std::condition_variable workAvailable;
std::mutex cvmutex;
std::vector<std::thread> workers;
std::atomic<size_t> activeBatches{0};
std::atomic<size_t> processedReads{0};
size_t numProc{0};
for (uint32_t i = 0; i < salmonOpts.numQuantThreads; ++i) {
workers.emplace_back(sampleMiniBatch<FragT>,
std::ref(alnLib),
std::ref(workQueue),
std::ref(workAvailable), std::ref(cvmutex),
std::ref(doneParsing), std::ref(activeBatches),
std::ref(salmonOpts),
std::ref(burnedIn),
std::ref(processedReads),
std::ref(outQueue));
}
std::thread outputThread(
[&consumedAllInput, &alnLib, &outQueue, &log, sampleFilePath] () -> void {
scram_fd* bf = scram_open(sampleFilePath.c_str(), "wb");
scram_set_option(bf, CRAM_OPT_NTHREADS, 3);
scram_set_header(bf, alnLib.header());
scram_write_header(bf);
if (bf == nullptr) {
fmt::MemoryWriter errstr;
errstr << ioutils::SET_RED << "ERROR: "
<< ioutils::RESET_COLOR
<< "Couldn't open output bam file "
<< sampleFilePath.string() << ". Exiting\n";
log->warn(errstr.str());
std::exit(-1);
}
FragT* aln{nullptr};
while (!outQueue.empty() or !consumedAllInput) {
while (outQueue.try_pop(aln)) {
if (aln != nullptr) {
int ret = aln->writeToFile(bf);
if (ret != 0) {
std::cerr << "ret = " << ret << "\n";
fmt::MemoryWriter errstr;
errstr << ioutils::SET_RED << "ERROR:"
<< ioutils::RESET_COLOR << "Could not write "
<< "a sampled alignment to the output BAM "
<< "file. Please check that the file can "
<< "be created properly and that the disk "
<< "is not full. Exiting.\n";
log->warn(errstr.str());
std::exit(-1);
}
// Eventually, as we do in BAMQueue, we should
// have queue of bam1_t structures that can be
// re-used rather than continually calling
// new and delete.
delete aln;
aln = nullptr;
}
}
}
scram_close(bf); // will delete the header itself
});
BAMQueue<FragT>& bq = alnLib.getAlignmentGroupQueue();
std::vector<AlignmentGroup<FragT*>*>* alignments = new std::vector<AlignmentGroup<FragT*>*>;
alignments->reserve(miniBatchSize);
AlignmentGroup<FragT*>* ag;
bool alignmentGroupsRemain = bq.getAlignmentGroup(ag);
while (alignmentGroupsRemain or alignments->size() > 0) {
if (alignmentGroupsRemain) { alignments->push_back(ag); }
// If this minibatch has reached the size limit, or we have nothing
// left to fill it up with
if (alignments->size() >= miniBatchSize or !alignmentGroupsRemain) {
// Don't need to update the batch number or log forgetting mass in this phase
MiniBatchInfo<AlignmentGroup<FragT*>>* mbi =
new MiniBatchInfo<AlignmentGroup<FragT*>>(batchNum, alignments, logForgettingMass);
workQueue.push(mbi);
{
std::unique_lock<std::mutex> l(cvmutex);
workAvailable.notify_one();
}
alignments = new std::vector<AlignmentGroup<FragT*>*>;
alignments->reserve(miniBatchSize);
}
if (numProc % 1000000 == 0) {
const char RESET_COLOR[] = "\x1b[0m";
char green[] = "\x1b[30m";
green[3] = '0' + static_cast<char>(fmt::GREEN);
char red[] = "\x1b[30m";
red[3] = '0' + static_cast<char>(fmt::RED);
fmt::print(stderr, "\r\r{}processed{} {} {}reads{}", green, red, numProc, green, RESET_COLOR);
}
++numProc;
alignmentGroupsRemain = bq.getAlignmentGroup(ag);
}
std::cerr << "\n";
// Free the alignments and the vector holding them
for (auto& aln : *alignments) {
aln->alignments().clear();
delete aln; aln = nullptr;
}
delete alignments;
doneParsing = true;
/**
* This could be a problem for small sets of alignments --- make sure the
* work queue is empty!!
* --- Thanks for finding a dataset that exposes this bug, Richard (Smith-Unna)!
*/
size_t t = 0;
while (!workQueue.empty()) {
std::unique_lock<std::mutex> l(cvmutex);
workAvailable.notify_one();
}
size_t tnum{0};
for (auto& t : workers) {
fmt::print(stderr, "killing thread {} . . . ", tnum++);
{
std::unique_lock<std::mutex> l(cvmutex);
workAvailable.notify_all();
}
t.join();
fmt::print(stderr, "done\r\r");
}
fmt::print(stderr, "\n");
consumedAllInput = true;
numObservedFragments += alnLib.numMappedFragments();
fmt::print(stderr, "# observed = {} mapped fragments.\033[F\033[F\033[F\033[F",
numObservedFragments);
fmt::print(stderr, "Waiting on output thread\n");
outputThread.join();
fmt::print(stderr, "done\n");
fmt::print(stderr, "\n\n\n\n");
return true;
}
} // namespace sampler
} // namespace salmon
#endif // __SAMPLER__HPP__
|