File: Transcript.hpp

package info (click to toggle)
salmon 0.7.2%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 4,352 kB
  • ctags: 5,243
  • sloc: cpp: 42,341; ansic: 6,252; python: 228; makefile: 207; sh: 190
file content (573 lines) | stat: -rw-r--r-- 19,746 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
#ifndef TRANSCRIPT
#define TRANSCRIPT

#include <atomic>
#include <cmath>
#include <limits>
#include <memory>
#include "GCFragModel.hpp"
#include "SalmonStringUtils.hpp"
#include "SalmonUtils.hpp"
#include "SalmonMath.hpp"
#include "SequenceBiasModel.hpp"
#include "FragmentLengthDistribution.hpp"
#include "tbb/atomic.h"

class Transcript {
public:

    Transcript() :
        RefName(nullptr), RefLength(std::numeric_limits<uint32_t>::max()),
        EffectiveLength(-1.0), id(std::numeric_limits<uint32_t>::max()),
        logPerBasePrior_(salmon::math::LOG_0),
        priorMass_(salmon::math::LOG_0),
        mass_(salmon::math::LOG_0), sharedCount_(0.0),
        avgMassBias_(salmon::math::LOG_0),
        active_(false) {
            uniqueCount_.store(0);
            lastUpdate_.store(0);
            lastTimestepUpdated_.store(0);
            cachedEffectiveLength_.store(salmon::math::LOG_0);
        }


    Transcript(size_t idIn, const char* name, uint32_t len, double alpha = 0.05) :
        RefName(name), RefLength(len), EffectiveLength(-1.0), id(idIn),
        logPerBasePrior_(std::log(alpha)),
        priorMass_(std::log(alpha*len)),
        mass_(salmon::math::LOG_0), sharedCount_(0.0),
        avgMassBias_(salmon::math::LOG_0),
        active_(false) {
            uniqueCount_.store(0);
            lastUpdate_.store(0);
            lastTimestepUpdated_.store(0);
            cachedEffectiveLength_.store(std::log(static_cast<double>(RefLength)));
        }

    // We cannot copy; only move
    Transcript(Transcript& other) = delete;
    Transcript& operator=(Transcript& other) = delete;

    Transcript(Transcript&& other) {
        id = other.id;

        RefName = std::move(other.RefName);
        RefLength = other.RefLength;
        EffectiveLength = other.EffectiveLength;

        SAMSequence_ = std::move(other.SAMSequence_);
        Sequence_ = std::move(other.Sequence_);
        GCCount_ = std::move(other.GCCount_);
        gcStep_ = other.gcStep_;
        gcFracLen_ = other.gcFracLen_;
        lastRegularSample_ = other.lastRegularSample_;

        uniqueCount_.store(other.uniqueCount_);
        totalCount_.store(other.totalCount_.load());
        lastTimestepUpdated_.store(other.lastTimestepUpdated_.load());
        sharedCount_.store(other.sharedCount_.load());
        mass_.store(other.mass_.load());
        lastUpdate_.store(other.lastUpdate_.load());
        cachedEffectiveLength_.store(other.cachedEffectiveLength_.load());
        lengthClassIndex_ = other.lengthClassIndex_;
        logPerBasePrior_ = other.logPerBasePrior_;
        priorMass_ = other.priorMass_;
        avgMassBias_.store(other.avgMassBias_.load());
        hasAnchorFragment_.store(other.hasAnchorFragment_.load());
        active_ = other.active_;
    }

    Transcript& operator=(Transcript&& other) {
        id = other.id;

        RefName = std::move(other.RefName);
        RefLength = other.RefLength;
        EffectiveLength = other.EffectiveLength;
        SAMSequence_ = std::move(other.SAMSequence_);
        Sequence_ = std::move(other.Sequence_);
        GCCount_ = std::move(other.GCCount_);
        gcStep_ = other.gcStep_;
        gcFracLen_ = other.gcFracLen_;
        lastRegularSample_ = other.lastRegularSample_;

        uniqueCount_.store(other.uniqueCount_);
        totalCount_.store(other.totalCount_.load());
        lastTimestepUpdated_.store(other.lastTimestepUpdated_.load());
        sharedCount_.store(other.sharedCount_.load());
        mass_.store(other.mass_.load());
        lastUpdate_.store(other.lastUpdate_.load());
        cachedEffectiveLength_.store(other.cachedEffectiveLength_.load());
        lengthClassIndex_ = other.lengthClassIndex_;
        logPerBasePrior_ = other.logPerBasePrior_;
        priorMass_ = other.priorMass_;
        avgMassBias_.store(other.avgMassBias_.load());
        hasAnchorFragment_.store(other.hasAnchorFragment_.load());
        active_ = other.active_;
        return *this;
    }


    inline double sharedCount() { return sharedCount_.load(); }
    inline size_t uniqueCount() { return uniqueCount_.load(); }
    inline size_t totalCount() { return totalCount_.load(); }

    inline void addUniqueCount(size_t newCount) { uniqueCount_ += newCount; }
    inline void addTotalCount(size_t newCount) { totalCount_ += newCount; }

    inline double uniqueUpdateFraction() const {
        double ambigCount = static_cast<double>(totalCount_ - uniqueCount_);
        return uniqueCount_ / ambigCount;
    }

    inline char charBaseAt(size_t idx,
                              salmon::stringtools::strand dir = salmon::stringtools::strand::forward) {
        return salmon::stringtools::samCodeToChar[baseAt(idx, dir)];
    }

    inline uint8_t baseAt(size_t idx,
                          salmon::stringtools::strand dir = salmon::stringtools::strand::forward) {
        using salmon::stringtools::strand;
        using salmon::stringtools::encodedRevComp;
        size_t byte = idx >> 1;
        size_t nibble = idx & 0x1;
        uint8_t* sseq = SAMSequence_.get();

        switch(dir) {
        case strand::forward:
            if (nibble) {
                return sseq[byte] & 0x0F;
            } else {
                return ((sseq[byte] & 0xF0) >> 4) & 0x0F;
            }
            break;
        case strand::reverse:
            if (nibble) {
                return encodedRevComp[sseq[byte] & 0x0F];
            } else {
                return encodedRevComp[((sseq[byte] & 0xF0) >> 4) & 0x0F];
            }
            break;
        }

        return std::numeric_limits<uint8_t>::max();
    }

    inline void setSharedCount(double sc) {
        sharedCount_.store(sc);
    }

    inline void addSharedCount(double sc) {
	    salmon::utils::incLoop(sharedCount_, sc);
    }

    inline void setLastTimestepUpdated(uint64_t currentTimestep) {
        uint64_t oldTimestep = lastTimestepUpdated_;
        if (currentTimestep > oldTimestep) {
            lastTimestepUpdated_ = currentTimestep;
        }
    }

    inline void addBias(double bias) {
	salmon::utils::incLoopLog(avgMassBias_, bias);
    }

    inline void addMass(double mass) {
	salmon::utils::incLoopLog(mass_, mass);
    }

    inline void setMass(double mass) {
        mass_.store(mass);
    }

    inline double mass(bool withPrior=true) {
        return (withPrior) ? salmon::math::logAdd(priorMass_, mass_.load()) : mass_.load();
    }

    void setActive() { active_ = true; }
    bool getActive() { return active_; }

    inline double bias() {
        return (totalCount_.load() > 0) ?
                    avgMassBias_ - std::log(totalCount_.load()) :
                    salmon::math::LOG_1;
    }

    /*
    double getAverageSequenceBias(SequenceBiasModel& m) {
        double bias = salmon::math::LOG_0;
        for (int32_t i = 0; i < RefLength; ++i) {
            bias = salmon::math::logAdd(bias, m.biasFactor(*this, i));
        }
        return bias - std::log(RefLength);
    }
    */

    /**
      *  NOTE: Adopted from "est_effective_length" at (https://github.com/adarob/eXpress/blob/master/src/targets.cpp)
      *  originally written by Adam Roberts.
      *
      *
      */
    double computeLogEffectiveLength(
            std::vector<double>& logPMF,
            double logFLDMean,
            size_t minVal,
            size_t maxVal) {

        double effectiveLength = salmon::math::LOG_0;
        double refLen = static_cast<double>(RefLength);
        double logRefLength = std::log(refLen);

	// JUNE 17 (just ensure it's >= 1)
        //if (logRefLength <= logFLDMean) {
        //    effectiveLength = logRefLength;
        //} else {
            uint32_t mval = maxVal;
            size_t clen = minVal;
            size_t maxLen = std::min(RefLength, mval);
            while (clen <= maxLen) {
                size_t i = clen - minVal;
                effectiveLength = salmon::math::logAdd(
                        effectiveLength,
                        logPMF[i] + std::log(refLen - clen + 1));
                ++clen;
            }
	//}
	if (salmon::math::isLog0(effectiveLength) or std::exp(effectiveLength) < 1.0) {
	  effectiveLength = logRefLength;
	  //effectiveLength = //salmon::math::LOG_1;
    }

        return effectiveLength;
    }

    /**
     * Return the cached value for the log of the effective length.
     */
    double getCachedLogEffectiveLength() {
        return cachedEffectiveLength_.load();
    }

    void setCachedLogEffectiveLength(double l) {
        cachedEffectiveLength_.store(l);
    }

    void updateEffectiveLength(
            std::vector<double>& logPMF,
            double logFLDMean,
            size_t minVal,
            size_t maxVal) {
        double cel = computeLogEffectiveLength(logPMF, logFLDMean, minVal, maxVal);
        cachedEffectiveLength_.store(cel);
    }

    /**
     * If we should update the effective length, then do it and cache the result.
     * Otherwise, return the cached result.
     */
    /*
    double getLogEffectiveLength(const FragmentLengthDistribution& fragLengthDist,
                                 size_t currObs, size_t burnInObs, bool forceUpdate=false) {
        if (forceUpdate or
            (lastUpdate_ == 0) or
            (currObs - lastUpdate_ >= 250000) or
            (lastUpdate_ < burnInObs and currObs > burnInObs)) {
            // compute new number
            lastUpdate_.store(currObs);
            double cel = computeLogEffectiveLength(fragLengthDist);
            cachedEffectiveLength_.store(cel);
            //priorMass_ = cel + logPerBasePrior_;
            return cachedEffectiveLength_.load();
        } else {
            // return cached number
            return cachedEffectiveLength_.load();
        }
    }
    */

    double perBasePrior() { return std::exp(logPerBasePrior_); }
    inline size_t lastTimestepUpdated() { return lastTimestepUpdated_.load(); }

    void lengthClassIndex(uint32_t ind) { lengthClassIndex_ = ind; }
    uint32_t lengthClassIndex() const { return lengthClassIndex_; }

    void setAnchorFragment() {
        hasAnchorFragment_.store(true);
    }

    bool hasAnchorFragment() {
        return hasAnchorFragment_.load();
    }

    inline GCDesc gcDesc(int32_t s, int32_t e) const {
        int outsideContext{3};
        int insideContext{2};
        
        int outside5p = outsideContext + 1;
        int outside3p = outsideContext;

        int inside5p = insideContext - 1;
        int inside3p = insideContext;

        int contextSize = outsideContext + insideContext;
        int lastPos = RefLength - 1;
        if (gcStep_ == 1) {
            auto cs = GCCount_[s];
            auto ce = GCCount_[e];

            auto fps = (s >= outside5p) ? GCCount_[s-outside5p] : 0;
            auto fpe = (inside5p > 0) ? GCCount_[std::min(s+inside5p, lastPos)] : cs;
            auto tps = (inside3p > 0) ? 
                ((e >= inside3p) ? GCCount_[e-inside3p] : 0) : ce;
            auto tpe = GCCount_[std::min(e+outside3p, lastPos)];
            
            int32_t fragFrac = std::lrint((100.0 * (ce - cs)) / (e - s + 1));
            int32_t contextFrac = std::lrint((100.0 * (((fpe - fps) + (tpe - tps)) / (2.0 * contextSize))));
            GCDesc desc = {fragFrac, contextFrac};
            return desc;
        } else {
            auto cs = gcCountInterp_(s);
            auto ce = gcCountInterp_(e);

	    auto fps = (s >= outside5p) ? gcCountInterp_(s-outside5p) : 0;
	    auto fpe = (inside5p > 0) ? gcCountInterp_(std::min(s+inside5p, lastPos)) : cs;
	    auto tps = (inside3p > 0) ? 
	      ((e >= inside3p) ? gcCountInterp_(e-inside3p) : 0) : ce;
	    auto tpe = gcCountInterp_(std::min(e+outside3p, lastPos));
	    
            int32_t fragFrac = std::lrint((100.0 * (ce - cs)) / (e - s + 1));
            int32_t contextFrac = std::lrint((100.0 * (((fpe - fps) + (tpe - tps)) / (10.0))));
            GCDesc desc = {fragFrac, contextFrac};
            return desc;
        }

    }
    inline double gcAt(int32_t s) const {
        return (s < 0) ? 0.0 : ((s >= RefLength) ? gcCount_(RefLength) : gcCount_(s));
    }

    // Return the fractional GC content along this transcript
    // in the interval [s,e] (note; this interval is closed on both sides).
    inline int32_t gcFrac(int32_t s, int32_t e) const {
        if (gcStep_ == 1) {
            auto cs = GCCount_[s];
            auto ce = GCCount_[e];
            return std::lrint((100.0 * (ce - cs)) / (e - s + 1));
        } else {
            auto cs = gcCountInterp_(s);
            auto ce = gcCountInterp_(e);
            return std::lrint((100.0 * (ce - cs)) / (e - s + 1));
        }
    }

    // Will *not* delete seq on destruction
    void setSequenceBorrowed(const char* seq, bool needGC=false, uint32_t gcSampFactor=1) {
        Sequence_ = std::unique_ptr<const char, void(*)(const char*)>(
                seq,                 // store seq
                [](const char* p) {} // do nothing deleter
                );
        if (needGC) { computeGCContent_(gcSampFactor); }
    }

    // Will delete seq on destruction
    void setSequenceOwned(const char* seq, bool needGC=false, uint32_t gcSampFactor=1) {
        Sequence_ = std::unique_ptr<const char, void(*)(const char*)>(
                seq,                 // store seq
                [](const char* p) { delete [] p; } // do nothing deleter
                );
        if (needGC) { computeGCContent_(gcSampFactor); }
    }

    // Will *not* delete seq on destruction
    void setSAMSequenceBorrowed(uint8_t* seq, bool needGC=false, uint32_t gcSampFactor=1) {
        SAMSequence_ = std::unique_ptr<uint8_t, void(*)(uint8_t*)>(
                seq,                 // store seq
                [](uint8_t* p) {} // do nothing deleter
                );
        if (needGC) { computeGCContent_(gcSampFactor); }
    }

    // Will delete seq on destruction
    void setSAMSequenceOwned(uint8_t* seq, bool needGC=false,  uint32_t gcSampFactor=1) {
        SAMSequence_ = std::unique_ptr<uint8_t, void(*)(uint8_t*)>(
                seq,                 // store seq
                [](uint8_t* p) { delete [] p; } // do nothing deleter
                );
        if (needGC) { computeGCContent_(gcSampFactor); }
    }

    const char* Sequence() const {
        return Sequence_.get();
    }

    uint8_t* SAMSequence() const {
        return SAMSequence_.get();
    }


    std::string RefName;
    uint32_t RefLength;
    double EffectiveLength;
    uint32_t id;

    double uniqueCounts{0.0};
    double totalCounts{0.0};
    double projectedCounts{0.0};
    double sharedCounts{0.0};

private:
    // NOTE: Is it worth it to check if we have GC here?
    // we should never access these without bias correction.
    inline double gcCount_(int32_t p) {
        return (gcStep_ == 1) ? static_cast<double>(GCCount_[p]) : gcCountInterp_(p);
    }
    inline double gcCount_(int32_t p) const {
        return (gcStep_ == 1) ? static_cast<double>(GCCount_[p]) : gcCountInterp_(p);
    }

    inline int32_t closestBin_(int32_t p) const {
      return static_cast<int32_t>(std::round( static_cast<double>(p) / gcStep_ )); 
    }

    inline double gcCountInterp_(int32_t p) const {
        //std::cerr << "in gcCountInterp\n";
        if (p == RefLength - 1) {
            // If p is the last position, just return the last value
            return static_cast<double>(GCCount_.back());
        }

	// The index of the closest bin
	auto cb = closestBin_(p);
	// The actual position to which this bin corresponds
	int32_t binPos = cb * gcStep_;
	// Can't go past the end
	if (binPos > RefLength - 1) {
	  binPos = RefLength - 1;
	  cb = GCCount_.size() - 1;
	}

	// The count of {G,C} at the checkpoint
	auto binCount = GCCount_[cb];
	// The count before or after the bin, until p
	int32_t count{0};
        const char* seq = Sequence_.get();

	// we hit a sampled position
	if (binPos == p) {
	} else if (binPos > p) {
	  for (size_t i = binPos; i > p; --i) {
	    auto c = seq[i];
	    // If the character is a G or C, we subtract 1
	    count -= (c == 'G' or c == 'C') ? 1 : 0;
	  }
	} else {
	  for (size_t i = binPos + 1; i <= p; ++i) {
	    auto c = seq[i];
	    // If the character is a G or C, we add 1
	    count += (c == 'G' or c == 'C') ? 1 : 0;
	  }
	}
	return  binCount + count;
	/*
        // The fractional sampling factor position p would have
        double fracP = static_cast<double>(p) / gcStep_;

        // The largest sampled index for some position <= p
        uint32_t sampInd = std::floor(fracP);

        // The fraction sampling factor for the largest sampled
        // position <= p
        double fracSample = static_cast<double>(sampInd);

        int32_t nextSample{0};
        double fracNextSample{0.0};

        // special case: The last bin may not be evenly spaced.
        if (sampInd >= lastRegularSample_) {
            nextSample = GCCount_.size() - 1;
            fracNextSample = gcFracLen_;
        } else {
            nextSample = sampInd + 1;
            fracNextSample = static_cast<double>(nextSample);
        }
        double lambda = (fracP - fracSample) / (fracNextSample - fracSample);
        return lambda * GCCount_[sampInd] + (1.0 - lambda) * GCCount_[nextSample];
	*/
    }

    void computeGCContentSampled_(uint32_t step) {
        gcStep_ = step;
        const char* seq = Sequence_.get();
        size_t nsamp = std::ceil(static_cast<double>(RefLength) / step);
        GCCount_.reserve(nsamp + 2);

        size_t lastSamp{0};
        size_t totGC{0};
        for (size_t i = 0; i < RefLength; ++i) {
            auto c = std::toupper(seq[i]);
            if (c == 'G' or c == 'C') {
                totGC++;
            }
            if (i % step == 0) {
                GCCount_.push_back(totGC);
                lastSamp = i;
            }
        }

        if (lastSamp < RefLength - 1) {
            GCCount_.push_back(totGC);
        }

        gcFracLen_ = static_cast<double>(RefLength - 1) / gcStep_;
        lastRegularSample_ = std::ceil(gcFracLen_);
    }

    void computeGCContent_(uint32_t gcSampFactor) {
        const char* seq = Sequence_.get();
        GCCount_.clear();
        if (gcSampFactor == 1) {
            GCCount_.resize(RefLength, 0);
            size_t totGC{0};
            for (size_t i = 0; i < RefLength; ++i) {
                auto c = std::toupper(seq[i]);
                if (c == 'G' or c == 'C') {
                    totGC++;
                }
                GCCount_[i] = totGC;
            }
        } else {
            computeGCContentSampled_(gcSampFactor);
        }
    }

    std::unique_ptr<uint8_t, void(*)(uint8_t*)> SAMSequence_ =
        std::unique_ptr<uint8_t, void(*)(uint8_t*)> (nullptr, [](uint8_t*){});

    std::unique_ptr<const char, void(*)(const char*)> Sequence_ =
        std::unique_ptr<const char, void(*)(const char*)> (nullptr, [](const char*){});

    std::atomic<size_t> uniqueCount_;
    std::atomic<size_t> totalCount_;
    // The most recent timestep at which this transcript's mass was updated.
    std::atomic<size_t> lastTimestepUpdated_;
    double priorMass_;
    tbb::atomic<double> mass_;
    tbb::atomic<double> sharedCount_;
    tbb::atomic<double> cachedEffectiveLength_;
    tbb::atomic<size_t> lastUpdate_;
    tbb::atomic<double> avgMassBias_;
    uint32_t lengthClassIndex_;
    double logPerBasePrior_;
    // In a paired-end protocol, a transcript has
    // an "anchor" fragment if it has a proper
    // pair of reads mapping to it.
    std::atomic<bool> hasAnchorFragment_{false};
    bool active_;

    uint32_t gcStep_{1};
    double gcFracLen_{0.0};
    uint32_t lastRegularSample_{0};
    std::vector<uint32_t> GCCount_;
};

#endif //TRANSCRIPT