1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
/**
@page libtalloc_threads Chapter 8: Using threads with talloc
@section Talloc and thread safety
The talloc library is not internally thread-safe, in that accesses
to variables on a talloc context are not controlled by mutexes or
other thread-safe primitives.
However, so long as talloc_disable_null_tracking() is called from
the main thread to disable global variable access within talloc,
then each thread can safely use its own top level talloc context
allocated off the NULL context.
For example:
@code
static void *thread_fn(void *arg)
{
const char *ctx_name = (const char *)arg;
/*
* Create a new top level talloc hierarchy in
* this thread.
*/
void *top_ctx = talloc_named_const(NULL, 0, "top");
if (top_ctx == NULL) {
return NULL;
}
sub_ctx = talloc_named_const(top_ctx, 100, ctx_name);
if (sub_ctx == NULL) {
return NULL;
}
/*
* Do more processing/talloc calls on top_ctx
* and its children.
*/
......
talloc_free(top_ctx);
return value;
}
@endcode
is a perfectly safe use of talloc within a thread.
The problem comes when one thread wishes to move some
memory allocated on its local top level talloc context
to another thread. Care must be taken to add data access
exclusion to prevent memory corruption. One method would
be to lock a mutex before any talloc call on each thread,
but this would push the burden of total talloc thread-safety
on the poor user of the library.
A much easier way to transfer talloced memory between
threads is by the use of an intermediate, mutex locked,
intermediate variable.
An example of this is below - taken from test code inside
the talloc testsuite.
The main thread creates 1000 sub-threads, and then accepts
the transfer of some thread-talloc'ed memory onto its top
level context from each thread in turn.
A pthread mutex and condition variable are used to
synchronize the transfer via the intermediate_ptr
variable.
@code
/* Required sync variables. */
static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t condvar = PTHREAD_COND_INITIALIZER;
/* Intermediate talloc pointer for transfer. */
static void *intermediate_ptr;
/* Subthread. */
static void *thread_fn(void *arg)
{
int ret;
const char *ctx_name = (const char *)arg;
void *sub_ctx = NULL;
/*
* Do stuff that creates a new talloc hierarchy in
* this thread.
*/
void *top_ctx = talloc_named_const(NULL, 0, "top");
if (top_ctx == NULL) {
return NULL;
}
sub_ctx = talloc_named_const(top_ctx, 100, ctx_name);
if (sub_ctx == NULL) {
return NULL;
}
/*
* Now transfer a pointer from our hierarchy
* onto the intermediate ptr.
*/
ret = pthread_mutex_lock(&mtx);
if (ret != 0) {
talloc_free(top_ctx);
return NULL;
}
/* Wait for intermediate_ptr to be free. */
while (intermediate_ptr != NULL) {
ret = pthread_cond_wait(&condvar, &mtx);
if (ret != 0) {
talloc_free(top_ctx);
return NULL;
}
}
/* and move our memory onto it from our toplevel hierarchy. */
intermediate_ptr = talloc_move(NULL, &sub_ctx);
/* Tell the main thread it's ready for pickup. */
pthread_cond_broadcast(&condvar);
pthread_mutex_unlock(&mtx);
talloc_free(top_ctx);
return NULL;
}
/* Main thread. */
#define NUM_THREADS 1000
static bool test_pthread_talloc_passing(void)
{
int i;
int ret;
char str_array[NUM_THREADS][20];
pthread_t thread_id;
void *mem_ctx;
/*
* Important ! Null tracking breaks threaded talloc.
* It *must* be turned off.
*/
talloc_disable_null_tracking();
/* Main thread toplevel context. */
mem_ctx = talloc_named_const(NULL, 0, "toplevel");
if (mem_ctx == NULL) {
return false;
}
/*
* Spin off NUM_THREADS threads.
* They will use their own toplevel contexts.
*/
for (i = 0; i < NUM_THREADS; i++) {
(void)snprintf(str_array[i],
20,
"thread:%d",
i);
if (str_array[i] == NULL) {
return false;
}
ret = pthread_create(&thread_id,
NULL,
thread_fn,
str_array[i]);
if (ret != 0) {
return false;
}
}
/* Now wait for NUM_THREADS transfers of the talloc'ed memory. */
for (i = 0; i < NUM_THREADS; i++) {
ret = pthread_mutex_lock(&mtx);
if (ret != 0) {
talloc_free(mem_ctx);
return false;
}
/* Wait for intermediate_ptr to have our data. */
while (intermediate_ptr == NULL) {
ret = pthread_cond_wait(&condvar, &mtx);
if (ret != 0) {
talloc_free(mem_ctx);
return false;
}
}
/* and move it onto our toplevel hierarchy. */
(void)talloc_move(mem_ctx, &intermediate_ptr);
/* Tell the sub-threads we're ready for another. */
pthread_cond_broadcast(&condvar);
pthread_mutex_unlock(&mtx);
}
/* Dump the hierarchy. */
talloc_report(mem_ctx, stdout);
talloc_free(mem_ctx);
return true;
}
@endcode
*/
|