1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
|
/*
This file is part of Sambamba.
Copyright (C) 2017 Pjotr Prins <pjotr.prins@thebird.nl>
Sambamba is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Sambamba is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA
*/
module bio.std.experimental.hts.bgzf;
/**
This is a new version of sambamba bgzf (under development). Bgzf is
a blocked version of the ubiquous gzip format. By making it blocked
it allows for seeking in gz files. Note that without seeking it
can take standard gz files too.
The new version is a prototype for new sambamba architecture using
canonical D language features, including immutable and improved
laziness and a more functional programming style. It should provide
improved performance and minimize RAM use, as well as better
composability.
Authors: Pjotr Prins
*/
import core.stdc.string : memcpy;
import std.bitmanip;
import std.conv;
import std.exception;
import std.file;
import std.stdio;
import std.typecons;
import std.zlib : calc_crc32 = crc32, ZlibException;
import bio.std.hts.bam.constants;
import bio.core.bgzf.block;
import bio.core.bgzf.constants;
import bio.core.utils.zlib : inflateInit2, inflate, inflateEnd, Z_OK, Z_FINISH, Z_STREAM_END;
import bio.std.experimental.hts.constants;
class BgzfException : Exception {
this(string msg) { super(msg); }
}
alias Nullable!ulong FilePos;
alias immutable(uint) CRC32;
alias BGZF_MAX_BLOCK_SIZE BLOCK_SIZE;
alias ubyte[BLOCK_SIZE] BlockBuffer;
@property ubyte read_ubyte(File f) {
ubyte[1] ubyte1; // read buffer
immutable ubyte[1] buf = f.rawRead(ubyte1);
return buf[0];
}
@property ushort read_ushort(File f) {
ubyte[2] ubyte2; // read buffer
immutable ubyte[2] buf = f.rawRead(ubyte2);
return littleEndianToNative!ushort(buf);
}
@property uint read_uint(File f) {
ubyte[4] ubyte4; // read buffer
immutable ubyte[4] buf = f.rawRead(ubyte4);
return littleEndianToNative!uint(buf);
}
/**
Uncompress a zlib buffer (without header)
*/
ubyte[] deflate(ubyte[] uncompressed_buf, const ubyte[] compressed_buf, size_t uncompressed_size, CRC32 crc32) {
assert(uncompressed_buf.length == BLOCK_SIZE);
bio.core.utils.zlib.z_stream zs;
zs.next_in = cast(typeof(zs.next_in))compressed_buf;
zs.avail_in = to!uint(compressed_buf.length);
auto err = inflateInit2(&zs, /* winbits = */-15);
if (err != Z_OK) throw new ZlibException(err);
zs.next_out = cast(typeof(zs.next_out))uncompressed_buf.ptr;
zs.avail_out = cast(int)uncompressed_buf.length;
scope(exit) { inflateEnd(&zs); }
err = inflate(&zs, Z_FINISH);
if (err != Z_STREAM_END) throw new ZlibException(err);
assert(zs.total_out == uncompressed_size);
uncompressed_buf.length = uncompressed_size;
assert(crc32 == calc_crc32(0, uncompressed_buf[]));
return uncompressed_buf;
}
/**
BgzfReader is designed to run on a single thread. All it does is
fetch block headers and data, so the thread should easily keep up
with IO. All data processing is happening lazily in other threads.
*/
struct BgzfReader {
File f;
FilePos report_fpos; // for error handler - assumes one thread!
this(string fn) {
enforce(fn.isFile);
f = File(fn,"r");
}
@disable this(this); // BgzfReader does not have copy semantics;
void throwBgzfException(string msg, string file = __FILE__, size_t line = __LINE__) {
throw new BgzfException("Error reading BGZF block starting in "~f.name ~" @ " ~
to!string(report_fpos) ~ " (" ~ file ~ ":" ~ to!string(line) ~ "): " ~ msg);
}
void enforce1(bool check, lazy string msg, string file = __FILE__, int line = __LINE__) {
if (!check)
throwBgzfException(msg,file,line);
}
/**
Reads the block header and returns the contained compressed data
size with the file pointer positioned at the associated
compressed data.
*/
size_t read_block_header() {
ubyte[4] ubyte4;
auto magic = f.rawRead(ubyte4);
enforce1(magic.length == 4, "Premature end of file");
enforce1(magic[0..4] == BGZF_MAGIC,"Invalid file format: expected bgzf magic number");
ubyte[uint.sizeof + 2 * ubyte.sizeof] skip;
f.rawRead(skip); // skip gzip info
ushort gzip_extra_length = f.read_ushort();
immutable fpos1 = f.tell;
size_t bsize = 0;
while (f.tell < fpos1 + gzip_extra_length) {
immutable subfield_id1 = f.read_ubyte();
immutable subfield_id2 = f.read_ubyte();
immutable subfield_len = f.read_ushort();
if (subfield_id1 == BAM_SI1 && subfield_id2 == BAM_SI2) {
// BC identifier
enforce(gzip_extra_length == 6);
// FIXME: always picks first BC block
bsize = 1+f.read_ushort(); // BLOCK size
enforce1(subfield_len == 2, "BC subfield len should be 2");
break;
}
else {
f.seek(subfield_len,SEEK_CUR);
}
enforce1(bsize!=0,"block size not found");
f.seek(fpos1+gzip_extra_length); // skip any extra subfields - note we don't check for second BC
}
immutable compressed_size = bsize - 1 - gzip_extra_length - 19;
enforce1(compressed_size <= BLOCK_SIZE, "compressed size larger than allowed");
// stderr.writeln("[compressed] size ", compressed_size, " bytes starting block @ ", report_fpos);
return compressed_size;
}
/**
Fetch the compressed data part of the block and return it with
the uncompressed size and CRC32. The file pointer is assumed to
be at the start of the compressed data and will be at the end of
that section after.
*/
Tuple!(ubyte[],immutable(uint),CRC32) read_compressed_data(ubyte[] buffer) {
auto compressed_buf = f.rawRead(buffer);
immutable CRC32 crc32 = f.read_uint();
immutable uncompressed_size = f.read_uint();
// stderr.writeln("[uncompressed] size ",uncompressed_size);
return tuple(compressed_buf,uncompressed_size,crc32);
}
/**
* Returns new tuple of the new file position, the compressed buffer and
* the CRC32 o the uncompressed data. file pos is NULL when done
*/
Tuple!(FilePos,ubyte[],size_t,CRC32) read_compressed_block(FilePos fpos, ubyte[] buffer) {
immutable start_offset = fpos;
try {
if (fpos.isNull) throwBgzfException("Trying to read past eof");
report_fpos = fpos;
f.seek(fpos.get);
immutable compressed_size = read_block_header();
auto ret = read_compressed_data(buffer[0..compressed_size]);
auto compressed_buf = ret[0];
immutable uncompressed_size = ret[1];
immutable crc32 = ret[2];
if (uncompressed_size == 0) {
// check for eof marker, rereading block header
auto lastpos = f.tell();
f.seek(start_offset.get);
ubyte[BGZF_EOF.length] buf;
f.rawRead(buf);
f.seek(lastpos);
if (buf == BGZF_EOF)
return tuple(FilePos(),compressed_buf,cast(size_t)0,crc32); // sets fpos to null
}
return tuple(FilePos(f.tell()),compressed_buf,cast(size_t)uncompressed_size,crc32);
} catch (Exception e) { throwBgzfException(e.msg,e.file,e.line); }
assert(0); // never reached
}
}
/**
Simple block iterator
*/
struct BgzfBlocks {
BgzfReader bgzf;
this(string fn) {
bgzf = BgzfReader(fn);
}
@disable this(this); // disable copy semantics;
int opApply(scope int delegate(ubyte[]) dg) {
FilePos fpos = 0;
try {
while (!fpos.isNull) {
BlockBuffer stack_buffer;
auto res = bgzf.read_compressed_block(fpos,stack_buffer);
fpos = res[0]; // point fpos to next block
if (fpos.isNull) break;
auto compressed_buf = res[1]; // same as stack_buffer
auto uncompressed_size = res[2];
auto crc32 = res[3];
BlockBuffer uncompressed_buf;
// call delegated function with new block
dg(deflate(uncompressed_buf,compressed_buf,uncompressed_size,crc32));
}
} catch (Exception e) { bgzf.throwBgzfException(e.msg,e.file,e.line); }
return 0;
}
}
Tuple!(size_t,FilePos) read_blockx(ref BgzfReader bgzf, FilePos fpos, ref ubyte[] uncompressed_buf) {
BlockBuffer compressed_buf;
auto res = bgzf.read_compressed_block(fpos,compressed_buf);
fpos = res[0]; // point fpos to next block
if (fpos.isNull) return tuple(cast(size_t)0,fpos);
auto data = res[1];
assert(data.ptr == compressed_buf.ptr);
size_t uncompressed_size = res[2];
auto crc32 = res[3];
deflate(uncompressed_buf,compressed_buf,uncompressed_size,crc32);
return tuple(uncompressed_size,fpos);
}
import std.parallelism;
int kick_off_reading_block_ahead(ubyte[] uncompressed_buf, ubyte[] compressed_buf, size_t uncompressed_size, CRC32 crc32) {
// writeln("HEY " ~ to!string(uncompressed_size));
deflate(uncompressed_buf,compressed_buf,uncompressed_size,crc32);
return -1;
}
/**
*/
struct BlockReadAhead {
bool task_running = false, we_have_a_task = false;
Task!(kick_off_reading_block_ahead, ubyte[], ubyte[], size_t, CRC32)* t;
FilePos fpos2;
size_t uncompressed_size2 = 0;
BlockBuffer compressed_buf2;
BlockBuffer uncompressed_buf2;
private void read_next_block() {
}
private void add_deflate_task() {
}
private void copy_deflated_buffer() {
}
void setup_block_reader() {
read_next_block();
add_deflate_task();
throw new Exception("NYI");
}
Tuple!(size_t,FilePos) read_block(ref BgzfReader bgzf, FilePos fpos, ref ubyte[] uncompressed_buf) {
assert(we_have_a_task);
copy_deflated_buffer();
read_next_block();
add_deflate_task();
// return
if (task_running) {
int res = t.yieldForce;
// writeln(res);
task_running = false;
memcpy(uncompressed_buf.ptr,compressed_buf2.ptr,uncompressed_size2);
return tuple(uncompressed_size2, fpos2);
}
else {
BlockBuffer compressed_buf;
auto res = bgzf.read_compressed_block(fpos,compressed_buf);
fpos = res[0]; // point fpos to next block
if (fpos.isNull) return tuple(cast(size_t)0,fpos);
auto data = res[1];
assert(data.ptr == compressed_buf.ptr);
size_t uncompressed_size = res[2];
auto crc32 = res[3];
deflate(uncompressed_buf,compressed_buf,uncompressed_size,crc32);
// now set up a new buffer
auto res2 = bgzf.read_compressed_block(fpos,compressed_buf2);
fpos2 = res[0]; // point fpos to next block
if (!fpos2.isNull) {
auto data2 = res2[1];
uncompressed_size2 = res2[2];
t = task!kick_off_reading_block_ahead(cast(ubyte[])uncompressed_buf2,cast(ubyte[])compressed_buf2,uncompressed_size2,res2[3]);
t.executeInNewThread();
task_running = true;
}
return tuple(uncompressed_size,fpos);
}
}
}
/**
*/
struct BlockReadUnbuffered {
void setup_block_reader() {
}
Tuple!(ubyte[], size_t, FilePos) read_block(ref BgzfReader bgzf, in FilePos fpos, ubyte[] uncompressed_buf) {
BlockBuffer compressed_buf;
auto res = bgzf.read_compressed_block(fpos,compressed_buf);
auto fpos2 = res[0]; // point fpos to next block
if (fpos.isNull) return tuple(uncompressed_buf,cast(size_t)0,fpos2);
auto data = res[1];
assert(data.ptr == compressed_buf.ptr);
size_t uncompressed_size = res[2];
auto crc32 = res[3];
auto buf = deflate(uncompressed_buf,compressed_buf,uncompressed_size,crc32);
assert(buf.ptr == uncompressed_buf.ptr);
return tuple(uncompressed_buf,uncompressed_size,fpos2);
}
}
/**
Streams bgzf data and fetch items by unit or buffer. These can go beyond
the size of individual blocks(!)
*/
struct BgzfStream {
BgzfReader bgzf;
FilePos fpos; // track file position
ubyte[] uncompressed_buf; // current data buffer
size_t uncompressed_size; // current data buffer size
Nullable!size_t block_pos; // position in block
BlockReadUnbuffered blockread;
this(string fn) {
bgzf = BgzfReader(fn);
uncompressed_buf = new ubyte[BLOCK_SIZE];
fpos = 0;
}
@disable this(this); // disable copy semantics;
@property bool eof() {
return fpos.isNull;
}
/**
Fetch data into buffer. The size of the buffer can be larger than
one or more multiple blocks
*/
ubyte[] fetch(ubyte[] buffer) {
if (block_pos.isNull) {
blockread.setup_block_reader();
auto res = blockread.read_block(bgzf,fpos,uncompressed_buf); // read first block
assert(res[0].ptr == uncompressed_buf.ptr);
uncompressed_size = res[1];
fpos = res[2];
block_pos = 0;
}
size_t bl_pos = block_pos.get;
immutable buffer_length = buffer.length;
size_t buffer_pos = 0;
size_t remaining = buffer_length;
while (remaining > 0) {
if (bl_pos + remaining < uncompressed_size) {
// full copy
assert(buffer_pos + remaining == buffer_length);
memcpy(buffer[buffer_pos..buffer_pos+remaining].ptr,uncompressed_buf[bl_pos..bl_pos+remaining].ptr,remaining);
bl_pos = bl_pos + remaining;
remaining = 0;
}
else {
// read tail of buffer
immutable tail = uncompressed_size - bl_pos;
memcpy(buffer[buffer_pos..buffer_pos+tail].ptr,uncompressed_buf[bl_pos..uncompressed_size].ptr,tail);
buffer_pos += tail;
remaining -= tail;
auto res = blockread.read_block(bgzf,fpos,uncompressed_buf);
assert(res[0].ptr == uncompressed_buf.ptr);
uncompressed_size = res[1];
fpos = res[2];
bl_pos = 0;
}
}
block_pos = bl_pos;
return buffer;
}
int read(T)() { // for integers
ubyte[T.sizeof] buf;
auto b = fetch(buf);
return b.read!(T,Endian.littleEndian)();
}
string read(T)(size_t len) {
ubyte[] buf = new ubyte[len]; // heap allocation
fetch(buf);
return cast(T)buf;
}
T[] read(T)(T[] buffer) { return cast(T[])fetch(cast(ubyte[])buffer); };
}
|