1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
/*
This file is part of Sambamba.
Copyright (C) 2017 Pjotr Prins <pjotr.prins@thebird.nl>
Sambamba is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Sambamba is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA
*/
module bio.std.experimental.hts.pileup;
import std.conv;
import std.exception;
import std.stdio;
import std.traits;
import std.typecons;
import std.experimental.logger;
import bio.std.experimental.hts.constants;
import bio.core.utils.exception;
immutable ulong DEFAULT_BUFFER_SIZE = 1_000_000;
/**
Cyclic buffer or ringbuffer based on Artem's original. Uses copy
semantics to copy a read in a pre-allocated buffer. New items get
added to the tail, and used items get popped from the head
(FIFO). Basically it is empty when pointers align and full when
head - tail equals length. Not that the pointers are of size_t
which puts a theoretical limit on the number of items that can be
pushed.
*/
import core.stdc.string : memcpy;
// alias ulong RingBufferIndex;
struct RingBufferIndex {
alias Representation = ulong;
private ulong value = 0;
this(ulong v) {
value = v;
}
// @disable this(this); // disable copy semantics;
auto get() inout {
return value;
}
auto max() @property {
return value.max;
}
void opAssign(U)(U rhs) if (is(typeof(Checked!(T, Hook)(rhs)))) {
value = rhs;
}
bool opEquals(U, this _)(U rhs) {
return value == rhs;
}
auto opCmp(U, this _)(const U rhs) {
return value < rhs ? -1 : value > rhs;
}
ulong opUnary(string s)() if (s == "++") {
return ++value;
}
}
struct RingBuffer(T) {
T[] _items;
RingBufferIndex _head;
RingBufferIndex _tail;
size_t max_size = 0;
/** initializes round buffer of size $(D n) */
this(size_t n) {
_items = new T[n];
// _items.reserve(n);
}
@disable this(this); // disable copy semantics;
/*
Does not work because data is no longer available!
~this() {
// assert(is_empty); // make sure all items have been popped
}
*/
bool empty() @property @nogc nothrow const {
return _tail == _head;
}
alias empty is_empty;
auto ref front() @property {
enforce(!is_empty, "ringbuffer is empty");
return _items[_head.get() % $];
}
alias back last;
auto ref back() @property {
enforce(!is_empty, "ringbuffer is empty");
return _items[(_tail.get() - 1) % $];
}
alias front first;
bool is_tail(RingBufferIndex idx) {
return idx == _tail.get()-1;
}
ref T get_at(RingBufferIndex idx) {
enforce(!is_empty, "ringbuffer is empty");
enforce(idx >= _head, "ringbuffer range error (idx before front)");
enforce(idx != _tail, "ringbuffer range error (idx at end)");
enforce(idx < _tail, "ringbuffer range error (idx after end)");
return _items[idx.get() % $];
}
bool is_valid(RingBufferIndex idx) {
enforce(!is_empty, "ringbuffer is empty");
enforce(idx >= _head, "ringbuffer range error (idx before front)");
enforce(idx != _tail, "ringbuffer range error (idx at end)");
enforce(idx < _tail, "ringbuffer range error (idx after end)");
return true;
}
// This function is a hack.
void update_at(RingBufferIndex idx, T item) {
is_valid(idx);
_items[idx.get() % $] = item; // uses copy semantics
}
RingBufferIndex popFront() {
enforce(!is_empty, "ringbuffer is empty");
static if (__traits(compiles, _items[0].cleanupx)) {
// write("x");
_items[_head.get() % $].cleanup();
}
++_head.value;
return _head;
}
/// Puts item on the stack and returns the index
RingBufferIndex put(T item) {
enforce(!is_full, "ringbuffer is full - you need to expand buffer");
enforce(_tail < _tail.max, "ringbuffer overflow");
max_size = length > max_size ? length : max_size;
_items[_tail.get() % $] = item; // uses copy semantics
auto prev = _tail;
++_tail.value;
return prev;
}
ulong length() @property const {
// writeln(_tail.get(),":",_head.get(),"= len ",_tail.get()-_head.get());
return _tail.get() - _head.get();
}
bool is_full() @property const {
return _items.length == length();
}
bool in_range(RingBufferIndex idx) @property const {
return idx >= _head && idx < _tail;
}
ulong pushed() @property const {
return _tail.value;
}
ulong popped() @property const {
return _head.value;
}
@property void cleanup() {
_head = RingBufferIndex();
_tail = RingBufferIndex();
}
string toString() {
string res = "ring ";
for(RingBufferIndex i = _head; i<_tail; i++)
res ~= to!string(get_at(i));
return res;
}
@property string stats() {
return "Ringbuffer pushed " ~ to!string(pushed) ~ " popped " ~ to!string(popped) ~ " max-size " ~
to!string(max_size) // , "/", (pileup.ring.max_size+1)/pileup.ring.length);
;
}
}
unittest {
auto buf = RingBuffer!int(4);
assert(buf.is_empty);
buf.put(1);
buf.put(2);
assert(buf.length == 2);
assert(buf.front == 1);
buf.popFront(); // 1
buf.popFront(); // 2
buf.put(2);
buf.put(1);
buf.put(0);
buf.put(3);
assert(buf.is_full);
assert(buf.front == 2);
buf.popFront();
assert(buf.front == 1);
buf.put(4);
buf.popFront();
assert(buf.front == 0);
buf.popFront();
assert(buf.front == 3);
buf.popFront();
assert(buf.front == 4);
buf.popFront();
assert(buf.is_empty);
}
/**
Represent a pileup of reads in a buffer.
*/
/*
Read RingBuffer with current pointer, so you have three states
(first, current, last).
*/
class PileUp(R) {
RingBuffer!R ring;
Nullable!RingBufferIndex current;
this(ulong bufsize=DEFAULT_BUFFER_SIZE) {
ring = RingBuffer!R(bufsize);
set_current_to_head;
}
RingBufferIndex push(R r) { return ring.put(r); }
bool empty() @property const { return ring.is_empty();}
bool is_full() @property const { return ring.is_full();}
RingBufferIndex popFront() { return ring.popFront(); }
ref R front() { return ring.front(); }
alias front leftmost;
ref R rightmost() { return ring.back(); }
ref R read(RingBufferIndex idx) {
enforce(ring.in_range(idx), "idx should be set for PileUp.read");
return ring.get_at(idx);
}
ref R read_current() {
enforce(!current.isNull, "current should be set for PileUp.read_current");
return read(current.get);
}
bool is_at_end(RingBufferIndex idx) { return ring.is_tail(idx); }
@property void current_inc() {
asserte(!empty);
asserte(!ring.is_tail(current.get));
RingBufferIndex i = current.get.get + 1;
current = i;
}
@property void set_current_to_head() {
current = ring._head; // note pileup can be empty
}
void current_reset() {
current = RingBufferIndex();
}
@property bool current_is_tail() {
return ring.is_tail(current.get);
}
void each(void delegate(R) dg) {
auto idx = ring._head;
while(!ring.is_tail(idx)) {
auto r = read(idx);
dg(r);
idx++;
}
}
void each_left_of_current(void delegate(RingBufferIndex, R) dg) {
R cur = read_current;
if (cur.is_unmapped) return;
auto idx = ring._head;
while(!ring.is_tail(idx)) {
auto r = read(idx);
if (r.is_mapped && r.end_pos >= cur.start_pos)
return;
dg(idx,r);
idx++;
}
}
void purge_while(bool delegate(R) dg) {
while(!empty) {
if (!dg(front))
return; // skip the rest
popFront();
}
}
void purge(void delegate(R) dg) {
while(!empty) {
dg(front);
popFront();
}
set_current_to_head();
}
@property string stats() {
return ring.stats();
}
override string toString() {
return stats;
}
}
|