1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
/*
This file is part of BioD.
Copyright (C) 2012-2016 Artem Tarasov <lomereiter@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
*/
module bio.std.hts.bam.cigar;
import std.algorithm;
import std.range;
import std.conv;
import std.format;
import std.exception;
import std.system;
import std.traits;
import std.array;
import std.bitmanip;
import core.stdc.stdlib;
import bio.core.base;
import bio.core.utils.format;
import bio.std.hts.bam.abstractreader;
import bio.std.hts.bam.writer;
import bio.std.hts.bam.tagvalue;
import bio.std.hts.bam.bai.bin;
import bio.std.hts.bam.md.core;
import bio.std.hts.utils.array;
import bio.std.hts.utils.value;
import bio.core.utils.switchendianness;
import bio.std.hts.thirdparty.msgpack : Packer, unpack;
/**
Represents single CIGAR operation
*/
struct CigarOperation {
static assert(CigarOperation.sizeof == uint.sizeof);
/*
WARNING!
It is very essential that the size of
this struct is EXACTLY equal to uint.sizeof!
The reason is to avoid copying of arrays during alignment parsing.
Namely, when some_pointer points to raw cigar data,
we can just do a cast. This allows to access those data
directly, not doing any memory allocations.
*/
private uint raw; // raw data from BAM
private static ubyte char2op(char c) {
switch(c) {
case 'M': return 0;
case 'I': return 1;
case 'D': return 2;
case 'N': return 3;
case 'S': return 4;
case 'H': return 5;
case 'P': return 6;
case '=': return 7;
case 'X': return 8;
default: return 15; // 15 is used as invalid value
}
}
/// Length must be strictly less than 2^28.
/// $(BR)
/// Operation type must be one of M, I, D, N, S, H, P, =, X.
this(uint length, char operation_type) {
enforce(length < (1<<28), "Too big length of CIGAR operation");
raw = (length << 4) | char2op(operation_type);
}
this(uint _raw) {
raw = _raw;
}
/// Operation length
uint length() @property const nothrow @nogc {
return raw >> 4;
}
/// CIGAR operation as one of MIDNSHP=X.
/// Absent or invalid operation is represented by '?'
char type() @property const nothrow @nogc {
return "MIDNSHP=X????????"[raw & 0xF];
}
// Each pair of bits has first bit set iff the operation is query consuming,
// and second bit set iff it is reference consuming.
// X = P H S N D I M
private static immutable uint CIGAR_TYPE = 0b11_11_00_00_01_10_10_01_11;
/// True iff operation is one of M, =, X, I, S
bool is_query_consuming() @property const nothrow @nogc {
return ((CIGAR_TYPE >> ((raw & 0xF) * 2)) & 1) != 0;
}
/// True iff operation is one of M, =, X, D, N
bool is_reference_consuming() @property const nothrow @nogc {
return ((CIGAR_TYPE >> ((raw & 0xF) * 2)) & 2) != 0;
}
/// True iff operation is one of M, =, X
bool is_match_or_mismatch() @property const nothrow @nogc {
return ((CIGAR_TYPE >> ((raw & 0xF) * 2)) & 3) == 3;
}
/// True iff operation is one of 'S', 'H'
bool is_clipping() @property const nothrow @nogc {
return ((raw & 0xF) >> 1) == 2; // 4 or 5
}
void toSam(Sink)(auto ref Sink sink) const
if (isSomeSink!Sink)
{
sink.write(length);
sink.write(type);
}
void toString(scope void delegate(const(char)[]) sink) const {
toSam(sink);
}
}
alias CigarOperation[] CigarOperations;
bool is_unavailable(CigarOperations cigar) @property nothrow @nogc {
return (cigar.length == 1 && cigar[0].raw == '*');
}
/// Forward range of extended CIGAR operations, with =/X instead of M
/// Useful for, e.g., detecting positions of mismatches.
struct ExtendedCigarRange(CigarOpRange, MdOpRange) {
static assert(isInputRange!CigarOpRange && is(Unqual!(ElementType!CigarOpRange) == CigarOperation));
static assert(isInputRange!MdOpRange && is(Unqual!(ElementType!MdOpRange) == MdOperation));
private {
CigarOpRange _cigar;
MdOpRange _md_ops;
CigarOperation _front_cigar_op;
MdOperation _front_md_op;
uint _n_mismatches;
bool _empty;
}
///
this(CigarOpRange cigar, MdOpRange md_ops) {
_cigar = cigar;
_md_ops = md_ops;
fetchNextCigarOp();
fetchNextMdOp();
}
/// Forward range primitives
bool empty() @property const {
return _empty;
}
/// ditto
CigarOperation front() @property {
debug {
import std.stdio;
writeln(_front_cigar_op, " - ", _front_md_op);
}
if (_front_cigar_op.type != 'M')
return _front_cigar_op;
if (_n_mismatches == 0) {
assert(_front_md_op.is_match);
uint len = min(_front_md_op.match, _front_cigar_op.length);
return CigarOperation(len, '=');
}
assert(_front_md_op.is_mismatch);
return CigarOperation(min(_n_mismatches, _front_cigar_op.length), 'X');
}
/// ditto
ExtendedCigarRange save() @property {
typeof(return) r = void;
r._cigar = _cigar.save;
r._md_ops = _md_ops.save;
r._front_cigar_op = _front_cigar_op;
r._front_md_op = _front_md_op;
r._n_mismatches = _n_mismatches;
r._empty = _empty;
return r;
}
/// ditto
void popFront() {
if (!_front_cigar_op.is_match_or_mismatch) {
if (_front_cigar_op.is_reference_consuming)
fetchNextMdOp();
fetchNextCigarOp();
return;
}
auto len = _front_cigar_op.length;
if (_n_mismatches > 0) {
enforce(_front_md_op.is_mismatch);
if (len > _n_mismatches) {
_front_cigar_op = CigarOperation(len - _n_mismatches, 'M');
_n_mismatches = 0;
fetchNextMdOp();
} else if (len < _n_mismatches) {
_n_mismatches -= len;
fetchNextCigarOp();
} else {
fetchNextCigarOp();
fetchNextMdOp();
}
} else {
enforce(_front_md_op.is_match);
auto n_matches = _front_md_op.match;
if (len > n_matches) {
_front_cigar_op = CigarOperation(len - n_matches, 'M');
fetchNextMdOp();
} else if (len < n_matches) {
_front_md_op.match -= len;
fetchNextCigarOp();
} else {
fetchNextCigarOp();
fetchNextMdOp();
}
}
}
private {
void fetchNextCigarOp() {
if (_cigar.empty) {
_empty = true;
return;
}
_front_cigar_op = _cigar.front;
_cigar.popFront();
}
void fetchNextMdOp() {
if (_md_ops.empty)
return;
_n_mismatches = 0;
_front_md_op = _md_ops.front;
_md_ops.popFront();
if (_front_md_op.is_mismatch) {
_n_mismatches = 1;
while (!_md_ops.empty && _md_ops.front.is_mismatch) {
_md_ops.popFront();
_n_mismatches += 1;
}
}
}
}
}
auto makeExtendedCigar(CigarOpRange, MdOpRange)(CigarOpRange cigar, MdOpRange md_ops) {
return ExtendedCigarRange!(CigarOpRange, MdOpRange)(cigar, md_ops);
}
|