1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
/++
Unstable Sort for Random-Access Ranges
Written and tested for DMD 2.058 and Phobos
Authors: Xinok
License: Public Domain
++/
module thirdparty.unstablesort;
import std.range, std.algorithm, std.functional, std.parallelism;
/++
Performs an unstable sort on a random-access range according to predicate less.
The algorithm is a quick sort which resorts to heap sort to avoid worst-case.
Returns: Sorted input as SortedRange
Params:
range = Range to be sorted
pool = Task pool to use
Params:
less = Predicate (string, function, or delegate) used for comparing elements; Defaults to "a < b"
R = Type of range to be sorted; Must be a finite random-access range with slicing
Examples:
-----------------
int[] array = [10, 37, 74, 99, 86, 28, 17, 39, 18, 38, 70];
unstableSort(array, taskPool); // Sorts array using multiple threads
-----------------
++/
@trusted SortedRange!(R, less) unstableSort(alias less = "a < b", R)(R range, TaskPool pool)
{
static assert(isRandomAccessRange!R);
static assert(hasLength!R);
static assert(hasSlicing!R);
static assert(hasAssignableElements!R);
UnstableSortImpl!(less, R).sort(range, pool);
assert(isSorted!(less)(range.save), "Range is not sorted");
return assumeSorted!(less, R)(range.save);
}
/// Unstable sort implementation
template UnstableSortImpl(alias pred, R)
{
static assert(isRandomAccessRange!R);
static assert(hasLength!R);
static assert(hasSlicing!R);
static assert(hasAssignableElements!R);
alias ElementType!R T;
alias binaryFun!pred less;
bool greater(T a, T b){ return less(b, a); }
bool greaterEqual(T a, T b){ return !less(a, b); }
bool lessEqual(T a, T b){ return !less(b, a); }
enum MAX_INSERT = 32; // Maximum length for an insertion sort
enum MIN_THREAD = 1024 * 64; // Minimum length of a sublist to initiate new thread
/// Entry sort function
void sort(R range, TaskPool pool)
{
concSort(range, range.length, pool);
}
/// Recursively partition list
void sort(R range, real depth, TaskPool pool)
{
while(true)
{
if(range.length <= MAX_INSERT)
{
binaryInsertionSort(range);
return;
}
if(depth < 1.0)
{
heapSort(range);
return;
}
depth /= 1.5;
immutable mid = partition(range);
if(mid <= range.length / 2)
{
sort(range[0 .. mid - 1], depth, pool);
range = range[mid .. range.length];
}
else
{
sort(range[mid .. range.length], depth, pool);
range = range[0 .. mid - 1];
}
}
}
/// Concurrently sorts range
void concSort(R range, real depth, TaskPool pool)
{
if(range.length < MIN_THREAD)
{
sort(range, depth, pool);
return;
}
if(depth < 1.0)
{
heapSort(range);
return;
}
depth /= 1.5;
immutable mid = partition(range);
auto th = task!(concSort)(range[0 .. mid - 1], depth, pool);
pool.put(th);
concSort(range[mid .. range.length], depth, pool);
th.workForce();
}
/// Partitions range, returns starting index of second range excluding pivot
size_t partition(R range)
{
// Get median of five
immutable b = range.length / 4, c = range.length / 2, d = b + c;
medianSort(range[0], range[b], range[c], range[d], range[range.length - 1]);
// Move first elements into place
swap(range[1], range[b]);
swap(range[2], range[c]);
swap(range[range.length - 2], range[d]);
// Variables
T piv = range[2], o;
size_t lef = 3, rig = range.length - 3;
// Partition range
while(lef < rig)
{
if(lessEqual(range[lef], piv)) ++lef;
else
{
o = range[lef];
range[lef] = range[rig];
range[rig] = o;
--rig;
}
// Checking for equality on both sides ensures a balanced
// distribution of equal elements in both partitions
if(greaterEqual(range[rig], piv)) --rig;
else
{
o = range[lef];
range[lef] = range[rig];
range[rig] = o;
++lef;
}
}
// This step is necessary to ensure pivot is inserted at correct location
if(lessEqual(range[lef], piv)) ++lef;
// Move pivot into place
swap(range[lef - 1], range[2]);
return lef;
}
/// Finds the median of five in six comparisons while satisfiying the condition:
/// (a < c && b < c && c < d && d < e)
void medianSort(ref T a, ref T b, ref T c, ref T d, ref T e)
out
{
assert(lessEqual(a, c) && lessEqual(b, c) && lessEqual(c, d) && lessEqual(c, e));
}
do
{
T o;
if(greater(a, b)) swap(a, b);
if(greater(d, e)) swap(d, e);
if(greater(a, d))
{
o = a;
a = d;
d = b;
b = o;
if(greater(c, e))
{
o = c;
c = d;
d = e;
e = o;
}
else swap(c, d);
}
else if(greater(b, c)) swap(b, c);
if(greater(b, d))
{
swap(b, d);
swap(c, e);
}
if(greater(c, d)) swap(c, d);
}
/// A simple insertion sort used for sorting small sublists
void binaryInsertionSort(R range)
{
size_t lower, upper, center;
T o;
for(size_t i = 1; i < range.length; ++i)
{
o = range[i];
lower = 0;
upper = i;
while(upper != lower)
{
center = (lower + upper) / 2;
if(less(o, range[center])) upper = center;
else lower = center + 1;
}
for(upper = i; upper > lower; --upper) range[upper] = range[upper-1];
range[upper] = o;
}
}
/// Bottom-up binary heap sort is used to avoid the worst-case of quick sort
void heapSort(R range)
{
// Build Heap
size_t i = (range.length - 2) / 2 + 1;
while(i > 0) sift(range, --i, range.length);
// Sort
i = range.length - 1;
while(i > 0)
{
swap(range[0], range[i]);
sift(range, 0, i);
--i;
}
}
void sift(R range, size_t parent, immutable size_t end)
{
immutable root = parent;
T value = range[parent];
size_t child = void;
// Sift down
while(true)
{
child = parent * 2 + 1;
if(child >= end) break;
if(child + 1 < end && less(range[child], range[child + 1])) child += 1;
range[parent] = range[child];
parent = child;
}
child = parent;
// Sift up
while(child > root)
{
parent = (child - 1) / 2;
if(less(range[parent], value))
{
range[child] = range[parent];
child = parent;
}
else break;
}
range[child] = value;
}
}
unittest
{
bool testSort(alias pred, R)(R range)
{
unstableSort!(pred, R)(range, taskPool);
return isSorted!pred(range);
}
int testCall(T)(in T[] arr)
{
int failures = 0;
if(!testSort!"a < b"(arr.dup)) ++failures;
if(!testSort!"a > b"(arr.dup)) ++failures;
return failures;
}
// Array containing 256 random ints
enum test = [
10, 37, 74, 99, 86, 28, 17, 39, 18, 38, 70, 89, 94, 32, 46, 76, 43, 33, 62, 76,
37, 93, 45, 48, 49, 21, 67, 56, 58, 17, 15, 41, 91, 94, 95, 41, 38, 80, 37, 24,
26, 71, 87, 54, 72, 60, 29, 37, 41, 99, 31, 66, 75, 72, 86, 97, 37, 25, 98, 89,
53, 45, 52, 76, 51, 38, 59, 53, 74, 96, 94, 42, 68, 84, 65, 27, 49, 57, 53, 74,
39, 75, 39, 26, 46, 37, 68, 96, 19, 79, 73, 83, 36, 90, 11, 39, 48, 94, 97, 72,
37, 43, 69, 36, 41, 47, 31, 48, 33, 21, 20, 18, 45, 28, 47, 54, 41, 28, 47, 44,
51, 15, 21, 64, 82, 23, 41, 82, 30, 25, 78, 72, 50, 34, 45, 59, 14, 71, 50, 97,
39, 87, 74, 60, 52, 17, 87, 45, 69, 54, 91, 68, 46, 99, 78, 33, 27, 53, 41, 84,
82, 54, 29, 55, 53, 87, 13, 98, 55, 33, 73, 64, 19, 81, 57, 78, 23, 45, 94, 75,
55, 43, 93, 85, 96, 82, 44, 73, 22, 79, 89, 20, 36, 11, 12, 51, 86, 86, 75, 66,
81, 90, 80, 80, 36, 36, 47, 43, 86, 96, 45, 73, 70, 90, 57, 23, 86, 29, 12, 54,
37, 17, 87, 12, 36, 78, 26, 28, 30, 15, 10, 53, 76, 34, 23, 49, 65, 17, 37, 51,
26, 23, 66, 12, 26, 84, 60, 47, 30, 26, 78, 20, 42, 40, 63, 40
];
// Runtime test
assert(testCall(test) == 0);
}
|