1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
|
/* -*- Mode: C++ ; indent-tabs-mode: nil ; c-file-style: "stroustrup" -*-
Project: samblaster
Fast mark duplicates in read-ID grouped SAM file.
Also, optionally pull discordants, splitters, and/or unmappend/clipped reads.
Author: Greg Faust (gf4ea@virginia.edu)
Date: October 2013
File: sbhash.cpp code file for our hash table.
License Information:
Copyright 2013-2020 Gregory G. Faust
Licensed under the MIT license (the "License");
You may not use this file except in compliance with the License.
You may obtain a copy of the License at http://opensource.org/licenses/MIT
*/
#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <sys/mman.h>
#include <cmath>
#include "sbhash.h"
///////////////////////////////////////////////////////////////////////////////
// Slab Allocator common code
///////////////////////////////////////////////////////////////////////////////
// We will lazily allocate more slabs when needed, and only clean up at the end.
//////////////////////////////////////////////////////////////////////////////
void fatalError(const char * errorStr);
void checkFSerrWithFilename (ssize_t returnCode)
{
if (returnCode == -1)
{
char * temp;
if (errno == ENOMEM)
temp = (char *)"samblaster: Insufficient memory available to satisfy allocation request.\n";
else
asprintf(&temp, "File system error %d trying to allocate or free memory\n", errno);
fatalError(temp);
}
}
// Allocate big blocks of memory.
char * blockMalloc(ssize_t size)
{
char * retval = (char *)mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, 0, 0);
checkFSerrWithFilename((ssize_t)retval);
return retval;
}
// Free big blocks of memory. Not the size is needed.
void blockFree(char * ptr, ssize_t size)
{
int err = munmap(ptr, size);
checkFSerrWithFilename(err);
}
typedef struct LBMallocBlock LBMallocBlock_t;
struct LBMallocBlock
{
char * block; // Pointer to the payload block
LBMallocBlock_t * next; // Pointer to the next allocation block
size_t size; // Size of the allocated block
};
char * pushNewLBMallocBlock(int blockSize, LBMallocBlock_t **blockArrayPtr)
{
char * newBlock = blockMalloc(blockSize);
LBMallocBlock_t * newMallocBlock = (LBMallocBlock_t *)malloc(sizeof(LBMallocBlock_t));
if (newMallocBlock == NULL) fatalError("samblaster: Insufficeint memory available to allocate (more) objects.\n");
newMallocBlock->size = blockSize;
newMallocBlock->block = newBlock;
newMallocBlock->next = *blockArrayPtr;
*blockArrayPtr = newMallocBlock;
return newBlock;
}
void freeLBMallocBlocks(LBMallocBlock_t * block)
{
while (block != NULL)
{
LBMallocBlock_t * nextBlock = block->next;
blockFree(block->block, block->size);
free(block);
block = nextBlock;
}
}
///////////////////////////////////////////////////////////////////////////////
// Hash Table Collision Nodes
///////////////////////////////////////////////////////////////////////////////
#define newNodeCount 4096
// Ptr to head of linked list of allocated node slabs.
LBMallocBlock_t * nodeBlockList = NULL;
// Ptr to head of linked list of free node objects.
hashNode_t * hashNodeFreeList = NULL;
void makeMoreHashNodes()
{
hashNode_t * nodeArray = (hashNode_t *)pushNewLBMallocBlock(sizeof(hashNode_t) * newNodeCount, &nodeBlockList);
for (int i=1; i<newNodeCount; i++)
{
(nodeArray + (i - 1))->next = (nodeArray + i);
}
(nodeArray + (newNodeCount - 1))->next = NULL;
hashNodeFreeList = nodeArray;
}
hashNode_t * getHashNode()
{
if (hashNodeFreeList == NULL) makeMoreHashNodes();
hashNode_t * node = hashNodeFreeList;
hashNodeFreeList = hashNodeFreeList->next;
node->next = NULL;
for (int i=0; i<HASHNODE_PAYLOAD_SIZE; i++) node->values[i] = 0;
return node;
}
// I don't think this is currently being called, as we always put the entire string of nodes on the freelist.
void disposeHashNode(hashNode_t * node)
{
node->next = hashNodeFreeList;
hashNodeFreeList = node;
}
void freeHashTableNodes()
{
freeLBMallocBlocks(nodeBlockList);
}
///////////////////////////////////////////////////////////////////////////////
// Hash Table
///////////////////////////////////////////////////////////////////////////////
// We are going to depend on an old hack.
// ptrs to 8 byte things will be 8 byte aligned.
// Therefore, the lower 3 bits will be zero.
// Also, no known chromosome offset requires all 32 bits.
// So we will roll the signature up one bit and put a one there.
// We can then tell apart the three following state for a table entry:
// 0 -> empty bucket
// low bit 1 -> value
// low bit 0 -> ptr to overflow nodes.
///////////////////////////////////////////////////////////////////////////////
inline UINT64 makeValue(UINT64 value)
{
return (value << 1) | 1;
}
inline UINT64 unmakeValue(UINT64 value)
{
return (value >> 1);
}
inline hashNode_t * makePtr(UINT64 value)
{
return (hashNode_t *)value;
}
inline bool isEmpty(UINT64 value)
{
return (value == 0);
}
inline bool isValue(UINT64 value)
{
return ((value & 1) != 0);
}
#define numOfSizes 27
static UINT32 hashTableSizes [] = {0, 23, 47, 97, 199, 409, 823, 1741, 3739, 7517, 15173, 30727, 62233, 126271, 256279, 520241, 1056323,
2144977, 4355707, 8844859, 17961079, 36473443, 74066549, 150406843, 305431229, 620239453, 1259520799};
inline UINT32 hash(UINT64 value)
{
return (UINT32)value;
}
void hashTableInit(hashTable_t * ht, int size)
{
ht->entries = 0;
ht->size = size;
if (size == 0)
{
ht->table = (UINT64 *)NULL;
return;
}
ht->table = (UINT64 *)calloc(ht->size, sizeof(UINT64));
if (ht->table == NULL) fatalError("samblaster: unable to allocate hash table.\n");
}
hashTable_t * makeHashTable()
{
hashTable_t * ht = (hashTable_t *)malloc(sizeof(hashTable_t));
if (ht == NULL) fatalError("samblaster: unable to allocate hash table.\n");
hashTableInit(ht, hashTableSizes[0]);
return ht;
}
// Use a C++ style destructor so that arrays of hash tables will be cleaned up automagically.
hashTable::~hashTable()
{
if (table != NULL) free(table);
}
// C style delete.
void deleteHashTable(hashTable_t * ht)
{
if (ht->table != NULL) free(ht->table);
}
void resizeHashTable(hashTable_t * ht)
{
// Find out what size table is next.
int newsize = 0;
for (int i=0; i<numOfSizes; i++)
{
if (hashTableSizes[i] == ht->size)
{
newsize = hashTableSizes[i+1];
break;
}
}
// Remember the current values array.
UINT64 * oldtable = ht->table;
int size = ht->size;
// Now reinit the hash table with a new table, etc.
hashTableInit(ht, newsize);
// Now iterate over all values and rehash them into the new table.
for (int i=0; i<size; i++)
{
UINT64 value = oldtable[i];
if (isEmpty(value)) continue;
if (isValue(value)) {hashTableInsert(ht, unmakeValue(value)); continue;}
// We need to iterate through the nodes.
hashNode_t * node = makePtr(value);
while (true)
{
for (int j=0; j<HASHNODE_PAYLOAD_SIZE; j++)
{
value = node->values[j];
if (isEmpty(value)) break;
hashTableInsert(ht, unmakeValue(value));
}
if (node->next == NULL) break;
node = node->next;
}
// We need to free up the nodes.
// TODO move out of line.
node->next = hashNodeFreeList;
hashNodeFreeList = makePtr(oldtable[i]);
}
// Free up the oldtable.
if (oldtable != NULL) free(oldtable);
}
bool hashTableInsert(hashTable_t * ht, UINT64 value)
{
// See if we have reached our size limit.
if (ht->entries == ht->size) resizeHashTable(ht);
int bucket = hash(value) % ht->size;
// We need to empty the low order bit so that we can tell the difference between values and ptrs.
value = makeValue(value);
UINT64 curvalue = ht->table[bucket];
// The empty case should be most common.
if (isEmpty(curvalue))
{
ht->table[bucket] = value;
ht->entries += 1;
return true;
}
// The value case should be next most common.
if (isValue(curvalue))
{
// The value is already here.
if (curvalue == value) return false;
// We have a collision and need to add an overflow node.
hashNode_t * node = getHashNode();
ht->table[bucket] = (UINT64)node;
node->values[0] = curvalue;
// Note that this test doesn't cost us anything as it happens at compile time.
if (HASHNODE_PAYLOAD_SIZE >= 2)
{
node->values[1] = value;
}
else
{
// We need to add a second new node.
hashNode_t * secondNode = getHashNode();
node->next = secondNode;
secondNode->values[0] = value;
}
ht->entries += 1;
return true;
}
// The overflow node case.
hashNode_t * curNode = makePtr(curvalue);
while (true)
{
for (int i=0; i<HASHNODE_PAYLOAD_SIZE; i++)
{
// Check if we have an empty slot.
if (curNode->values[i] == 0)
{
curNode->values[i] = value;
ht->entries += 1;
return true;
}
// Check if the value matches the current value.
if (curNode->values[i] == value) return false;
}
if (curNode->next == NULL) break;
curNode = curNode->next;
}
// If we are here, we need a new node.
hashNode_t * node = getHashNode();
curNode->next = node;
node->values[0] = value;
ht->entries += 1;
return true;
}
|