1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
|
#include <stdint.h>
#include <math.h>
#include <string.h>
#include <assert.h>
#include <errno.h>
#include <stdlib.h>
#include "gb.h"
/* Band limited synthesis loosely based on: http://www.slack.net/~ant/bl-synth/ */
static int32_t band_limited_steps[GB_BAND_LIMITED_PHASES][GB_BAND_LIMITED_WIDTH];
static void __attribute__((constructor)) band_limited_init(void)
{
const unsigned master_size = GB_BAND_LIMITED_WIDTH * GB_BAND_LIMITED_PHASES;
double *master = malloc(master_size * sizeof(*master));
memset(master, 0, master_size * sizeof(*master));
const double lowpass = 15.0 / 16.0; // 1.0 means using Nyquist as the exact cutoff
const double to_angle = M_PI / GB_BAND_LIMITED_PHASES * lowpass;
double sum = 0;
nounroll for (signed i = 0; i < master_size; i++) {
// Exact Blackman window
const double a0 = 7938 / 18608.0;
const double a1 = 9240 / 18608.0;
const double a2 = 1430 / 18608.0;
double window_angle = (2.0 * M_PI * i) / (master_size);
double window = a0 - a1 * cos(window_angle) + a2 * cos(2 * window_angle);
double angle = (i - (signed)master_size / 2) * to_angle;
sum += master[i] = (angle == 0? 1 : sin(angle) / angle) * window;
}
nounroll for (signed i = 0; i < master_size; i++) {
master[i] /= sum;
}
nounroll for (signed phase = 0; phase < GB_BAND_LIMITED_PHASES; phase++) {
int32_t error = GB_BAND_LIMITED_ONE;
nounroll for (signed i = 0; i < GB_BAND_LIMITED_WIDTH; i++) {
double sum = 0;
nounroll for (signed j = 0; j < GB_BAND_LIMITED_PHASES; j++) {
signed index = i * GB_BAND_LIMITED_PHASES - phase + j;
if (index >= 0) {
sum += master[index];
}
}
int32_t cur = sum * GB_BAND_LIMITED_ONE;
error -= cur;
band_limited_steps[phase][i] = cur;
}
// Make sure the deltas sum to 1.0
band_limited_steps[phase][GB_BAND_LIMITED_WIDTH / 2] += error;
}
free(master);
}
static void band_limited_update(GB_band_limited_t *band_limited, const GB_sample_t *input, unsigned phase)
{
if (input->packed == band_limited->input.packed) return;
unsigned delay = phase / GB_BAND_LIMITED_PHASES;
phase = phase & (GB_BAND_LIMITED_PHASES - 1);
struct {
signed left, right;
} delta = {
.left = input->left - band_limited->input.left,
.right = input->right - band_limited->input.right,
};
band_limited->input.packed = input->packed;
for (unsigned i = 0; i < GB_BAND_LIMITED_WIDTH; i++) {
unsigned offset = (i + band_limited->pos + delay) & (sizeof(band_limited->buffer) / sizeof(band_limited->buffer[0]) - 1);
band_limited->buffer[offset].left += delta.left * band_limited_steps[phase][i];
band_limited->buffer[offset].right += delta.right * band_limited_steps[phase][i];
}
}
static void band_limited_update_unfiltered(GB_band_limited_t *band_limited, const GB_sample_t *input, unsigned delay)
{
if (input->packed == band_limited->input.packed) return;
struct {
signed left, right;
} delta = {
.left = input->left - band_limited->input.left,
.right = input->right - band_limited->input.right,
};
band_limited->input.packed = input->packed;
unsigned offset = (band_limited->pos + delay) & (sizeof(band_limited->buffer) / sizeof(band_limited->buffer[0]) - 1);
band_limited->buffer[offset].left += delta.left * GB_BAND_LIMITED_ONE;
band_limited->buffer[offset].right += delta.right * GB_BAND_LIMITED_ONE;
}
static void band_limited_read(GB_band_limited_t *band_limited, GB_sample_t *output, uint32_t multiplier)
{
band_limited->output.left += band_limited->buffer[band_limited->pos].left;
band_limited->output.right += band_limited->buffer[band_limited->pos].right;
band_limited->buffer[band_limited->pos].left = band_limited->buffer[band_limited->pos].right = 0;
band_limited->pos = (band_limited->pos + 1) & (sizeof(band_limited->buffer) / sizeof(band_limited->buffer[0]) - 1);
output->left = band_limited->output.left * multiplier / GB_BAND_LIMITED_ONE;
output->right = band_limited->output.right * multiplier / GB_BAND_LIMITED_ONE;
}
static inline uint32_t sample_fraction_multiply(GB_gameboy_t *gb, unsigned multiplier)
{
if (unlikely(multiplier == 0)) return 0;
if (likely(multiplier < GB_QUICK_MULTIPLY_COUNT + 1)) {
return gb->apu_output.quick_fraction_multiply_cache[multiplier - 1];
}
return gb->apu_output.quick_fraction_multiply_cache[0] * multiplier;
}
static const uint8_t duties[] = {
0, 0, 0, 0, 0, 0, 0, 1,
1, 0, 0, 0, 0, 0, 0, 1,
1, 0, 0, 0, 0, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 0,
};
bool GB_apu_is_DAC_enabled(GB_gameboy_t *gb, GB_channel_t index)
{
if (gb->model > GB_MODEL_CGB_E) {
/* On the AGB, mixing is done digitally, so there are no per-channel
DACs. Instead, all channels are summed digital regardless of
whatever the DAC state would be on a CGB or earlier model. */
return true;
}
switch (index) {
case GB_SQUARE_1:
return gb->io_registers[GB_IO_NR12] & 0xF8;
case GB_SQUARE_2:
return gb->io_registers[GB_IO_NR22] & 0xF8;
case GB_WAVE:
return gb->apu.wave_channel.enable;
case GB_NOISE:
return gb->io_registers[GB_IO_NR42] & 0xF8;
nodefault;
}
return false;
}
static uint8_t agb_bias_for_channel(GB_gameboy_t *gb, GB_channel_t index)
{
if (!gb->apu.is_active[index]) return 0;
switch (index) {
case GB_SQUARE_1:
return gb->apu.square_channels[GB_SQUARE_1].current_volume;
case GB_SQUARE_2:
return gb->apu.square_channels[GB_SQUARE_2].current_volume;
case GB_WAVE:
return 0;
case GB_NOISE:
return gb->apu.noise_channel.current_volume;
nodefault;
}
}
static void update_sample(GB_gameboy_t *gb, GB_channel_t index, int8_t value, unsigned cycles_offset)
{
if (gb->model > GB_MODEL_CGB_E) {
/* On the AGB, because no analog mixing is done, the behavior of NR51 is a bit different.
A channel that is not connected to a terminal is idenitcal to a connected channel
playing PCM sample 0. */
gb->apu.samples[index] = value;
if (gb->apu_output.sample_rate) {
unsigned right_volume = (gb->io_registers[GB_IO_NR50] & 7) + 1;
unsigned left_volume = ((gb->io_registers[GB_IO_NR50] >> 4) & 7) + 1;
int8_t silence = 0;
if (index == GB_WAVE) {
/* For some reason, channel 3 is inverted on the AGB, and has a different "silence" value */
value ^= 0xF;
silence = 7 * 2;
}
uint8_t bias = agb_bias_for_channel(gb, index);
bool left = gb->io_registers[GB_IO_NR51] & (0x10 << index);
bool right = gb->io_registers[GB_IO_NR51] & (1 << index);
GB_sample_t output = {
.left = (0xF - (left? value * 2 + bias : silence)) * left_volume,
.right = (0xF - (right? value * 2 + bias : silence)) * right_volume
};
if (unlikely(gb->apu_output.channel_muted[index])) {
output.left = output.right = 0;
}
if (unlikely(gb->apu_output.max_cycles_per_sample == 1)) {
band_limited_update_unfiltered(&gb->apu_output.band_limited[index], &output, cycles_offset);
}
else {
band_limited_update(&gb->apu_output.band_limited[index],
&output,
(((gb->apu_output.sample_fraction + sample_fraction_multiply(gb, cycles_offset)) >> 8) * GB_BAND_LIMITED_PHASES) >> 20);
}
}
return;
}
if (value == 0 && gb->apu.samples[index] == 0) return;
if (!GB_apu_is_DAC_enabled(gb, index)) {
value = gb->apu.samples[index];
}
else {
gb->apu.samples[index] = value;
}
if (gb->apu_output.sample_rate) {
unsigned right_volume = 0;
if (gb->io_registers[GB_IO_NR51] & (1 << index)) {
right_volume = (gb->io_registers[GB_IO_NR50] & 7) + 1;
}
unsigned left_volume = 0;
if (gb->io_registers[GB_IO_NR51] & (0x10 << index)) {
left_volume = ((gb->io_registers[GB_IO_NR50] >> 4) & 7) + 1;
}
GB_sample_t output = {0, 0};
if (likely(!gb->apu_output.channel_muted[index])) {
output = (GB_sample_t){(0xF - value * 2) * left_volume, (0xF - value * 2) * right_volume};
}
if (unlikely(gb->apu_output.max_cycles_per_sample == 1)) {
band_limited_update_unfiltered(&gb->apu_output.band_limited[index], &output, cycles_offset);
}
else {
band_limited_update(&gb->apu_output.band_limited[index],
&output,
(((gb->apu_output.sample_fraction + sample_fraction_multiply(gb, cycles_offset)) >> 8) * GB_BAND_LIMITED_PHASES) >> 20);
}
}
}
static double smooth(double x)
{
return 3*x*x - 2*x*x*x;
}
static signed interference(GB_gameboy_t *gb)
{
/* These aren't scientifically measured, but based on ear based on several recordings */
signed ret = 0;
if (gb->halted) {
if (gb->model <= GB_MODEL_CGB_E) {
ret -= MAX_CH_AMP / 5;
}
else {
ret -= MAX_CH_AMP / 12;
}
}
if (gb->io_registers[GB_IO_LCDC] & GB_LCDC_ENABLE) {
ret += MAX_CH_AMP / 7;
if ((gb->io_registers[GB_IO_STAT] & 3) == 3 && gb->model <= GB_MODEL_CGB_E) {
ret += MAX_CH_AMP / 14;
}
else if ((gb->io_registers[GB_IO_STAT] & 3) == 1) {
ret -= MAX_CH_AMP / 7;
}
}
if (gb->apu.global_enable) {
ret += MAX_CH_AMP / 10;
}
if (GB_is_cgb(gb) && gb->model <= GB_MODEL_CGB_E && (gb->io_registers[GB_IO_RP] & 1)) {
ret += MAX_CH_AMP / 10;
}
if (!GB_is_cgb(gb)) {
ret /= 4;
}
ret += rand() % (MAX_CH_AMP / 12);
return ret;
}
static void render(GB_gameboy_t *gb)
{
GB_sample_t output = {0, 0};
unrolled for (unsigned i = 0; i < GB_N_CHANNELS; i++) {
double multiplier = CH_STEP;
if (gb->model <= GB_MODEL_CGB_E) {
if (!GB_apu_is_DAC_enabled(gb, i)) {
gb->apu_output.dac_discharge[i] -= ((double) DAC_DECAY_SPEED) / gb->apu_output.sample_rate;
if (gb->apu_output.dac_discharge[i] < 0) {
multiplier = 0;
gb->apu_output.dac_discharge[i] = 0;
}
else {
multiplier *= smooth(gb->apu_output.dac_discharge[i]);
}
}
else {
gb->apu_output.dac_discharge[i] += ((double) DAC_ATTACK_SPEED) / gb->apu_output.sample_rate;
if (gb->apu_output.dac_discharge[i] > 1) {
gb->apu_output.dac_discharge[i] = 1;
}
else {
multiplier *= smooth(gb->apu_output.dac_discharge[i]);
}
}
}
GB_sample_t channel_output;
band_limited_read(&gb->apu_output.band_limited[i], &channel_output, multiplier);
output.left += channel_output.left;
output.right += channel_output.right;
}
gb->apu_output.cycles_since_render = 0;
if (unlikely(gb->apu_output.sample_fraction < (1 << 28))) {
gb->apu_output.sample_fraction = 0;
}
else {
gb->apu_output.sample_fraction -= 1 << 28;
}
if (gb->sgb && gb->sgb->intro_animation < GB_SGB_INTRO_ANIMATION_LENGTH) return;
GB_sample_t filtered_output = gb->apu_output.highpass_mode?
(GB_sample_t) {output.left - (int16_t)gb->apu_output.highpass_diff.left,
output.right - (int16_t)gb->apu_output.highpass_diff.right} :
output;
switch (gb->apu_output.highpass_mode) {
case GB_HIGHPASS_OFF:
gb->apu_output.highpass_diff = (GB_double_sample_t) {0, 0};
break;
case GB_HIGHPASS_ACCURATE:
gb->apu_output.highpass_diff = (GB_double_sample_t) {
output.left - (output.left - gb->apu_output.highpass_diff.left) * gb->apu_output.highpass_rate,
output.right - (output.right - gb->apu_output.highpass_diff.right) * gb->apu_output.highpass_rate
};
break;
case GB_HIGHPASS_REMOVE_DC_OFFSET: {
unsigned mask = gb->io_registers[GB_IO_NR51];
unsigned left_volume = 0;
unsigned right_volume = 0;
unrolled for (unsigned i = GB_N_CHANNELS; i--;) {
if (GB_apu_is_DAC_enabled(gb, i)) {
if (mask & 1) {
left_volume += ((gb->io_registers[GB_IO_NR50] & 7) + 1) * CH_STEP * 0xF;
}
if (mask & 0x10) {
right_volume += (((gb->io_registers[GB_IO_NR50] >> 4) & 7) + 1) * CH_STEP * 0xF;
}
}
mask >>= 1;
}
gb->apu_output.highpass_diff = (GB_double_sample_t) {
left_volume * (1 - gb->apu_output.highpass_rate) + gb->apu_output.highpass_diff.left * gb->apu_output.highpass_rate,
right_volume * (1 - gb->apu_output.highpass_rate) + gb->apu_output.highpass_diff.right * gb->apu_output.highpass_rate
};
case GB_HIGHPASS_MAX:;
}
}
if (gb->apu_output.interference_volume) {
signed interference_bias = interference(gb);
int16_t interference_sample = (interference_bias - gb->apu_output.interference_highpass);
gb->apu_output.interference_highpass = gb->apu_output.interference_highpass * gb->apu_output.highpass_rate +
(1 - gb->apu_output.highpass_rate) * interference_sample;
interference_bias *= gb->apu_output.interference_volume;
filtered_output.left = MAX(MIN(filtered_output.left + interference_bias, 0x7FFF), -0x8000);
filtered_output.right = MAX(MIN(filtered_output.right + interference_bias, 0x7FFF), -0x8000);
}
assert(gb->apu_output.sample_callback);
gb->apu_output.sample_callback(gb, &filtered_output);
if (unlikely(gb->apu_output.output_file)) {
#ifdef GB_BIG_ENDIAN
if (gb->apu_output.output_format == GB_AUDIO_FORMAT_WAV) {
filtered_output.left = LE16(filtered_output.left);
filtered_output.right = LE16(filtered_output.right);
}
#endif
if (fwrite(&filtered_output, sizeof(filtered_output), 1, gb->apu_output.output_file) != 1) {
fclose(gb->apu_output.output_file);
gb->apu_output.output_file = NULL;
gb->apu_output.output_error = errno;
}
}
}
static void update_square_sample(GB_gameboy_t *gb, GB_channel_t index, unsigned cycles)
{
if (gb->apu.square_channels[index].sample_surpressed) {
if (gb->model > GB_MODEL_CGB_E) {
update_sample(gb, index, gb->apu.samples[index], 0);
}
return;
}
uint8_t duty = gb->io_registers[index == GB_SQUARE_1? GB_IO_NR11 :GB_IO_NR21] >> 6;
update_sample(gb, index,
duties[gb->apu.square_channels[index].current_sample_index + duty * 8]?
gb->apu.square_channels[index].current_volume : 0,
cycles);
}
static inline void update_wave_sample(GB_gameboy_t *gb, unsigned cycles)
{
if (gb->apu.wave_channel.current_sample_index & 1) {
update_sample(gb, GB_WAVE,
(gb->apu.wave_channel.current_sample_byte & 0xF) >> gb->apu.wave_channel.shift,
cycles);
}
else {
update_sample(gb, GB_WAVE,
(gb->apu.wave_channel.current_sample_byte >> 4) >> gb->apu.wave_channel.shift,
cycles);
}
}
static inline void set_envelope_clock(GB_envelope_clock_t *clock, bool value, bool direction, uint8_t volume)
{
if (clock->clock == value) return;
if (value) {
clock->clock = true;
clock->should_lock = (volume == 0xF && direction) || (volume == 0x0 && !direction);
}
else {
clock->clock = false;
clock->locked |= clock->should_lock;
}
}
static void _nrx2_glitch(uint8_t *volume, uint8_t value, uint8_t old_value, uint8_t *countdown, GB_envelope_clock_t *lock)
{
if (lock->clock) {
*countdown = value & 7;
}
bool should_tick = (value & 7) && !(old_value & 7) && !lock->locked;
bool should_invert = (value & 8) ^ (old_value & 8);
if ((value & 0xF) == 8 && (old_value & 0xF) == 8 && !lock->locked) {
should_tick = true;
}
if (should_invert) {
// The weird and over-the-top way clocks for this counter are connected cause
// some weird ways for it to invert
if (value & 8) {
if (!(old_value & 7) && !lock->locked) {
*volume ^= 0xF;
}
else {
*volume = 0xE - *volume;
*volume &= 0xF;
}
should_tick = false; // Somehow prevents ticking?
}
else {
*volume = 0x10 - *volume;
*volume &= 0xF;
}
}
if (should_tick) {
if (value & 8) {
(*volume)++;
}
else {
(*volume)--;
}
*volume &= 0xF;
}
else if (!(value & 7) && lock->clock) {
set_envelope_clock(lock, false, 0, 0);
}
}
static void nrx2_glitch(GB_gameboy_t *gb, uint8_t *volume, uint8_t value, uint8_t old_value, uint8_t *countdown, GB_envelope_clock_t *lock)
{
/* Note: on pre-CGB models *some* of these are non-deterministic. Specifically,
$x0 writes seem to be non-deterministic while $x8 always work as expected.
TODO: Might be useful to find which cases are non-deterministic, and allow
the debugger to issue warnings when they're used. I suspect writes to/from
$xF are guaranteed to be deterministic. */
if (gb->model <= GB_MODEL_CGB_C) {
_nrx2_glitch(volume, 0xFF, old_value, countdown, lock);
_nrx2_glitch(volume, value, 0xFF, countdown, lock);
}
else {
_nrx2_glitch(volume, value, old_value, countdown, lock);
}
}
static void tick_square_envelope(GB_gameboy_t *gb, GB_channel_t index)
{
set_envelope_clock(&gb->apu.square_channels[index].envelope_clock, false, 0, 0);
if (gb->apu.square_channels[index].envelope_clock.locked) return;
uint8_t nrx2 = gb->io_registers[index == GB_SQUARE_1? GB_IO_NR12 : GB_IO_NR22];
if (!(nrx2 & 7)) return;
if (gb->cgb_double_speed) {
if (index == GB_SQUARE_1) {
gb->apu.pcm_mask[0] &= gb->apu.square_channels[GB_SQUARE_1].current_volume | 0xF1;
}
else {
gb->apu.pcm_mask[0] &= (gb->apu.square_channels[GB_SQUARE_2].current_volume << 2) | 0x1F;
}
}
set_envelope_clock(&gb->apu.square_channels[index].envelope_clock, false, 0, 0);
if (nrx2 & 8) {
gb->apu.square_channels[index].current_volume++;
}
else {
gb->apu.square_channels[index].current_volume--;
}
if (gb->apu.is_active[index]) {
update_square_sample(gb, index, 0);
}
}
static void tick_noise_envelope(GB_gameboy_t *gb)
{
set_envelope_clock(&gb->apu.noise_channel.envelope_clock, false, 0, 0);
if (gb->apu.noise_channel.envelope_clock.locked) return;
uint8_t nr42 = gb->io_registers[GB_IO_NR42];
if (!(nr42 & 7)) return;
if (gb->cgb_double_speed) {
gb->apu.pcm_mask[0] &= (gb->apu.noise_channel.current_volume << 2) | 0x1F;
}
if (nr42 & 8) {
gb->apu.noise_channel.current_volume++;
}
else {
gb->apu.noise_channel.current_volume--;
}
if (gb->apu.is_active[GB_NOISE]) {
update_sample(gb, GB_NOISE,
(gb->apu.noise_channel.lfsr & 1) ?
gb->apu.noise_channel.current_volume : 0,
0);
}
}
static void sweep_calculation_done(GB_gameboy_t *gb, unsigned cycles)
{
/* APU bug: sweep frequency is checked after adding the sweep delta twice */
if (gb->apu.channel_1_restart_hold == 0) {
gb->apu.shadow_sweep_sample_length = gb->apu.square_channels[GB_SQUARE_1].sample_length;
}
if (gb->io_registers[GB_IO_NR10] & 8) {
gb->apu.sweep_length_addend ^= 0x7FF;
}
if (gb->apu.shadow_sweep_sample_length + gb->apu.sweep_length_addend > 0x7FF && !(gb->io_registers[GB_IO_NR10] & 8)) {
gb->apu.is_active[GB_SQUARE_1] = false;
update_sample(gb, GB_SQUARE_1, 0, gb->apu.square_sweep_calculate_countdown * 2 - cycles);
}
gb->apu.channel1_completed_addend = gb->apu.sweep_length_addend;
}
static void trigger_sweep_calculation(GB_gameboy_t *gb)
{
if ((gb->io_registers[GB_IO_NR10] & 0x70) && gb->apu.square_sweep_countdown == 7) {
if (gb->io_registers[GB_IO_NR10] & 0x07) {
gb->apu.square_channels[GB_SQUARE_1].sample_length =
gb->apu.sweep_length_addend + gb->apu.shadow_sweep_sample_length + !!(gb->io_registers[GB_IO_NR10] & 0x8);
gb->apu.square_channels[GB_SQUARE_1].sample_length &= 0x7FF;
}
if (gb->apu.channel_1_restart_hold == 0) {
gb->apu.sweep_length_addend = gb->apu.square_channels[GB_SQUARE_1].sample_length;
gb->apu.sweep_length_addend >>= (gb->io_registers[GB_IO_NR10] & 7);
}
/* Recalculation and overflow check only occurs after a delay */
gb->apu.square_sweep_calculate_countdown = gb->io_registers[GB_IO_NR10] & 0x7;
// TODO: this is a hack because DIV write timing is inaccurate. Will probably break on odd mode.
gb->apu.square_sweep_calculate_countdown_reload_timer = 1 + gb->apu.lf_div;
if (!gb->cgb_double_speed && gb->during_div_write) {
gb->apu.square_sweep_calculate_countdown_reload_timer = 1;
}
gb->apu.unshifted_sweep = !(gb->io_registers[GB_IO_NR10] & 0x7);
gb->apu.square_sweep_countdown = ((gb->io_registers[GB_IO_NR10] >> 4) & 7) ^ 7;
if (gb->apu.square_sweep_calculate_countdown == 0) {
gb->apu.square_sweep_instant_calculation_done = true;
}
}
}
void GB_apu_div_event(GB_gameboy_t *gb)
{
GB_apu_run(gb, true);
if (!gb->apu.global_enable) return;
if (gb->apu.skip_div_event == GB_SKIP_DIV_EVENT_SKIP) {
gb->apu.skip_div_event = GB_SKIP_DIV_EVENT_SKIPPED;
return;
}
if (gb->apu.skip_div_event == GB_SKIP_DIV_EVENT_SKIPPED) {
gb->apu.skip_div_event = GB_SKIP_DIV_EVENT_INACTIVE;
}
else {
gb->apu.div_divider++;
}
if ((gb->apu.div_divider & 7) == 7) {
unrolled for (unsigned i = GB_SQUARE_2 + 1; i--;) {
if (!gb->apu.square_channels[i].envelope_clock.clock) {
gb->apu.square_channels[i].volume_countdown--;
gb->apu.square_channels[i].volume_countdown &= 7;
}
}
if (!gb->apu.noise_channel.envelope_clock.clock) {
gb->apu.noise_channel.volume_countdown--;
gb->apu.noise_channel.volume_countdown &= 7;
}
}
unrolled for (unsigned i = GB_SQUARE_2 + 1; i--;) {
if (gb->apu.square_channels[i].envelope_clock.clock) {
tick_square_envelope(gb, i);
}
}
if (gb->apu.noise_channel.envelope_clock.clock) {
tick_noise_envelope(gb);
}
if ((gb->apu.div_divider & 1) == 1) {
unrolled for (unsigned i = GB_SQUARE_2 + 1; i--;) {
if (gb->apu.square_channels[i].length_enabled) {
if (gb->apu.square_channels[i].pulse_length) {
if (!--gb->apu.square_channels[i].pulse_length) {
gb->apu.is_active[i] = false;
update_sample(gb, i, 0, 0);
}
}
}
}
if (gb->apu.wave_channel.length_enabled) {
if (gb->apu.wave_channel.pulse_length) {
if (!--gb->apu.wave_channel.pulse_length) {
if (gb->apu.is_active[GB_WAVE] && gb->model > GB_MODEL_CGB_E) {
if (gb->apu.wave_channel.sample_countdown == 0) {
gb->apu.wave_channel.current_sample_byte =
gb->io_registers[GB_IO_WAV_START + (((gb->apu.wave_channel.current_sample_index + 1) & 0xF) >> 1)];
}
else if (gb->apu.wave_channel.sample_countdown == 9) {
// TODO: wtf?
gb->apu.wave_channel.current_sample_byte = gb->io_registers[GB_IO_WAV_START];
}
}
gb->apu.is_active[GB_WAVE] = false;
update_sample(gb, GB_WAVE, 0, 0);
}
}
}
if (gb->apu.noise_channel.length_enabled) {
if (gb->apu.noise_channel.pulse_length) {
if (!--gb->apu.noise_channel.pulse_length) {
gb->apu.is_active[GB_NOISE] = false;
update_sample(gb, GB_NOISE, 0, 0);
}
}
}
}
if ((gb->apu.div_divider & 3) == 3) {
gb->apu.square_sweep_countdown++;
gb->apu.square_sweep_countdown &= 7;
trigger_sweep_calculation(gb);
}
}
void GB_apu_div_secondary_event(GB_gameboy_t *gb)
{
GB_apu_run(gb, true);
if (!gb->apu.global_enable) return;
unrolled for (unsigned i = GB_SQUARE_2 + 1; i--;) {
uint8_t nrx2 = gb->io_registers[i == GB_SQUARE_1? GB_IO_NR12 : GB_IO_NR22];
if (gb->apu.is_active[i] && gb->apu.square_channels[i].volume_countdown == 0) {
set_envelope_clock(&gb->apu.square_channels[i].envelope_clock,
(gb->apu.square_channels[i].volume_countdown = nrx2 & 7),
nrx2 & 8,
gb->apu.square_channels[i].current_volume);
}
}
if (gb->apu.is_active[GB_NOISE] && gb->apu.noise_channel.volume_countdown == 0) {
set_envelope_clock(&gb->apu.noise_channel.envelope_clock,
(gb->apu.noise_channel.volume_countdown = gb->io_registers[GB_IO_NR42] & 7),
gb->io_registers[GB_IO_NR42] & 8,
gb->apu.noise_channel.current_volume);
}
}
static void step_lfsr(GB_gameboy_t *gb, unsigned cycles_offset)
{
unsigned high_bit_mask = gb->apu.noise_channel.narrow ? 0x4040 : 0x4000;
bool new_high_bit = (gb->apu.noise_channel.lfsr ^ (gb->apu.noise_channel.lfsr >> 1) ^ 1) & 1;
gb->apu.noise_channel.lfsr >>= 1;
if (new_high_bit) {
gb->apu.noise_channel.lfsr |= high_bit_mask;
}
else {
/* This code is not redundent, it's relevant when switching LFSR widths */
gb->apu.noise_channel.lfsr &= ~high_bit_mask;
}
gb->apu.noise_channel.current_lfsr_sample = gb->apu.noise_channel.lfsr & 1;
if (gb->apu.is_active[GB_NOISE]) {
update_sample(gb, GB_NOISE,
gb->apu.noise_channel.current_lfsr_sample ?
gb->apu.noise_channel.current_volume : 0,
cycles_offset);
}
}
void GB_apu_run(GB_gameboy_t *gb, bool force)
{
uint32_t clock_rate = GB_get_clock_rate(gb);
bool orig_force = force;
restart:;
uint16_t cycles = gb->apu.apu_cycles;
if (force ||
(cycles + gb->apu_output.cycles_since_render >= gb->apu_output.max_cycles_per_sample) ||
(gb->apu_output.sample_cycles >= clock_rate) ||
(gb->apu.square_sweep_calculate_countdown || gb->apu.channel_1_restart_hold || gb->apu.square_sweep_calculate_countdown_reload_timer) ||
(gb->model <= GB_MODEL_CGB_E && (gb->apu.wave_channel.bugged_read_countdown || (gb->apu.wave_channel.enable && gb->apu.wave_channel.pulsed)))) {
force = true;
}
if (!force) {
return;
}
/* Force renders to never be more than max_cycles_per_sample apart by spliting runs. */
while (cycles + gb->apu_output.cycles_since_render > gb->apu_output.max_cycles_per_sample) {
/* We're already past max_cycles_per_sample. This can happen when changing clock rates, etc.
Let this sample render normally. */
if (unlikely(gb->apu_output.cycles_since_render > gb->apu_output.max_cycles_per_sample)) break;
gb->apu.apu_cycles = gb->apu_output.max_cycles_per_sample - gb->apu_output.cycles_since_render;
if (gb->apu.apu_cycles) {
// Run for just enough cycles to reach max_cycles_per_sample
cycles -= gb->apu.apu_cycles;
GB_apu_run(gb, true);
// Re-evaluate force if needed
if (!orig_force) {
force = false;
gb->apu.apu_cycles = cycles;
goto restart;
}
// Check if we need another batch
continue;
}
// Render if needed
if (gb->apu_output.sample_cycles >= clock_rate) {
gb->apu_output.sample_cycles -= clock_rate;
render(gb);
}
break;
}
gb->apu.apu_cycles = 0;
if (!cycles) {
/* This can happen in pre-CGB stop mode */
while (unlikely(gb->apu_output.sample_cycles >= clock_rate)) {
gb->apu_output.sample_cycles -= clock_rate;
render(gb);
}
return;
}
if (unlikely(gb->apu.wave_channel.bugged_read_countdown)) {
uint16_t cycles_left = cycles;
while (cycles_left) {
cycles_left--;
if (--gb->apu.wave_channel.bugged_read_countdown == 0) {
gb->apu.wave_channel.current_sample_byte =
gb->io_registers[GB_IO_WAV_START + (gb->address_bus & 0xF)];
if (gb->apu.is_active[GB_WAVE]) {
update_wave_sample(gb, 0);
}
break;
}
}
}
bool start_ch4 = false;
if (likely(!gb->stopped || GB_is_cgb(gb))) {
if (gb->apu.noise_channel.dmg_delayed_start) {
if (gb->apu.noise_channel.dmg_delayed_start == cycles) {
gb->apu.noise_channel.dmg_delayed_start = 0;
start_ch4 = true;
}
else if (gb->apu.noise_channel.dmg_delayed_start > cycles) {
gb->apu.noise_channel.dmg_delayed_start -= cycles;
}
else {
/* Split it into two */
cycles -= gb->apu.noise_channel.dmg_delayed_start;
gb->apu.apu_cycles = gb->apu.noise_channel.dmg_delayed_start;
GB_apu_run(gb, true);
}
}
/* To align the square signal to 1MHz */
gb->apu.lf_div ^= cycles & 1;
gb->apu.noise_channel.alignment += cycles;
unsigned sweep_cycles = cycles / 2;
if ((cycles & 1) && !gb->apu.lf_div) {
sweep_cycles++;
}
if (gb->apu.square_sweep_calculate_countdown_reload_timer > sweep_cycles) {
gb->apu.square_sweep_calculate_countdown_reload_timer -= sweep_cycles;
sweep_cycles = 0;
}
else {
if (gb->apu.square_sweep_calculate_countdown_reload_timer && !gb->apu.square_sweep_calculate_countdown && gb->apu.square_sweep_instant_calculation_done) {
sweep_calculation_done(gb, cycles);
}
gb->apu.square_sweep_instant_calculation_done = false;
sweep_cycles -= gb->apu.square_sweep_calculate_countdown_reload_timer;
gb->apu.square_sweep_calculate_countdown_reload_timer = 0;
}
if (gb->apu.square_sweep_calculate_countdown &&
(((gb->io_registers[GB_IO_NR10] & 7) || gb->apu.unshifted_sweep))) { // Calculation is paused if the lower bits are 0
if (gb->apu.square_sweep_calculate_countdown > sweep_cycles) {
gb->apu.square_sweep_calculate_countdown -= sweep_cycles;
}
else {
gb->apu.square_sweep_calculate_countdown = 0;
sweep_calculation_done(gb, cycles);
}
}
if (gb->apu.channel_1_restart_hold) {
if (gb->apu.channel_1_restart_hold > cycles) {
gb->apu.channel_1_restart_hold -= cycles;
}
else {
gb->apu.channel_1_restart_hold = 0;
}
}
unrolled for (unsigned i = GB_SQUARE_1; i <= GB_SQUARE_2; i++) {
if (gb->apu.is_active[i]) {
uint16_t cycles_left = cycles;
if (unlikely(gb->apu.square_channels[i].delay)) {
if (gb->apu.square_channels[i].delay < cycles_left) {
gb->apu.square_channels[i].delay = 0;
}
else {
gb->apu.square_channels[i].delay -= cycles_left;
}
}
while (unlikely(cycles_left > gb->apu.square_channels[i].sample_countdown)) {
cycles_left -= gb->apu.square_channels[i].sample_countdown + 1;
gb->apu.square_channels[i].sample_countdown = (gb->apu.square_channels[i].sample_length ^ 0x7FF) * 2 + 1;
gb->apu.square_channels[i].current_sample_index++;
gb->apu.square_channels[i].current_sample_index &= 0x7;
gb->apu.square_channels[i].sample_surpressed = false;
if (cycles_left == 0 && gb->apu.samples[i] == 0) {
gb->apu.pcm_mask[0] &= i == GB_SQUARE_1? 0xF0 : 0x0F;
}
gb->apu.square_channels[i].did_tick = true;
update_square_sample(gb, i, cycles - cycles_left);
uint8_t duty = gb->io_registers[i == GB_SQUARE_1? GB_IO_NR11 :GB_IO_NR21] >> 6;
uint8_t edge_sample_index = inline_const(uint8_t[], {7, 7, 5, 1})[duty];
if (gb->apu.square_channels[i].current_sample_index == edge_sample_index) {
gb->apu_output.edge_triggered[i] = true;
}
}
gb->apu.square_channels[i].just_reloaded = cycles_left == 0;
if (cycles_left) {
gb->apu.square_channels[i].sample_countdown -= cycles_left;
}
}
}
gb->apu.wave_channel.wave_form_just_read = false;
if (gb->apu.is_active[GB_WAVE]) {
uint16_t cycles_left = cycles;
while (unlikely(cycles_left > gb->apu.wave_channel.sample_countdown)) {
cycles_left -= gb->apu.wave_channel.sample_countdown + 1;
gb->apu.wave_channel.sample_countdown = gb->apu.wave_channel.sample_length ^ 0x7FF;
gb->apu.wave_channel.current_sample_index++;
gb->apu.wave_channel.current_sample_index &= 0x1F;
gb->apu.wave_channel.current_sample_byte =
gb->io_registers[GB_IO_WAV_START + (gb->apu.wave_channel.current_sample_index >> 1)];
update_wave_sample(gb, cycles - cycles_left);
gb->apu.wave_channel.wave_form_just_read = true;
if (gb->apu.wave_channel.current_sample_index == 0) {
gb->apu_output.edge_triggered[GB_WAVE] = true;
}
}
if (cycles_left) {
gb->apu.wave_channel.sample_countdown -= cycles_left;
gb->apu.wave_channel.wave_form_just_read = false;
}
}
else if (gb->apu.wave_channel.enable && gb->apu.wave_channel.pulsed && gb->model <= GB_MODEL_CGB_E) {
uint16_t cycles_left = cycles;
while (unlikely(cycles_left > gb->apu.wave_channel.sample_countdown)) {
cycles_left -= gb->apu.wave_channel.sample_countdown + 1;
gb->apu.wave_channel.sample_countdown = gb->apu.wave_channel.sample_length ^ 0x7FF;
if (cycles_left) {
gb->apu.wave_channel.current_sample_byte =
gb->io_registers[GB_IO_WAV_START + (gb->address_bus & 0xF)];
}
else {
gb->apu.wave_channel.bugged_read_countdown = 1;
}
}
if (cycles_left) {
gb->apu.wave_channel.sample_countdown -= cycles_left;
}
if (gb->apu.wave_channel.sample_countdown == 0) {
gb->apu.wave_channel.bugged_read_countdown = 2;
}
}
// The noise channel can step even if inactive on the DMG
if (gb->apu.is_active[GB_NOISE] || !GB_is_cgb(gb)) {
uint16_t cycles_left = cycles;
unsigned divisor = (gb->io_registers[GB_IO_NR43] & 0x07) << 2;
if (!divisor) divisor = 2;
if (gb->apu.noise_channel.counter_countdown == 0) {
gb->apu.noise_channel.counter_countdown = divisor;
}
// This while doesn't get an unlikely because the noise channel steps frequently enough
while (cycles_left >= gb->apu.noise_channel.counter_countdown) {
cycles_left -= gb->apu.noise_channel.counter_countdown;
gb->apu.noise_channel.counter_countdown = divisor + gb->apu.noise_channel.delta;
gb->apu.noise_channel.delta = 0;
bool old_bit = (gb->apu.noise_channel.counter >> (gb->io_registers[GB_IO_NR43] >> 4)) & 1;
gb->apu.noise_channel.counter++;
gb->apu.noise_channel.counter &= 0x3FFF;
bool new_bit = (gb->apu.noise_channel.counter >> (gb->io_registers[GB_IO_NR43] >> 4)) & 1;
/* Step LFSR */
if (new_bit && !old_bit) {
if (cycles_left == 0 && gb->apu.samples[GB_NOISE] == 0) {
gb->apu.pcm_mask[1] &= 0x0F;
}
step_lfsr(gb, cycles - cycles_left);
}
}
if (cycles_left) {
gb->apu.noise_channel.counter_countdown -= cycles_left;
gb->apu.noise_channel.countdown_reloaded = false;
}
else {
gb->apu.noise_channel.countdown_reloaded = true;
gb->apu_output.edge_triggered[GB_NOISE] = true;
}
}
}
if (gb->apu_output.sample_rate) {
gb->apu_output.cycles_since_render += cycles;
gb->apu_output.sample_fraction += sample_fraction_multiply(gb, cycles);
assert(gb->apu_output.sample_fraction < (4 << 28));
if (gb->apu_output.sample_cycles >= clock_rate) {
gb->apu_output.sample_cycles -= clock_rate;
render(gb);
}
}
if (start_ch4) {
GB_apu_write(gb, GB_IO_NR44, gb->io_registers[GB_IO_NR44] | 0x80);
}
}
void GB_apu_init(GB_gameboy_t *gb)
{
memset(&gb->apu, 0, sizeof(gb->apu));
gb->apu.apu_cycles_in_2mhz = true;
gb->apu.lf_div = 1;
gb->apu.wave_channel.shift = 4;
/* APU glitch: When turning the APU on while DIV's bit 4 (or 5 in double speed mode) is on,
the first DIV/APU event is skipped. */
if (gb->div_counter & (gb->cgb_double_speed? 0x2000 : 0x1000)) {
gb->apu.skip_div_event = GB_SKIP_DIV_EVENT_SKIP;
gb->apu.div_divider = 1;
}
gb->apu.square_channels[GB_SQUARE_1].sample_countdown = -1;
gb->apu.square_channels[GB_SQUARE_2].sample_countdown = -1;
}
uint8_t GB_apu_read(GB_gameboy_t *gb, uint8_t reg)
{
GB_apu_run(gb, true);
if (reg == GB_IO_NR52) {
uint8_t value = 0;
for (unsigned i = 0; i < GB_N_CHANNELS; i++) {
value >>= 1;
if (gb->apu.is_active[i]) {
value |= 0x8;
}
}
if (gb->apu.global_enable) {
value |= 0x80;
}
value |= 0x70;
return value;
}
static const char read_mask[GB_IO_WAV_END - GB_IO_NR10 + 1] = {
/* NRX0 NRX1 NRX2 NRX3 NRX4 */
0x80, 0x3F, 0x00, 0xFF, 0xBF, // NR1X
0xFF, 0x3F, 0x00, 0xFF, 0xBF, // NR2X
0x7F, 0xFF, 0x9F, 0xFF, 0xBF, // NR3X
0xFF, 0xFF, 0x00, 0x00, 0xBF, // NR4X
0x00, 0x00, 0x70, 0xFF, 0xFF, // NR5X
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // Unused
// Wave RAM
0, /* ... */
};
if (reg >= GB_IO_WAV_START && reg <= GB_IO_WAV_END && gb->apu.is_active[GB_WAVE]) {
if (!GB_is_cgb(gb) && !gb->apu.wave_channel.wave_form_just_read) {
return 0xFF;
}
if (gb->model > GB_MODEL_CGB_E) {
return 0xFF;
}
reg = GB_IO_WAV_START + gb->apu.wave_channel.current_sample_index / 2;
}
return gb->io_registers[reg] | read_mask[reg - GB_IO_NR10];
}
static inline uint16_t effective_channel4_counter(GB_gameboy_t *gb)
{
/*
TODO: On revisions older than the CGB-D, this behaves differently when
the counter advanced this exact T-cycle. Also, in these revisions,
it seems that "passive" changes (due to the temporary FF value NR43
has during writes) behave slightly different from non-passive ones.
*/
uint16_t effective_counter = gb->apu.noise_channel.counter;
/* Ladies and gentlemen, I present you the holy grail glitch of revision detection! */
switch (gb->model) {
/* Pre CGB revisions are assumed to be like CGB-C, A and 0 for the lack of a better guess.
TODO: It could be verified with audio based test ROMs. */
case GB_MODEL_CGB_B:
if (effective_counter & 8) {
effective_counter |= 0xE; // Seems to me F under some circumstances?
}
if (effective_counter & 0x80) {
effective_counter |= 0xFF;
}
if (effective_counter & 0x100) {
effective_counter |= 0x1;
}
if (effective_counter & 0x200) {
effective_counter |= 0x2;
}
if (effective_counter & 0x400) {
effective_counter |= 0x4;
}
if (effective_counter & 0x800) {
effective_counter |= 0x408; // TODO: Only my CGB-B does that! Others behave like C!
}
if (effective_counter & 0x1000) {
effective_counter |= 0x10;
}
if (effective_counter & 0x2000) {
effective_counter |= 0x20;
}
break;
case GB_MODEL_DMG_B:
case GB_MODEL_MGB:
case GB_MODEL_SGB_NTSC:
case GB_MODEL_SGB_PAL:
case GB_MODEL_SGB_NTSC_NO_SFC:
case GB_MODEL_SGB_PAL_NO_SFC:
case GB_MODEL_SGB2:
case GB_MODEL_SGB2_NO_SFC:
case GB_MODEL_CGB_0:
case GB_MODEL_CGB_A:
case GB_MODEL_CGB_C:
if (effective_counter & 8) {
effective_counter |= 0xE; // Sometimes F on some instances
}
if (effective_counter & 0x80) {
effective_counter |= 0xFF;
}
if (effective_counter & 0x100) {
effective_counter |= 0x1;
}
if (effective_counter & 0x200) {
effective_counter |= 0x2;
}
if (effective_counter & 0x400) {
effective_counter |= 0x4;
}
if (effective_counter & 0x800) {
if ((gb->io_registers[GB_IO_NR43] & 8)) {
effective_counter |= 0x400;
}
effective_counter |= 0x8;
}
if (effective_counter & 0x1000) {
effective_counter |= 0x10;
}
if (effective_counter & 0x2000) {
effective_counter |= 0x20;
}
break;
case GB_MODEL_CGB_D:
if (effective_counter & ((gb->io_registers[GB_IO_NR43] & 8)? 0x40 : 0x80)) { // This is so weird
effective_counter |= 0xFF;
}
if (effective_counter & 0x100) {
effective_counter |= 0x1;
}
if (effective_counter & 0x200) {
effective_counter |= 0x2;
}
if (effective_counter & 0x400) {
effective_counter |= 0x4;
}
if (effective_counter & 0x800) {
effective_counter |= 0x8;
}
if (effective_counter & 0x1000) {
effective_counter |= 0x10;
}
break;
case GB_MODEL_CGB_E:
if (effective_counter & ((gb->io_registers[GB_IO_NR43] & 8)? 0x40 : 0x80)) { // This is so weird
effective_counter |= 0xFF;
}
if (effective_counter & 0x1000) {
effective_counter |= 0x10;
}
break;
case GB_MODEL_AGB_A:
case GB_MODEL_GBP_A:
/* TODO: AGBs are not affected, but AGSes are. They don't seem to follow a simple
pattern like the other revisions. */
/* For the most part, AGS seems to do:
0x20 -> 0xA0
0x200 -> 0xA00
0x1000 -> 0x1010, but only if wide
*/
break;
}
return effective_counter;
}
static noinline void nr10_write_glitch(GB_gameboy_t *gb, uint8_t value)
{
// TODO: Check all of these in APU odd mode
if (gb->model <= GB_MODEL_CGB_C) {
if (gb->apu.square_sweep_calculate_countdown_reload_timer == 1 && !gb->apu.lf_div) {
if (gb->cgb_double_speed) {
/* This is some instance-specific data corruption. It might also be affect by revision.
At least for my CGB-0 (haven't tested any other CGB-0s), the '3' case is non-deterministic. */
static const uint8_t corruption[8] = {7, 7, 5, 7, 3, 3, 5, 7}; // Two of my CGB-Cs, CGB-A
// static const uint8_t corruption[8] = {7, 7, 1, 3, 3, 3, 5, 7}; // My other CGB-C, Coffee Bat's CGB-C
// static const uint8_t corruption[8] = {7, 1, 1, 3, 3, 5, 5, 7}; // My CGB-B
// static const uint8_t corruption[8] = {7, 7, 1, *, 3, 3, 5, 7}; // My CGB-0
// static const uint8_t corruption[8] = {7, 5, 1, 3, 3, 1, 5, 7}; // PinoBatch's CGB-B
// static const uint8_t corruption[8] = {7, 5, 1, 3, 3, *, 5, 7}; // GenericHeroGuy CGB-C
// TODO: How does this affect actual frequency calculation?
gb->apu.square_sweep_calculate_countdown = corruption[gb->apu.square_sweep_calculate_countdown & 7];
/* TODO: the value of 1 needs special handling, but it doesn't occur with the instance I'm emulating here */
}
}
else if (gb->apu.square_sweep_calculate_countdown_reload_timer > 1) {
if (gb->cgb_double_speed) {
// TODO: How does this affect actual frequency calculation?
gb->apu.square_sweep_calculate_countdown = value & 7;
}
}
else if (gb->apu.square_sweep_calculate_countdown) {
// No clue why 1 is a special case here
bool should_zombie_step = false;
if (!(gb->io_registers[GB_IO_NR10] & 7)) {
should_zombie_step = gb->apu.lf_div ^ gb->cgb_double_speed;
}
else if (gb->cgb_double_speed && gb->apu.square_sweep_calculate_countdown == 1) {
should_zombie_step = true;
}
if (should_zombie_step) {
gb->apu.square_sweep_calculate_countdown--;
if (gb->apu.square_sweep_calculate_countdown <= 1) {
gb->apu.square_sweep_calculate_countdown = 0;
sweep_calculation_done(gb, 0);
}
}
}
}
else {
if (gb->apu.square_sweep_calculate_countdown_reload_timer == 2) {
// Countdown just reloaded, re-reload it
gb->apu.square_sweep_calculate_countdown = value & 0x7;
if (!gb->apu.square_sweep_calculate_countdown) {
gb->apu.square_sweep_calculate_countdown_reload_timer = 0;
}
else {
// TODO: How does this affect actual frequency calculation?
}
}
if ((value & 7) && !(gb->io_registers[GB_IO_NR10] & 7) && !gb->apu.lf_div && gb->apu.square_sweep_calculate_countdown > 1) {
// TODO: Another odd glitch? Ditto
gb->apu.square_sweep_calculate_countdown--;
if (!gb->apu.square_sweep_calculate_countdown) {
sweep_calculation_done(gb, 0);
}
}
}
}
void GB_apu_write(GB_gameboy_t *gb, uint8_t reg, uint8_t value)
{
GB_apu_run(gb, true);
if (!gb->apu.global_enable && reg != GB_IO_NR52 && reg < GB_IO_WAV_START && (GB_is_cgb(gb) ||
(
reg != GB_IO_NR11 &&
reg != GB_IO_NR21 &&
reg != GB_IO_NR31 &&
reg != GB_IO_NR41
)
)) {
return;
}
if (reg >= GB_IO_WAV_START && reg <= GB_IO_WAV_END && gb->apu.is_active[GB_WAVE]) {
if ((!GB_is_cgb(gb) && !gb->apu.wave_channel.wave_form_just_read) || gb->model > GB_MODEL_CGB_E) {
return;
}
reg = GB_IO_WAV_START + gb->apu.wave_channel.current_sample_index / 2;
}
/* Todo: this can and should be rewritten with a function table. */
switch (reg) {
/* Globals */
case GB_IO_NR50:
case GB_IO_NR51:
gb->io_registers[reg] = value;
/* These registers affect the output of all 4 channels (but not the output of the PCM registers).*/
/* We call update_samples with the current value so the APU output is updated with the new outputs */
for (unsigned i = GB_N_CHANNELS; i--;) {
int8_t sample = gb->apu.samples[i];
gb->apu.samples[i] = 0x10; // Invalidate to force update
update_sample(gb, i, sample, 0);
}
break;
case GB_IO_NR52: {
uint8_t old_pulse_lengths[] = {
gb->apu.square_channels[0].pulse_length,
gb->apu.square_channels[1].pulse_length,
gb->apu.wave_channel.pulse_length,
gb->apu.noise_channel.pulse_length
};
if ((value & 0x80) && !gb->apu.global_enable) {
GB_apu_init(gb);
gb->apu.global_enable = true;
}
else if (!(value & 0x80) && gb->apu.global_enable) {
for (unsigned i = GB_N_CHANNELS; i--;) {
update_sample(gb, i, 0, 0);
}
memset(&gb->apu, 0, sizeof(gb->apu));
memset(gb->io_registers + GB_IO_NR10, 0, GB_IO_WAV_START - GB_IO_NR10);
gb->apu.global_enable = false;
gb->apu.apu_cycles_in_2mhz = true;
}
if (!GB_is_cgb(gb) && (value & 0x80)) {
gb->apu.square_channels[0].pulse_length = old_pulse_lengths[0];
gb->apu.square_channels[1].pulse_length = old_pulse_lengths[1];
gb->apu.wave_channel.pulse_length = old_pulse_lengths[2];
gb->apu.noise_channel.pulse_length = old_pulse_lengths[3];
}
}
break;
/* Square channels */
case GB_IO_NR10: {
if (unlikely(gb->apu.square_sweep_calculate_countdown || gb->apu.square_sweep_calculate_countdown_reload_timer)) {
nr10_write_glitch(gb, value);
}
bool old_negate = gb->io_registers[GB_IO_NR10] & 8;
gb->io_registers[GB_IO_NR10] = value;
if (gb->model <= GB_MODEL_CGB_C) {
old_negate = true;
}
if (gb->apu.shadow_sweep_sample_length + gb->apu.channel1_completed_addend + old_negate > 0x7FF &&
!(value & 8)) {
gb->apu.is_active[GB_SQUARE_1] = false;
update_sample(gb, GB_SQUARE_1, 0, 0);
}
trigger_sweep_calculation(gb);
break;
}
case GB_IO_NR11:
case GB_IO_NR21: {
GB_channel_t index = reg == GB_IO_NR21? GB_SQUARE_2: GB_SQUARE_1;
gb->apu.square_channels[index].pulse_length = (0x40 - (value & 0x3F));
if (!gb->apu.global_enable) {
value &= 0x3F;
}
break;
}
case GB_IO_NR12:
case GB_IO_NR22: {
GB_channel_t index = reg == GB_IO_NR22? GB_SQUARE_2: GB_SQUARE_1;
if ((value & 0xF8) == 0) {
/* This disables the DAC */
gb->io_registers[reg] = value;
gb->apu.is_active[index] = false;
update_sample(gb, index, 0, 0);
}
else if (gb->apu.is_active[index]) {
nrx2_glitch(gb, &gb->apu.square_channels[index].current_volume,
value, gb->io_registers[reg], &gb->apu.square_channels[index].volume_countdown,
&gb->apu.square_channels[index].envelope_clock);
update_square_sample(gb, index, 0);
}
break;
}
case GB_IO_NR13:
case GB_IO_NR23: {
GB_channel_t index = reg == GB_IO_NR23? GB_SQUARE_2: GB_SQUARE_1;
gb->apu.square_channels[index].sample_length &= ~0xFF;
gb->apu.square_channels[index].sample_length |= value & 0xFF;
if (gb->apu.square_channels[index].just_reloaded) {
gb->apu.square_channels[index].sample_countdown = (gb->apu.square_channels[index].sample_length ^ 0x7FF) * 2 + 1;
}
break;
}
case GB_IO_NR14:
case GB_IO_NR24: {
GB_channel_t index = reg == GB_IO_NR24? GB_SQUARE_2: GB_SQUARE_1;
bool was_active = gb->apu.is_active[index];
/* TODO: When the sample length changes right before being updated from ≥$700 to <$700, the countdown
should change to the old length, but the current sample should not change. Because our write
timing isn't accurate to the T-cycle, we hack around it by stepping the sample index backwards. */
if ((value & 0x80) == 0 && gb->apu.is_active[index] && (gb->io_registers[reg] & 0x7) == 7 && (value & 7) != 7) {
/* On an AGB, as well as on CGB C and earlier (TODO: Tested: 0, B and C), it behaves slightly different on
double speed. */
if (gb->model == GB_MODEL_CGB_E || gb->model == GB_MODEL_CGB_D || gb->apu.square_channels[index].sample_countdown & 1) {
if (gb->apu.square_channels[index].did_tick &&
gb->apu.square_channels[index].sample_countdown >> 1 == (gb->apu.square_channels[index].sample_length ^ 0x7FF)) {
gb->apu.square_channels[index].current_sample_index--;
gb->apu.square_channels[index].current_sample_index &= 7;
gb->apu.square_channels[index].sample_surpressed = false;
}
}
}
uint16_t old_sample_length = gb->apu.square_channels[index].sample_length;
gb->apu.square_channels[index].sample_length &= 0xFF;
gb->apu.square_channels[index].sample_length |= (value & 7) << 8;
if (gb->apu.square_channels[index].just_reloaded) {
gb->apu.square_channels[index].sample_countdown = (gb->apu.square_channels[index].sample_length ^ 0x7FF) * 2 + 1;
}
if (value & 0x80) {
/* Current sample index remains unchanged when restarting channels 1 or 2. It is only reset by
turning the APU off. */
gb->apu.square_channels[index].envelope_clock.locked = false;
gb->apu.square_channels[index].envelope_clock.clock = false;
gb->apu.square_channels[index].did_tick = false;
bool force_unsurpressed = false;
if (!gb->apu.is_active[index]) {
if (gb->model == GB_MODEL_CGB_E || gb->model == GB_MODEL_CGB_D) {
if (!(value & 4) && !(((gb->apu.square_channels[index].sample_countdown - gb->apu.square_channels[index].delay) / 2) & 0x400)) {
gb->apu.square_channels[index].current_sample_index++;
gb->apu.square_channels[index].current_sample_index &= 0x7;
force_unsurpressed = true;
}
}
gb->apu.square_channels[index].delay = 6 - gb->apu.lf_div;
gb->apu.square_channels[index].sample_countdown = (gb->apu.square_channels[index].sample_length ^ 0x7FF) * 2 + gb->apu.square_channels[index].delay;
}
else {
unsigned extra_delay = 0;
if (gb->model == GB_MODEL_CGB_E || gb->model == GB_MODEL_CGB_D) {
if (!gb->apu.square_channels[index].just_reloaded && !(value & 4) && !(((gb->apu.square_channels[index].sample_countdown - 1 - gb->apu.square_channels[index].delay) / 2) & 0x400)) {
gb->apu.square_channels[index].current_sample_index++;
gb->apu.square_channels[index].current_sample_index &= 0x7;
gb->apu.square_channels[index].sample_surpressed = false;
}
/* Todo: verify with the schematics what's going on in here */
else if (gb->apu.square_channels[index].sample_length == 0x7FF &&
old_sample_length != 0x7FF &&
(gb->apu.square_channels[index].sample_surpressed)) {
extra_delay += 2;
}
}
/* Timing quirk: if already active, sound starts 2 (2MHz) ticks earlier.*/
gb->apu.square_channels[index].delay = 4 - gb->apu.lf_div + extra_delay;
gb->apu.square_channels[index].sample_countdown = (gb->apu.square_channels[index].sample_length ^ 0x7FF) * 2 + gb->apu.square_channels[index].delay;
}
gb->apu.square_channels[index].current_volume = gb->io_registers[index == GB_SQUARE_1 ? GB_IO_NR12 : GB_IO_NR22] >> 4;
/* The volume changes caused by NRX4 sound start take effect instantly (i.e. the effect the previously
started sound). The playback itself is not instant which is why we don't update the sample for other
cases. */
if (gb->apu.is_active[index]) {
update_square_sample(gb, index, 0);
}
gb->apu.square_channels[index].volume_countdown = gb->io_registers[index == GB_SQUARE_1 ? GB_IO_NR12 : GB_IO_NR22] & 7;
if ((gb->io_registers[index == GB_SQUARE_1 ? GB_IO_NR12 : GB_IO_NR22] & 0xF8) != 0 && !gb->apu.is_active[index]) {
gb->apu.is_active[index] = true;
update_sample(gb, index, 0, 0);
gb->apu.square_channels[index].sample_surpressed = true && !force_unsurpressed;
}
if (gb->apu.square_channels[index].pulse_length == 0) {
gb->apu.square_channels[index].pulse_length = 0x40;
gb->apu.square_channels[index].length_enabled = false;
}
if (index == GB_SQUARE_1) {
gb->apu.square_sweep_instant_calculation_done = false;
gb->apu.shadow_sweep_sample_length = 0;
gb->apu.channel1_completed_addend = 0;
if (gb->io_registers[GB_IO_NR10] & 7) {
/* APU bug: if shift is nonzero, overflow check also occurs on trigger */
gb->apu.square_sweep_calculate_countdown = gb->io_registers[GB_IO_NR10] & 0x7;
if ((gb->apu.lf_div ^ !gb->cgb_double_speed) && gb->model <= GB_MODEL_CGB_C) {
gb->apu.square_sweep_calculate_countdown_reload_timer = 3;
}
else {
gb->apu.square_sweep_calculate_countdown_reload_timer = 2;
}
gb->apu.unshifted_sweep = false;
if (!was_active) {
gb->apu.square_sweep_calculate_countdown_reload_timer++;
}
gb->apu.sweep_length_addend = gb->apu.square_channels[GB_SQUARE_1].sample_length;
gb->apu.sweep_length_addend >>= (gb->io_registers[GB_IO_NR10] & 7);
}
else {
gb->apu.sweep_length_addend = 0;
}
gb->apu.channel_1_restart_hold = 2 - gb->apu.lf_div + (GB_is_cgb(gb) && gb->model != GB_MODEL_CGB_D) * 2;
gb->apu.square_sweep_countdown = ((gb->io_registers[GB_IO_NR10] >> 4) & 7) ^ 7;
}
}
/* APU glitch - if length is enabled while the DIV-divider's LSB is 1, tick the length once. */
if (((value & 0x40) || (GB_is_cgb(gb) && gb->model <= GB_MODEL_CGB_B)) && // Current value is irrelevant on CGB-B and older
!gb->apu.square_channels[index].length_enabled &&
(gb->apu.div_divider & 1) &&
gb->apu.square_channels[index].pulse_length) {
gb->apu.square_channels[index].pulse_length--;
if (gb->apu.square_channels[index].pulse_length == 0) {
if (value & 0x80) {
gb->apu.square_channels[index].pulse_length = 0x3F;
}
else {
gb->apu.is_active[index] = false;
update_sample(gb, index, 0, 0);
}
}
}
gb->apu.square_channels[index].length_enabled = value & 0x40;
break;
}
/* Wave channel */
case GB_IO_NR30:
gb->apu.wave_channel.enable = value & 0x80;
if (!gb->apu.wave_channel.enable) {
gb->apu.wave_channel.pulsed = false;
if (gb->apu.is_active[GB_WAVE]) {
// Todo: I assume this happens on pre-CGB models; test this with an audible test
if (gb->apu.wave_channel.sample_countdown == 0 && gb->model <= GB_MODEL_CGB_E) {
gb->apu.wave_channel.current_sample_byte = gb->io_registers[GB_IO_WAV_START + (gb->pc & 0xF)];
}
else if (gb->apu.wave_channel.wave_form_just_read && gb->model <= GB_MODEL_CGB_C) {
gb->apu.wave_channel.current_sample_byte = gb->io_registers[GB_IO_WAV_START + (GB_IO_NR30 & 0xF)];
}
}
gb->apu.is_active[GB_WAVE] = false;
update_sample(gb, GB_WAVE, 0, 0);
}
break;
case GB_IO_NR31:
gb->apu.wave_channel.pulse_length = (0x100 - value);
break;
case GB_IO_NR32:
gb->apu.wave_channel.shift = inline_const(uint8_t[], {4, 0, 1, 2})[(value >> 5) & 3];
if (gb->apu.is_active[GB_WAVE]) {
update_wave_sample(gb, 0);
}
break;
case GB_IO_NR33:
gb->apu.wave_channel.sample_length &= ~0xFF;
gb->apu.wave_channel.sample_length |= value & 0xFF;
if (gb->apu.wave_channel.bugged_read_countdown == 1) { // Just reloaded countdown
/* TODO: not verified with a test ROM yet */
gb->apu.wave_channel.sample_countdown = gb->apu.wave_channel.sample_length ^ 0x7FF;
}
break;
case GB_IO_NR34:
gb->apu.wave_channel.sample_length &= 0xFF;
gb->apu.wave_channel.sample_length |= (value & 7) << 8;
if (value & 0x80) {
gb->apu.wave_channel.pulsed = true;
/* DMG bug: wave RAM gets corrupted if the channel is retriggerred 1 cycle before the APU
reads from it. */
if (!GB_is_cgb(gb) &&
gb->apu.is_active[GB_WAVE] &&
gb->apu.wave_channel.sample_countdown == 0) {
unsigned offset = ((gb->apu.wave_channel.current_sample_index + 1) >> 1) & 0xF;
/* This glitch varies between models and even specific instances:
DMG-B: Most of them behave as emulated. A few behave differently.
SGB: As far as I know, all tested instances behave as emulated.
MGB, SGB2: Most instances behave non-deterministically, a few behave as emulated.
For DMG-B emulation I emulate the most common behavior, which blargg's tests expect (not my own DMG-B, which fails it)
For MGB emulation, I emulate my Game Boy Light, which happens to be deterministic.
Additionally, I believe DMGs, including those we behave differently than emulated,
are all deterministic. */
if (offset < 4 && gb->model != GB_MODEL_MGB) {
gb->io_registers[GB_IO_WAV_START] = gb->io_registers[GB_IO_WAV_START + offset];
}
else {
memcpy(gb->io_registers + GB_IO_WAV_START,
gb->io_registers + GB_IO_WAV_START + (offset & ~3),
4);
}
}
gb->apu.wave_channel.current_sample_index = 0;
if (gb->apu.is_active[GB_WAVE] && gb->apu.wave_channel.sample_countdown == 0) {
gb->apu.wave_channel.current_sample_byte = gb->io_registers[GB_IO_WAV_START];
}
if (gb->apu.wave_channel.enable) {
gb->apu.is_active[GB_WAVE] = true;
update_sample(gb, GB_WAVE,
(gb->apu.wave_channel.current_sample_byte >> 4) >> gb->apu.wave_channel.shift,
0);
}
gb->apu.wave_channel.sample_countdown = (gb->apu.wave_channel.sample_length ^ 0x7FF) + 3;
if (gb->apu.wave_channel.pulse_length == 0) {
gb->apu.wave_channel.pulse_length = 0x100;
gb->apu.wave_channel.length_enabled = false;
}
/* Note that we don't change the sample just yet! This was verified on hardware. */
}
/* APU glitch - if length is enabled while the DIV-divider's LSB is 1, tick the length once. */
if (((value & 0x40) || (GB_is_cgb(gb) && gb->model <= GB_MODEL_CGB_B)) && // Current value is irrelevant on CGB-B and older
!gb->apu.wave_channel.length_enabled &&
(gb->apu.div_divider & 1) &&
gb->apu.wave_channel.pulse_length) {
gb->apu.wave_channel.pulse_length--;
if (gb->apu.wave_channel.pulse_length == 0) {
if (value & 0x80) {
gb->apu.wave_channel.pulse_length = 0xFF;
}
else {
gb->apu.is_active[GB_WAVE] = false;
update_sample(gb, GB_WAVE, 0, 0);
}
}
}
gb->apu.wave_channel.length_enabled = value & 0x40;
break;
/* Noise Channel */
case GB_IO_NR41: {
gb->apu.noise_channel.pulse_length = (0x40 - (value & 0x3F));
break;
}
case GB_IO_NR42: {
if ((value & 0xF8) == 0) {
/* This disables the DAC */
gb->io_registers[reg] = value;
gb->apu.is_active[GB_NOISE] = false;
update_sample(gb, GB_NOISE, 0, 0);
}
else if (gb->apu.is_active[GB_NOISE]) {
nrx2_glitch(gb, &gb->apu.noise_channel.current_volume,
value, gb->io_registers[reg], &gb->apu.noise_channel.volume_countdown,
&gb->apu.noise_channel.envelope_clock);
update_sample(gb, GB_NOISE,
gb->apu.noise_channel.current_lfsr_sample ?
gb->apu.noise_channel.current_volume : 0,
0);
}
break;
}
case GB_IO_NR43: {
gb->apu.noise_channel.narrow = value & 8;
uint16_t effective_counter = effective_channel4_counter(gb);
bool old_bit = (effective_counter >> (gb->io_registers[GB_IO_NR43] >> 4)) & 1;
gb->io_registers[GB_IO_NR43] = value;
bool new_bit = (effective_counter >> (gb->io_registers[GB_IO_NR43] >> 4)) & 1;
if (gb->apu.noise_channel.countdown_reloaded) {
unsigned divisor = (gb->io_registers[GB_IO_NR43] & 0x07) << 2;
if (!divisor) divisor = 2;
if (gb->model > GB_MODEL_CGB_C) {
gb->apu.noise_channel.counter_countdown =
divisor + (divisor == 2? 0 : inline_const(uint8_t[], {2, 1, 0, 3})[(gb->apu.noise_channel.alignment) & 3]);
}
else {
gb->apu.noise_channel.counter_countdown =
divisor + (divisor == 2? 0 : inline_const(uint8_t[], {2, 1, 4, 3})[(gb->apu.noise_channel.alignment) & 3]);
}
gb->apu.noise_channel.delta = 0;
}
/* Step LFSR */
if (new_bit && (!old_bit || gb->model <= GB_MODEL_CGB_C)) {
if (gb->model <= GB_MODEL_CGB_C) {
bool previous_narrow = gb->apu.noise_channel.narrow;
gb->apu.noise_channel.narrow = true;
step_lfsr(gb, 0);
gb->apu.noise_channel.narrow = previous_narrow;
}
else {
step_lfsr(gb, 0);
}
}
break;
}
case GB_IO_NR44: {
if (value & 0x80) {
gb->apu.noise_channel.envelope_clock.locked = false;
gb->apu.noise_channel.envelope_clock.clock = false;
if (!GB_is_cgb(gb) && (gb->apu.noise_channel.alignment & 3) != 0) {
gb->apu.noise_channel.dmg_delayed_start = 6;
}
else {
unsigned divisor = (gb->io_registers[GB_IO_NR43] & 0x07) << 2;
if (!divisor) divisor = 2;
gb->apu.noise_channel.delta = 0;
gb->apu.noise_channel.counter_countdown = divisor + 4;
if (divisor == 2) {
if (gb->model <= GB_MODEL_CGB_C) {
gb->apu.noise_channel.counter_countdown += gb->apu.lf_div;
if (!gb->cgb_double_speed) {
gb->apu.noise_channel.counter_countdown -= 1;
}
}
else {
gb->apu.noise_channel.counter_countdown += 1 - gb->apu.lf_div;
}
}
else {
if (gb->model <= GB_MODEL_CGB_C) {
gb->apu.noise_channel.counter_countdown += inline_const(uint8_t[], {2, 1, 4, 3})[gb->apu.noise_channel.alignment & 3];
}
else {
gb->apu.noise_channel.counter_countdown += inline_const(uint8_t[], {2, 1, 0, 3})[gb->apu.noise_channel.alignment & 3];
}
if (((gb->apu.noise_channel.alignment + 1) & 3) < 2) {
if ((gb->io_registers[GB_IO_NR43] & 0x07) == 1) {
gb->apu.noise_channel.counter_countdown -= 2;
gb->apu.noise_channel.delta = 2;
}
else {
gb->apu.noise_channel.counter_countdown -= 4;
}
}
}
/* TODO: These are quite weird. Verify further */
if (gb->model <= GB_MODEL_CGB_C) {
if (gb->cgb_double_speed) {
if (!(gb->io_registers[GB_IO_NR43] & 0xF0) && (gb->io_registers[GB_IO_NR43] & 0x07)) {
gb->apu.noise_channel.counter_countdown -= 1;
}
else if ((gb->io_registers[GB_IO_NR43] & 0xF0) && !(gb->io_registers[GB_IO_NR43] & 0x07)) {
gb->apu.noise_channel.counter_countdown += 1;
}
}
else {
gb->apu.noise_channel.counter_countdown -= 2;
}
}
gb->apu.noise_channel.current_volume = gb->io_registers[GB_IO_NR42] >> 4;
/* The volume changes caused by NRX4 sound start take effect instantly (i.e. the effect the previously
started sound). The playback itself is not instant which is why we don't update the sample for other
cases. */
if (gb->apu.is_active[GB_NOISE]) {
update_sample(gb, GB_NOISE,
gb->apu.noise_channel.current_lfsr_sample ?
gb->apu.noise_channel.current_volume : 0,
0);
}
gb->apu.noise_channel.lfsr = 0;
gb->apu.noise_channel.current_lfsr_sample = false;
gb->apu.noise_channel.volume_countdown = gb->io_registers[GB_IO_NR42] & 7;
if (!gb->apu.is_active[GB_NOISE] && (gb->io_registers[GB_IO_NR42] & 0xF8) != 0) {
gb->apu.is_active[GB_NOISE] = true;
update_sample(gb, GB_NOISE, 0, 0);
}
if (gb->apu.noise_channel.pulse_length == 0) {
gb->apu.noise_channel.pulse_length = 0x40;
gb->apu.noise_channel.length_enabled = false;
}
}
}
/* APU glitch - if length is enabled while the DIV-divider's LSB is 1, tick the length once. */
if ((value & 0x40) &&
!gb->apu.noise_channel.length_enabled &&
(gb->apu.div_divider & 1) &&
gb->apu.noise_channel.pulse_length) {
gb->apu.noise_channel.pulse_length--;
if (gb->apu.noise_channel.pulse_length == 0) {
if (value & 0x80) {
gb->apu.noise_channel.pulse_length = 0x3F;
}
else {
gb->apu.is_active[GB_NOISE] = false;
update_sample(gb, GB_NOISE, 0, 0);
}
}
}
gb->apu.noise_channel.length_enabled = value & 0x40;
break;
}
}
gb->io_registers[reg] = value;
}
void GB_set_sample_rate(GB_gameboy_t *gb, unsigned sample_rate)
{
if (gb->apu_output.sample_rate != sample_rate) {
GB_ASSERT_NOT_RUNNING_OTHER_THREAD(gb)
}
gb->apu_output.sample_rate = sample_rate;
if (sample_rate) {
gb->apu_output.highpass_rate = pow(0.999958, GB_get_clock_rate(gb) / (double)sample_rate);
gb->apu_output.max_cycles_per_sample = ceil(GB_get_clock_rate(gb) / 2.0 / sample_rate);
gb->apu_output.quick_fraction_multiply_cache[0] = round(sample_rate * 2.0 / GB_get_clock_rate(gb) * (1 << 28));
for (unsigned i = 1; i < GB_QUICK_MULTIPLY_COUNT; i++) {
gb->apu_output.quick_fraction_multiply_cache[i] = gb->apu_output.quick_fraction_multiply_cache[0] * (i + 1);
}
}
else {
gb->apu_output.max_cycles_per_sample = 0x400;
}
}
void GB_set_sample_rate_by_clocks(GB_gameboy_t *gb, double cycles_per_sample)
{
GB_ASSERT_NOT_RUNNING_OTHER_THREAD(gb)
if (cycles_per_sample == 0) {
GB_set_sample_rate(gb, 0);
return;
}
gb->apu_output.sample_rate = GB_get_clock_rate(gb) / cycles_per_sample * 2;
gb->apu_output.highpass_rate = pow(0.999958, cycles_per_sample);
gb->apu_output.max_cycles_per_sample = ceil(cycles_per_sample / 4);
gb->apu_output.quick_fraction_multiply_cache[0] = round(gb->apu_output.sample_rate * 2.0 / GB_get_clock_rate(gb) * (1 << 28));
for (unsigned i = 1; i < GB_QUICK_MULTIPLY_COUNT; i++) {
gb->apu_output.quick_fraction_multiply_cache[i] = gb->apu_output.quick_fraction_multiply_cache[0] * (i + 1);
}
}
unsigned GB_get_sample_rate(GB_gameboy_t *gb)
{
return gb->apu_output.sample_rate;
}
void GB_apu_set_sample_callback(GB_gameboy_t *gb, GB_sample_callback_t callback)
{
gb->apu_output.sample_callback = callback;
}
void GB_set_highpass_filter_mode(GB_gameboy_t *gb, GB_highpass_mode_t mode)
{
gb->apu_output.highpass_mode = mode;
}
void GB_set_interference_volume(GB_gameboy_t *gb, double volume)
{
gb->apu_output.interference_volume = volume;
}
typedef struct __attribute__((packed)) {
uint32_t format_chunk; // = BE32('FORM')
uint32_t size; // = BE32(file size - 8)
uint32_t format; // = BE32('AIFC')
uint32_t fver_chunk; // = BE32('FVER')
uint32_t fver_size; // = BE32(4)
uint32_t fver;
uint32_t comm_chunk; // = BE32('COMM')
uint32_t comm_size; // = BE32(0x18)
uint16_t channels; // = BE16(2)
uint32_t samples_per_channel; // = BE32(total number of samples / 2)
uint16_t bit_depth; // = BE16(16)
uint16_t frequency_exponent;
uint64_t frequency_significand;
uint32_t compression_type; // = 'NONE' (BE) or 'twos' (LE)
uint16_t compression_name; // = 0
uint32_t ssnd_chunk; // = BE32('SSND')
uint32_t ssnd_size; // = BE32(length of samples - 8)
uint32_t ssnd_offset; // = 0
uint32_t ssnd_block; // = 0
} aiff_header_t;
typedef struct __attribute__((packed)) {
uint32_t marker; // = BE32('RIFF')
uint32_t size; // = LE32(file size - 8)
uint32_t type; // = BE32('WAVE')
uint32_t fmt_chunk; // = BE32('fmt ')
uint32_t fmt_size; // = LE16(16)
uint16_t format; // = LE16(1)
uint16_t channels; // = LE16(2)
uint32_t sample_rate; // = LE32(sample_rate)
uint32_t byte_rate; // = LE32(sample_rate * 4)
uint16_t frame_size; // = LE32(4)
uint16_t bit_depth; // = LE16(16)
uint32_t data_chunk; // = BE32('data')
uint32_t data_size; // = LE32(length of samples)
} wav_header_t;
int GB_start_audio_recording(GB_gameboy_t *gb, const char *path, GB_audio_format_t format)
{
if (gb->apu_output.sample_rate == 0) {
return EINVAL;
}
if (gb->apu_output.output_file) {
GB_stop_audio_recording(gb);
}
gb->apu_output.output_file = fopen(path, "wb");
if (!gb->apu_output.output_file) return errno;
gb->apu_output.output_format = format;
switch (format) {
case GB_AUDIO_FORMAT_RAW:
return 0;
case GB_AUDIO_FORMAT_AIFF: {
aiff_header_t header = {0,};
if (fwrite(&header, sizeof(header), 1, gb->apu_output.output_file) != 1) {
int ret = errno ?: EIO;
fclose(gb->apu_output.output_file);
gb->apu_output.output_file = NULL;
return ret;
}
return 0;
}
case GB_AUDIO_FORMAT_WAV: {
wav_header_t header = {0,};
if (fwrite(&header, sizeof(header), 1, gb->apu_output.output_file) != 1) {
int ret = errno ?: EIO;
fclose(gb->apu_output.output_file);
gb->apu_output.output_file = NULL;
return ret;
}
return 0;
}
default:
fclose(gb->apu_output.output_file);
gb->apu_output.output_file = NULL;
return EINVAL;
}
}
int GB_stop_audio_recording(GB_gameboy_t *gb)
{
if (!gb->apu_output.output_file) {
int ret = gb->apu_output.output_error ?: -1;
gb->apu_output.output_error = 0;
return ret;
}
gb->apu_output.output_error = 0;
switch (gb->apu_output.output_format) {
case GB_AUDIO_FORMAT_RAW:
break;
case GB_AUDIO_FORMAT_AIFF: {
size_t file_size = ftell(gb->apu_output.output_file);
size_t frames = (file_size - sizeof(aiff_header_t)) / sizeof(GB_sample_t);
aiff_header_t header = {
.format_chunk = BE32('FORM'),
.size = BE32(file_size - 8),
.format = BE32('AIFC'),
.fver_chunk = BE32('FVER'),
.fver_size = BE32(4),
.fver = BE32(0xA2805140),
.comm_chunk = BE32('COMM'),
.comm_size = BE32(0x18),
.channels = BE16(2),
.samples_per_channel = BE32(frames),
.bit_depth = BE16(16),
#ifdef GB_BIG_ENDIAN
.compression_type = 'NONE',
#else
.compression_type = 'twos',
#endif
.compression_name = 0,
.ssnd_chunk = BE32('SSND'),
.ssnd_size = BE32(frames * sizeof(GB_sample_t) - 8),
.ssnd_offset = 0,
.ssnd_block = 0,
};
uint64_t significand = gb->apu_output.sample_rate;
uint16_t exponent = 0x403E;
while ((int64_t)significand > 0) {
significand <<= 1;
exponent--;
}
header.frequency_exponent = BE16(exponent);
header.frequency_significand = BE64(significand);
fseek(gb->apu_output.output_file, 0, SEEK_SET);
if (fwrite(&header, sizeof(header), 1, gb->apu_output.output_file) != 1) {
gb->apu_output.output_error = errno;
}
break;
}
case GB_AUDIO_FORMAT_WAV: {
size_t file_size = ftell(gb->apu_output.output_file);
size_t frames = (file_size - sizeof(wav_header_t)) / sizeof(GB_sample_t);
wav_header_t header = {
.marker = BE32('RIFF'),
.size = LE32(file_size - 8),
.type = BE32('WAVE'),
.fmt_chunk = BE32('fmt '),
.fmt_size = LE16(16),
.format = LE16(1),
.channels = LE16(2),
.sample_rate = LE32(gb->apu_output.sample_rate),
.byte_rate = LE32(gb->apu_output.sample_rate * 4),
.frame_size = LE32(4),
.bit_depth = LE16(16),
.data_chunk = BE32('data'),
.data_size = LE32(frames * sizeof(GB_sample_t)),
};
fseek(gb->apu_output.output_file, 0, SEEK_SET);
if (fwrite(&header, sizeof(header), 1, gb->apu_output.output_file) != 1) {
gb->apu_output.output_error = errno;
}
break;
}
}
fclose(gb->apu_output.output_file);
gb->apu_output.output_file = NULL;
int ret = gb->apu_output.output_error;
gb->apu_output.output_error = 0;
return ret;
}
void GB_set_channel_muted(GB_gameboy_t *gb, GB_channel_t channel, bool muted)
{
assert(channel < GB_N_CHANNELS);
gb->apu_output.channel_muted[channel] = muted;
}
bool GB_is_channel_muted(GB_gameboy_t *gb, GB_channel_t channel)
{
return gb->apu_output.channel_muted[channel];
}
// Note: this intentionally does not check to see if the channel is muted.
uint8_t GB_get_channel_volume(GB_gameboy_t *gb, GB_channel_t channel)
{
switch (channel) {
case GB_SQUARE_1:
case GB_SQUARE_2:
return gb->apu.square_channels[channel].current_volume;
case GB_WAVE:
return inline_const(uint8_t[], {0xF, 8, 4, 0, 0})[gb->apu.wave_channel.shift];
case GB_NOISE:
return gb->apu.noise_channel.current_volume;
default:
return 0;
}
}
uint8_t GB_get_channel_amplitude(GB_gameboy_t *gb, GB_channel_t channel)
{
return gb->apu.is_active[channel] ? gb->apu.samples[channel] : 0;
}
uint16_t GB_get_channel_period(GB_gameboy_t *gb, GB_channel_t channel)
{
switch (channel) {
case GB_SQUARE_1:
case GB_SQUARE_2:
return gb->apu.square_channels[channel].sample_length;
case GB_WAVE:
return gb->apu.wave_channel.sample_length;
case GB_NOISE:
return (gb->io_registers[GB_IO_NR43] & 7) << (gb->io_registers[GB_IO_NR43] >> 4);
default:
return 0;
}
}
// wave_table is a user allocated uint8_t[32] array
void GB_get_apu_wave_table(GB_gameboy_t *gb, uint8_t *wave_table)
{
for (unsigned i = GB_IO_WAV_START; i <= GB_IO_WAV_END; i++) {
wave_table[2 * (i - GB_IO_WAV_START)] = gb->io_registers[i] >> 4;
wave_table[2 * (i - GB_IO_WAV_START) + 1] = gb->io_registers[i] & 0xF;
}
}
bool GB_get_channel_edge_triggered(GB_gameboy_t *gb, GB_channel_t channel)
{
bool edge_triggered = gb->apu_output.edge_triggered[channel];
gb->apu_output.edge_triggered[channel] = false;
return edge_triggered;
}
|