1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
|
/*
* Copyright 1995,96 Thierry Bousch
* Licensed under the Gnu Public License, Version 2
*
* $Id: induce.c,v 2.3 1996/06/30 13:41:44 bousch Exp $
*
* Main module of induce. Here we build the dependency graph, and compute
* the vertices in the "right order", i.e. we're attempting to use as few
* mref's as possible.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <assert.h>
#include <ctype.h>
#include "saml.h"
#include "induce.h"
static unsigned int hashsize;
static vertex **htable;
static int nb_vertices;
static int max_depth;
void init_vertex_htable (int size)
{
assert(size > 0);
#ifdef DEBUG_IGRAPH
fprintf(stderr, "Initial hashsize %d\n", size);
#endif
nb_vertices = max_depth = 0;
hashsize = size;
free(htable);
htable = calloc(size, sizeof(vertex*));
assert(htable != NULL);
}
static int hashme (const char *name)
{
unsigned char c;
unsigned int h = 0;
while ((c = *name++) != '\0')
h += (h << 4) + c;
return h % hashsize;
}
static void resize_htable (void)
{
int h, h2, old_size;
vertex *v, *vnext, **ntable;
old_size = hashsize;
hashsize = 6 * old_size - 1;
#ifdef DEBUG_IGRAPH
fprintf(stderr, "New hashsize %d (for %d vertices)...", hashsize,
nb_vertices);
#endif
ntable = calloc(hashsize, sizeof(vertex*));
assert(ntable != NULL);
for (h = 0; h < old_size; h++)
for (v = htable[h]; v; v = vnext) {
/* Save the hnext field, cause we'll clobber it */
vnext = v->hnext;
/* Now insert the vertex in the new hash table */
h2 = hashme(v->name);
v->hnext = ntable[h2];
ntable[h2] = v;
}
free(htable);
htable = ntable;
#ifdef DEBUG_IGRAPH
fprintf(stderr, " done.\n");
#endif
}
vertex *lookup_vertex (const char *name)
{
int h;
vertex *v;
h = hashme(name);
for (v = htable[h]; v; v = v->hnext)
if (strcmp(name, v->name) == 0)
return v;
return NULL;
}
void free_vertex (vertex *v)
{
/*
* Yes, this is correct. See the comment in make_vertex() to
* understand why free(v->dep) must not be followed by free(v).
*/
mref_free(v->mr);
free(v->dep);
}
vertex *make_vertex (const char *name)
{
int h, nba;
char *anc, *p;
const char *bcode;
vertex *v, **va;
h = hashme(name);
for (v = htable[h]; v; v = v->hnext)
if (strcmp(name, v->name) == 0) {
/*
* This vertex already exists. If it is locked, then
* we've just found a cyclic dependency.
*/
if (v->used < 0) {
fprintf(stderr,
"Cyclic dependency on node `%s'. Abort.\n",
v->name);
exit(1);
}
++(v->used);
return v;
}
/* New vertex. First, find its dependencies. */
nba = number_ancestors(name, &anc, &bcode);
/*
* KLUDGE ALERT! We want to allocate (v) and (v->dep) in one
* object, to minimize memory waste and improve locality of
* reference. Since v already contains a variable-sized field at
* its end, we must put v->dep just before v. This explains
* the funny pointer arithmetics below.
*
* See also free_vertex().
*/
va = (vertex **) malloc(nba * sizeof(vertex *) + sizeof(vertex)
+ strlen(name) + 1);
assert(va != NULL);
v = (vertex *)(va + nba);
v->hnext = htable[h];
htable[h] = v;
strcpy(v->name, name);
v->mr = v->depth = v->score = -1;
v->deps = nba;
v->dep = va;
v->bytecode = bcode;
/*
* Yet another kludge: a negative value in (v->used) means that the
* vertex is "locked"; if we meet it again in make_vertex(), it means
* that a cyclic dependency has been encountered. See above.
*/
v->used = -1;
/* Fill the array of ancestors */
for (p = anc, h = 0; h < nba; h++) {
va[h] = make_vertex(p);
p += strlen(p) + 1;
}
/* We can unlock the vertex now */
v->used = 1;
free(anc);
/* Resize the hash table if appropriate */
if (++nb_vertices > 2*hashsize)
resize_htable();
return v;
}
int number_ancestors (const char *name, char **anc, const char **bcode)
{
char buff[4096], *rootname, *p, c;
int i, ineg, nbdep, len, nbind, *ind;
eval_rule *rule;
*anc = NULL;
*bcode = NULL;
if (!isalpha(name[0]) && name[0] != '_') {
/* Not a subscripted variable/literal */
return 0;
}
/* Read the root name */
rootname = alloca(strlen(name)+1);
strcpy(rootname, name);
nbind = 0;
ind = NULL;
if ((p = strchr(name, '[')) != NULL) {
rootname[p-name] = '\0'; p++;
i = ineg = 0;
/*
* We know that nbind <= strlen(p), because the loop below
* will be executed at most strlen(p) times. The worst case
* happens with variable names like foo[,,,], which is
* accepted, and equivalent to foo[0,0,0,0].
*/
ind = alloca(strlen(p) * sizeof(int));
while ((c = *p++) != '\0')
switch(c) {
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
i = 10*i + (c - '0');
break;
case '-':
ineg = 1;
break;
case ',':
case ']':
ind[nbind++] = (ineg ? -i : i);
i = ineg = 0;
break;
default:
fprintf(stderr,
"Invalid variable name `%s'. Abort.\n", name);
exit(1);
}
}
#if 0
fprintf(stderr, "Name `%s' has root `%s' and %d indices\n",
name, rootname, nbind);
#endif
buff[0] = '\0';
if (!strcmp(rootname, "__value__") && nbind == 1) {
/*
* This is the only builtin rule. It is tested first, so
* we bypass memoizing and normal rule searching.
*/
if (ind[0] >= 0)
sprintf(buff, "%d", ind[0]);
else {
*bcode = "0pn";
sprintf(buff, "%d", -ind[0]);
/* Be careful when ind[0] == -2147483648 */
if (buff[0] == '-')
memmove(buff,buff+1,strlen(buff));
}
}
else if (is_saved(name)) {
/*
* The object is saved somewhere on the filesystem.
* Thus, there are no dependencies. We do nothing since
* buff and bcode already contain what we want.
*/
}
else if ((rule = first_matching_rule(rootname,nbind,ind)) != NULL) {
/*
* Not a `__value__[xxx]' nor a memoized object, but we
* have found a user-defined rule; process it.
*/
for (i = 0; i < rule->nbdep; i++) {
int k, val;
idx_var *iv = rule->dep[i];
char mini[80];
mini[0] = ' ';
strcpy(mini+(i>0), iv->rootname);
for (k = 0; k < iv->nbind; k++) {
val = exec_int_bytecode(nbind, ind, iv->ibcode[k]);
strcat(mini, k ? "," : "[");
sprintf(mini+strlen(mini), "%d", val);
}
if (k > 0)
strcat(mini, "]");
strcat(buff, mini);
}
*bcode = rule->bytecode;
}
#if 0
fprintf(stderr, "%s: %s\n", name, buff);
#endif
/* Replace spaces by nulls, and count the arguments */
nbdep = !!(*buff);
len = 0;
for (p = buff; (c = *p) != '\0'; p++, len++)
if (c == ' ')
*p = '\0', ++nbdep;
p = malloc(len+1); assert(p != NULL);
memcpy(p, buff, len+1);
*anc = p;
return nbdep;
}
void find_depth (vertex *v, int min_depth)
{
int i, n = v->deps;
if (v->depth >= min_depth)
return;
/* Update the depth of this vertex */
v->depth = min_depth;
if (max_depth < min_depth)
max_depth = min_depth;
/* We must update the ancestors as well */
for (i = 0; i < n; i++)
find_depth(v->dep[i], min_depth + 1);
}
void depth_statistics (void)
{
#ifdef DEBUG_IGRAPH
int d, h;
vertex *v;
for (d = 0; d <= max_depth; d++) {
fprintf(stderr, "Depth %2d:", d);
/* Iterate over the hash table */
for (h = 0; h < hashsize; h++) {
for (v = htable[h]; v; v = v->hnext)
if (v->depth == d)
fprintf(stderr, " %s", v->name);
}
fprintf(stderr, "\n");
}
#endif
}
void hash_statistics (void)
{
int in_use, count, mincount, maxcount, sum2, h;
vertex *v;
fprintf(stderr, "Nb of vertices: %d, maximum depth %d\n",
nb_vertices, max_depth);
in_use = maxcount = sum2 = 0;
mincount = nb_vertices;
for (h = 0; h < hashsize; h++) {
count = 0;
for (v = htable[h]; v; v = v->hnext)
++count;
if (count)
++in_use;
if (count > maxcount)
maxcount = count;
if (count < mincount)
mincount = count;
sum2 += count*count;
}
fprintf(stderr, "Hash slots: %d/%d, min/avg/max use: %d/%d/%d\n",
in_use, hashsize, mincount,
(nb_vertices? (sum2+nb_vertices/2)/nb_vertices : 0),
maxcount);
}
static void compute_scores (void)
{
int i, n, h, score;
vertex *v;
if (!quiet) fprintf(stderr, "Computing scores...");
for (h = 0; h < hashsize; h++)
for (v = htable[h]; v; v = v->hnext) {
score = 0;
n = v->deps;
for (i = 0; i < n; i++)
score += 100000 / v->dep[i]->used;
v->score = score;
}
if (!quiet) fprintf(stderr, " done.\n");
}
static int sort_vertices (const void *p1, const void *p2)
{
const vertex *v1, *v2;
int d;
v1 = *(const vertex **)p1;
v2 = *(const vertex **)p2;
d = (v2->depth - v1->depth);
return d ? d : (v2->score - v1->score);
}
mref_t compute_vertex (vertex *v)
{
int i, n, memoized;
mref_t mr;
/*
* Evaluation of v. If it has dependencies, we execute the bytecode
* if it is present, otherwise we simply compute the sum of the
* ancestors. (In the particular case of _one_ ancestor, it simply
* means that we copy the result.) If it has no dependencies, it
* will be considered as an integer if it begins with a digit,
* otherwise, it'll be either a memoized object or a literal.
*/
n = v->deps;
v->mr = mr = mref_new();
memoized = 0;
if (v->bytecode) {
/* There is bytecode. Run it. */
mref_t argv[n];
if (trace_mode)
fprintf(stderr, "TRACE: %s\n", v->name);
for (i = 0; i < n; i++)
argv[i] = v->dep[i]->mr;
mref_copy(mr, exec_bytecode(n, argv, v->bytecode));
}
else if (n != 0) {
/* No bytecode, but dependencies. Sum them. */
mref_copy(mr, v->dep[0]->mr);
for (i = 1; i < n; i++)
mref_add(mr, mr, v->dep[i]->mr);
}
else if (isdigit(v->name[0])) {
/* It's a number. */
if (floating_precision > 0) {
char *buff = alloca(strlen(v->name)+10);
strcpy(buff, v->name);
sprintf(buff+strlen(buff), "p%d", floating_precision);
mref_build(mr, ST_FLOAT, buff);
} else {
mref_build(mr, ST_RATIONAL, v->name);
mref_cast(mr, parsed_poly_type);
}
}
else if (retrieve_precious(v) == 0) {
/*
* The object was saved, and we've just retrieved it.
*/
memoized = 1;
}
else {
/* Everything failed. Declare it as a literal. */
mref_t mr2 = mref_new();
mref_build(mr, ST_LITERAL, v->name);
mref_build(mr2, ST_RATIONAL, "0");
mref_cast(mr2, parsed_poly_type);
mref_promote(mr, mr2);
mref_free(mr2);
}
if (!memoized)
save_precious(v);
/* Return the value of this vertex */
return mr;
}
void eval_vertices (void)
{
int i, j, n, h, freed, nb_mrefs, max_mrefs;
vertex *v, *lv[nb_vertices];
compute_scores();
if (!quiet) fprintf(stderr, "Collecting vertices...");
i = 0;
for (h = 0; h < hashsize; h++)
for (v = htable[h]; v; v = v->hnext)
lv[i++] = v;
assert(i == nb_vertices);
if (!quiet) fprintf(stderr, " sorting...");
qsort(lv, nb_vertices, sizeof(vertex*), sort_vertices);
if (!quiet) fprintf(stderr, " done.\n");
nb_mrefs = max_mrefs = 0;
for (i = 0; i < nb_vertices; i++) {
v = lv[i];
n = v->deps;
#ifdef DEBUG_ICOMP
fprintf(stderr, "%s <-", v->name);
/* Print the dependencies */
for (j = 0; j < n; j++) {
fprintf(stderr, " %s:%d", v->dep[j]->name,
v->dep[j]->used);
assert(v->dep[j]->mr >= 0);
}
fprintf(stderr, " . (depth %d, score %d)\n",
v->depth, v->score);
#endif
/* Now REALLY evaluate the vertex */
compute_vertex(v);
if (++nb_mrefs > max_mrefs)
max_mrefs = nb_mrefs;
/* Remove old subexpressions (if appropriate) */
freed = 0;
for (j = 0; j < n; j++)
if (--(v->dep[j]->used) == 0) {
++freed;
#ifdef DEBUG_ICOMP
if (freed == 1)
fprintf(stderr, "Freeing");
fprintf(stderr, " %s", v->dep[j]->name);
#endif
free_vertex(v->dep[j]);
--nb_mrefs;
}
#ifdef DEBUG_ICOMP
if (freed)
fprintf(stderr, "\n");
#endif
}
if (!quiet)
fprintf(stderr, "All %d vertices (%d roots) evaluated, "
"using %d variables\n", nb_vertices, nb_mrefs, max_mrefs);
}
|