File: Complex.c

package info (click to toggle)
saml 970418-3
  • links: PTS
  • area: main
  • in suites: slink
  • size: 1,204 kB
  • ctags: 1,701
  • sloc: ansic: 17,182; sh: 2,583; yacc: 497; perl: 264; makefile: 250; python: 242
file content (237 lines) | stat: -rw-r--r-- 5,871 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/*
 * Copyright 1995,96 Thierry Bousch
 * Licensed under the Gnu Public License, Version 2
 *
 * $Id: Complex.c,v 2.4 1996/08/18 09:05:56 bousch Exp $
 *
 * Complex numbers, more generally numbers of the form A+iB where A and B
 * belong to some ring or field.
 */

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "saml.h"
#include "saml-errno.h"
#include "mnode.h"
#include "builtin.h"

typedef struct {
	struct mnode_header hdr;
	s_mnode *re;		/* real part */
	s_mnode *im;		/* imaginary part */
} complex_mnode;

static s_mnode* complex_build (const char*);
static gr_string* complex_stringify (complex_mnode*);
static s_mnode* complex_make (s_mnode*);
static s_mnode* complex_add (complex_mnode*, complex_mnode*);
static s_mnode* complex_sub (complex_mnode*, complex_mnode*);
static s_mnode* complex_mul (complex_mnode*, complex_mnode*);
static s_mnode* complex_div (complex_mnode*, complex_mnode*);
static int complex_notzero (complex_mnode*);
static s_mnode* complex_zero (complex_mnode*);
static s_mnode* complex_negate (complex_mnode*);
static s_mnode* complex_one (complex_mnode*);
static s_mnode* complex_invert (complex_mnode*);
static void complex_free (complex_mnode*);
static s_mnode* literal2complex (s_mnode*, complex_mnode*);

static unsafe_s_mtype MathType_Complex = {
	"Complex",
	complex_free, complex_build, complex_stringify,
	complex_make, NULL,
	complex_add, complex_sub, complex_mul, complex_div, NULL,
	complex_notzero, NULL, NULL, mn_std_differ, NULL,
	complex_zero, complex_negate, complex_one, complex_invert, NULL
};

void init_MathType_Complex (void)
{
	register_mtype(ST_COMPLEX, &MathType_Complex);
	register_CV_routine(ST_LITERAL, ST_COMPLEX, literal2complex);
}

static inline complex_mnode* complex_new (void)
{
	return (complex_mnode*)__mnalloc(ST_COMPLEX,sizeof(complex_mnode));
}

static void complex_free (complex_mnode *cplx)
{
	unlink_mnode(cplx->re);
	unlink_mnode(cplx->im);
	free(cplx);
}

static s_mnode* complex_build (const char *str)
{
	int x, y;
	complex_mnode *cplx;
	char buff[24];

	if (sscanf(str, "(%d,%d)", &x, &y) == 2) {
		cplx = complex_new();
		sprintf(buff, "%d", x);
		cplx->re = mnode_build(ST_INTEGER, buff);
		sprintf(buff, "%d", y);
		cplx->re = mnode_build(ST_INTEGER, buff);
		return (s_mnode*) cplx;
	}
	return mnode_error(SE_STRING, "complex_build");
}

static s_mnode* complex_zero (complex_mnode* model)
{
	complex_mnode *cpl_zero = complex_new();
	s_mnode *zero;

	cpl_zero->re = zero = mnode_zero(model->re);
	cpl_zero->im = copy_mnode(zero);
	return (s_mnode*) cpl_zero;
}

static s_mnode* complex_one (complex_mnode* model)
{
	complex_mnode *cpl_one = complex_new();

	cpl_one->re = mnode_zero(model->re);
	cpl_one->im = mnode_one (model->im);
	return (s_mnode*) cpl_one;
}

static s_mnode* literal2complex (s_mnode* lit, complex_mnode* model)
{
	complex_mnode *cplx;
	s_mnode *rem;

	if (!model)
		return mnode_error(SE_ICAST, "literal2complex");
	cplx = complex_new();
	rem = model->re;
	/*
	 * Every literal is converted into sqrt(-1). In particular, "I"
	 * is converted to what you expect...
	 */
	cplx->re = mnode_zero(rem);
	cplx->im = mnode_one(rem);
	return (mn_ptr)cplx;
}

static s_mnode* complex_make (s_mnode* realpart)
{
	complex_mnode* cplx = complex_new();

	cplx->re = copy_mnode(realpart);
	cplx->im = mnode_zero(realpart);
	return (mn_ptr)cplx;
}

static gr_string* complex_stringify (complex_mnode* cplx)
{
	gr_string *gs0, *gs1;

	gs0 = mnode_stringify(cplx->re);
	if (mnode_notzero(cplx->im) == 0)
		return gs0;
	gs1 = mnode_stringify(cplx->im);
	gs0 = grs_prepend1(gs0, '(');
	gs0 = grs_append1(gs0, ',');
	gs0 = grs_append(gs0, gs1->s, gs1->len);
	free(gs1);
	gs0 = grs_append1(gs0, ')');
	return gs0;
}

static s_mnode* complex_add (complex_mnode* c1, complex_mnode* c2)
{
	complex_mnode *sum = complex_new();
	sum->re = mnode_add(c1->re, c2->re);
	sum->im = mnode_add(c1->im, c2->im);
	return (s_mnode*) sum;
}

static s_mnode* complex_sub (complex_mnode* c1, complex_mnode* c2)
{
	complex_mnode* diff = complex_new();
	diff->re = mnode_sub(c1->re, c2->re);
	diff->im = mnode_sub(c1->im, c2->im);
	return (s_mnode*) diff;
}

static s_mnode* complex_mul (complex_mnode* c1, complex_mnode* c2)
{
	complex_mnode* prod = complex_new();
	s_mnode *ta, *tb;

	ta = mnode_mul(c1->re, c2->re);
	tb = mnode_mul(c1->im, c2->im);
	prod->re = mnode_sub(ta, tb);
	unlink_mnode(ta); unlink_mnode(tb);

	ta = mnode_mul(c1->re, c2->im);
	tb = mnode_mul(c1->im, c2->re);
	prod->im = mnode_add(ta, tb);
	unlink_mnode(ta); unlink_mnode(tb);

	return (s_mnode*) prod;
}

static int complex_notzero (complex_mnode* c)
{
	return mnode_notzero(c->re) || mnode_notzero(c->im);
}

static s_mnode* complex_negate (complex_mnode* c)
{
	complex_mnode *oppo = complex_new();
	oppo->re = mnode_negate(c->re);
	oppo->im = mnode_negate(c->im);
	return (s_mnode*) oppo;
}

static s_mnode* complex_norm (complex_mnode* c)
{
	s_mnode *norm, *ta, *tb;

	ta = mnode_mul(c->re, c->re);
	tb = mnode_mul(c->im, c->im);
	norm = mnode_add(ta, tb);
	unlink_mnode(ta); unlink_mnode(tb);
	return norm;
}

static s_mnode* complex_div (complex_mnode* c1, complex_mnode* c2)
{
	complex_mnode* quot;
	s_mnode *ta, *tb, *tc, *norm;

	norm = complex_norm(c2);
	if (!mnode_notzero(norm)) {
		unlink_mnode(norm);
		return mnode_error(SE_DIVZERO, "complex_div");
	}
	quot = complex_new();

	ta = mnode_mul(c1->re, c2->re);
	tb = mnode_mul(c1->im, c2->im);
	tc = mnode_add(ta, tb);
	unlink_mnode(ta); unlink_mnode(tb);
	quot->re = mnode_div(tc, norm);
	unlink_mnode(tc);

	ta = mnode_mul(c1->re, c2->im);
	tb = mnode_mul(c1->im, c2->re);
	tc = mnode_sub(ta, tb);
	unlink_mnode(ta); unlink_mnode(tb);
	quot->im = mnode_div(tc, norm);
	unlink_mnode(tc);

	return (s_mnode*) quot;
}

static s_mnode* complex_invert (complex_mnode* c)
{
	return mnode_error(SE_NOTRDY, "complex_invert");
}