1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
/*
* Copyright 1995,96 Thierry Bousch
* Licensed under the Gnu Public License, Version 2
*
* $Id: Cyclic.c,v 2.8 1996/09/14 09:39:13 bousch Exp $
*
* Arithmetics on Z/nZ, where n can be prime or not.
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "saml.h"
#include "saml-errno.h"
#include "mnode.h"
#include "builtin.h"
#include "mp-arch.h"
typedef struct _cyclic {
struct mnode_header hdr;
struct _cyclic *next;
__u32 n, modulus;
} cyclic_mnode;
/*
* Define BINARY_HASHSIZE if you want the hash size to be always a power
* of two. It avoids an expensive division for each hash calculation.
* But maybe other moduli have better mixing properties.
*/
#define BINARY_HASHSIZE
#ifdef BINARY_HASHSIZE
#define INITIAL_HASHSIZE 64
#else
#define INITIAL_HASHSIZE 59
#endif
static cyclic_mnode **htable;
static unsigned int hashsize = 0;
static unsigned int entries = 0;
static s_mnode* cyclic_build (const char*);
static s_mnode* cyclic_new (__u32 n, __u32 mod);
static void cyclic_free (cyclic_mnode*);
static gr_string* cyclic_stringify (cyclic_mnode*);
static s_mnode* cyclic_add (cyclic_mnode*, cyclic_mnode*);
static s_mnode* cyclic_sub (cyclic_mnode*, cyclic_mnode*);
static s_mnode* cyclic_mul (cyclic_mnode*, cyclic_mnode*);
static int cyclic_notzero (cyclic_mnode*);
static s_mnode* cyclic_zero (cyclic_mnode*);
static s_mnode* cyclic_negate (cyclic_mnode*);
static s_mnode* cyclic_one (cyclic_mnode*);
static s_mnode* cyclic_invert (cyclic_mnode*);
static s_mnode* cyclic_sqrt (cyclic_mnode*);
static s_mnode* int2cyclic (s_mnode*, cyclic_mnode*);
static unsafe_s_mtype MathType_Cyclic = {
"CyclicInt",
cyclic_free, cyclic_build, cyclic_stringify,
NULL, NULL,
cyclic_add, cyclic_sub, cyclic_mul, mn_std_div, mn_field_gcd,
cyclic_notzero, NULL, NULL, mn_std_differ, NULL,
cyclic_zero, cyclic_negate, cyclic_one, cyclic_invert,
cyclic_sqrt
};
static inline int hash (__u32 x, __u32 mod)
{
#ifdef BINARY_HASHSIZE
return (x ^ mod) & (hashsize - 1);
#else
return (x ^ mod) % hashsize;
#endif
}
static void resize_htable (unsigned int new_size)
{
cyclic_mnode *list, *p, *q;
unsigned int i, h;
list = NULL;
for (i = 0; i < hashsize; i++)
for (p = htable[i]; p; p = q) {
q = p->next;
p->next = list;
list = p;
}
htable = realloc(htable, new_size * sizeof(cyclic_mnode*));
if (htable == NULL)
panic_out_of_memory();
hashsize = new_size;
memset(htable, 0, hashsize * sizeof(cyclic_mnode*));
/* And insert them again in the new table */
for (p = list; p; p = q) {
q = p->next;
h = hash(p->n, p->modulus);
p->next = htable[h];
htable[h] = p;
}
}
void init_MathType_Cyclic (void)
{
register_mtype(ST_CYCLIC, (s_mtype*)&MathType_Cyclic);
resize_htable(INITIAL_HASHSIZE);
register_CV_routine(ST_INTEGER, ST_CYCLIC, (void*)int2cyclic);
}
static inline __u32 product_mod (__u32 x1, __u32 x2, __u32 p)
{
__u32 th, tl, quot, rem;
umul_ppmm(th, tl, x1, x2);
udiv_qrnnd(quot, rem, th, tl, p);
return rem;
}
static __u32 power_mod (__u32 x, __u32 e, __u32 p)
{
__u32 f = 1;
while(1) {
/* The value of f.pow(x,e) is a loop invariant */
if (e&1)
f = product_mod(f,x,p);
e = e/2;
if (!e)
return f;
x = product_mod(x,x,p);
}
}
static s_mnode* cyclic_new (__u32 x, __u32 mod)
{
cyclic_mnode *c;
int h = hash(x,mod);
for (c = htable[h]; c; c = c->next)
if (c->n == x && c->modulus == mod)
return copy_mnode((s_mnode*)c);
/*
* Not found, create a new one
*/
c = (cyclic_mnode*) __mnalloc(ST_CYCLIC, sizeof(cyclic_mnode));
c->n = x;
c->modulus = mod;
c->next = htable[h];
htable[h] = c;
if (++entries > hashsize) {
int new_size;
#ifdef BINARY_HASHSIZE
new_size = 2 * hashsize;
#else
new_size = 2 * hashsize + 1;
#endif
resize_htable(new_size);
}
return (s_mnode*) c;
}
static void cyclic_free (cyclic_mnode* c)
{
int h = hash(c->n, c->modulus);
cyclic_mnode *d, **old;
for (old = &htable[h]; (d = *old) != NULL; old = &(d->next))
if (c == d) {
*old = d->next;
break;
}
assert(c == d);
free(c);
--entries;
}
static s_mnode* cyclic_build (const char *str)
{
unsigned int x, mod;
if (sscanf(str, "%u:%u", &x, &mod) == 2 && mod > 1) {
x = x % mod;
return cyclic_new(x, mod);
}
return mnode_error(SE_STRING, "cyclic_build");
}
static s_mnode* cyclic_zero (cyclic_mnode* model)
{
return cyclic_new(0, model->modulus);
}
static s_mnode* cyclic_one (cyclic_mnode* model)
{
return cyclic_new(1, model->modulus);
}
static s_mnode* int2cyclic (s_mnode* intg, cyclic_mnode* model)
{
__u32 x, modulo;
s_mnode *t1, *t2, *t3;
gr_string *rem;
assert(intg->type == ST_INTEGER);
if (!model)
return mnode_error(SE_ICAST, "int2cyclic");
modulo = model->modulus;
t1 = mnode_build(ST_INTEGER, u32toa(modulo));
t2 = mnode_mod(intg, t1);
if (mnode_isneg(t2)) {
t3 = mnode_add(t2, t1);
unlink_mnode(t2);
t2 = t3;
}
unlink_mnode(t1);
rem = mnode_stringify(t2); unlink_mnode(t2);
rem = grs_append1(rem, '\0');
x = strtoul(rem->s, 0, 10); free(rem);
return cyclic_new(x, modulo);
}
static gr_string* cyclic_stringify (cyclic_mnode* c)
{
gr_string *grs = new_gr_string(30);
sprintf(grs->s, "%u", c->n);
grs->len = strlen(grs->s);
return grs;
}
static s_mnode* cyclic_add (cyclic_mnode* c1, cyclic_mnode* c2)
{
__u32 n1, n2, n3, m;
if ((m = c1->modulus) == c2->modulus) {
n1 = c1->n;
n2 = c2->n;
n3 = n1 + n2;
if (n3 < n1 || n3 >= m)
return cyclic_new(n3-m, m);
return cyclic_new(n3, m);
}
return mnode_error(SE_NSMOD, "cyclic_add");
}
static s_mnode* cyclic_sub (cyclic_mnode* c1, cyclic_mnode* c2)
{
__u32 n1, n2, n3, m;
if ((m = c1->modulus) == c2->modulus) {
n1 = c1->n;
n2 = c2->n;
n3 = n1 - n2;
if (n3 > n1)
return cyclic_new(n3+m, m);
return cyclic_new(n3, m);
}
return mnode_error(SE_NSMOD, "cyclic_sub");
}
static s_mnode* cyclic_mul (cyclic_mnode* c1, cyclic_mnode* c2)
{
__u32 m, prod;
if ((m = c1->modulus) == c2->modulus) {
prod = product_mod(c1->n, c2->n, m);
return cyclic_new(prod, m);
}
return mnode_error(SE_NSMOD, "cyclic_mul");
}
static int cyclic_notzero (cyclic_mnode* c)
{
return (c->n != 0);
}
static s_mnode* cyclic_negate (cyclic_mnode* c)
{
__u32 x = (c->n), m = (c->modulus);
if (x == 0)
return copy_mnode((s_mnode*)c);
return cyclic_new(m-x, m);
}
#if 0
/*
* Returns g = gcd(a,b) and fills x and y with numbers such that
* ax - by == g, with 0 <= x <= b and 0 <= y <= a (at least if a and b
* are non-zero)
*/
static int solve_linear (int a, int b, int *x, int *y)
{
int g, q, r, u, v;
if (b == 0) {
*x = 1;
*y = 0;
return a;
}
q = a / b;
r = a % b;
g = solve_linear(b, r, &u, &v);
*x = b - v;
*y = a - (u + q * v);
return g;
}
#endif
static s_mnode* cyclic_invert (cyclic_mnode *c)
{
__u32 x = (c->n), p = (c->modulus);
x = power_mod(x, p-2, p);
return cyclic_new(x, p);
}
static s_mnode* cyclic_sqrt (cyclic_mnode* n)
{
return mnode_error(SE_NOTRDY, "cyclic_sqrt");
}
|