File: Matrix.c

package info (click to toggle)
saml 970418-3
  • links: PTS
  • area: main
  • in suites: slink
  • size: 1,204 kB
  • ctags: 1,701
  • sloc: ansic: 17,182; sh: 2,583; yacc: 497; perl: 264; makefile: 250; python: 242
file content (319 lines) | stat: -rw-r--r-- 7,955 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
/*
 * Copyright 1995,96 Thierry Bousch
 * Licensed under the Gnu Public License, Version 2
 *
 * $Id: Matrix.c,v 2.9 1996/09/14 09:40:04 bousch Exp $
 *
 * Rectangular matrices, on an arbitrary ring. Matrices are represented
 * as arrays of "Lines" (one-dimensional arrays)
 */

#include <limits.h>
#include <stdlib.h>
#include "saml.h"
#include "saml-errno.h"
#include "saml-util.h"
#include "mnode.h"
#include "builtin.h"

static gr_string* array_stringify (std_mnode*);
static s_mnode* array_add (std_mnode*, std_mnode*);
static s_mnode* array_sub (std_mnode*, std_mnode*);
static int array_notzero (std_mnode*);
static int array_differ (std_mnode*, std_mnode*);
static s_mnode* array_zero (std_mnode*);
static s_mnode* array_negate (std_mnode*);
static s_mnode* array2array (std_mnode*, std_mnode*);

static s_mnode* matrix_mul (std_mnode*, std_mnode*);
static s_mnode* matrix_one (std_mnode*);
static s_mnode* matrix_invert (std_mnode*);
static s_mnode* matrix2matrix (std_mnode*, std_mnode*);
s_mnode* matrix_determinant (std_mnode*);

static unsafe_s_mtype MathType_Line = {
	"Line",
	mstd_free, NULL, array_stringify,
	NULL, NULL,
	array_add, array_sub, NULL, NULL, NULL,
	array_notzero, NULL, NULL, array_differ, NULL,
	array_zero, array_negate, NULL, NULL, NULL
};

static unsafe_s_mtype MathType_Matrix = {
	"Matrix",
	mstd_free, NULL, array_stringify,
	NULL, NULL,
	array_add, array_sub, matrix_mul, NULL, NULL,
	array_notzero, NULL, NULL, array_differ, NULL,
	array_zero, array_negate, matrix_one, matrix_invert, NULL
};

void init_MathType_Matrix (void)
{
	register_mtype(ST_LINE, &MathType_Line);
	register_mtype(ST_MATRIX, &MathType_Matrix);
	register_CV_routine(ST_LINE, ST_LINE, array2array);
	register_CV_routine(ST_MATRIX, ST_MATRIX, matrix2matrix);
}

static gr_string* array_stringify (std_mnode* ar)
{
	gr_string *grs = new_gr_string(0);
	return grs_append(grs, "array", 5);
}

static s_mnode* array2array (std_mnode* ar, std_mnode* model)
{
	std_mnode *mn;
	s_mnode *cmodel;
	int i, len;

	if (!model)
		return copy_mnode((mn_ptr)ar);
	len = model->length;
	if (ar->length != len)
		return mnode_error(SE_ICAST, "array2array");

	mn = mstd_alloc(ST_LINE, len);
	cmodel = model->x[0];
	for (i = 0; i < len; i++)
		mn->x[i] = mnode_promote(ar->x[i], cmodel);
	return (mn_ptr)mn;
}

static s_mnode* matrix2matrix (std_mnode* ar, std_mnode* model)
{
	return mnode_error(SE_NOTRDY, "matrix2matrix");
}


static s_mnode* array_add (std_mnode *ar1, std_mnode *ar2)
{
	int i, len;
	std_mnode *mn;

	if ((len = ar1->length) != (ar2->length))
		return mnode_error(SE_SCONFL, "array_add");
	mn = mstd_alloc(ar1->hdr.type, len);
	for (i = 0; i < len; i++)
		mn->x[i] = mnode_add(ar1->x[i], ar2->x[i]);
	return (mn_ptr)mn;
}

static s_mnode* array_sub (std_mnode* ar1, std_mnode* ar2)
{
	int i, len;
	std_mnode *mn;

	if ((len = ar1->length) != (ar2->length))
		return mnode_error(SE_SCONFL, "array_sub");
	mn = mstd_alloc(ar1->hdr.type, len);
	for (i = 0; i < len; i++)
		mn->x[i] = mnode_sub(ar1->x[i], ar2->x[i]);
	return (mn_ptr)mn;
}

static int array_notzero (std_mnode* ar)
{
	int i, len = ar->length;

	for (i = 0; i < len; i++)
	    if (mnode_notzero(ar->x[i]))
	    	return 1;
	return 0;
}

static int array_differ (std_mnode* ar1, std_mnode* ar2)
{
	int i, len1=ar1->length, len2=ar2->length;

	if (len1 != len2)
	    return 1;
	for (i = 0; i < len1; i++)
	    if (mnode_differ(ar1->x[i],ar2->x[i]))
		return 1;
	return 0;
}

static s_mnode* array_zero (std_mnode* ar1)
{
	int i, len = ar1->length;
	s_mnode *zero;
	std_mnode *mn;

	if (len == 0)
		return copy_mnode((mn_ptr)ar1);
	zero = mnode_zero(ar1->x[0]);
	mn = mstd_alloc(ar1->hdr.type, len);
	for (i = 0; i < len; i++)
		mn->x[i] = zero;
	zero->refs += len - 1;
	return (mn_ptr)mn;
}

static s_mnode* array_negate (std_mnode* ar1)
{
	int i, len = ar1->length;
	std_mnode *mn;

	mn = mstd_alloc(ar1->hdr.type, len);
	for (i = 0; i < len; i++)
		mn->x[i] = mnode_negate(ar1->x[i]);
	return (mn_ptr)mn;
}

static s_mnode* matrix_mul (std_mnode* ar1, std_mnode* ar2)
{
	return mnode_error(SE_NOTRDY, "matrix_mul");
}

static s_mnode* matrix_invert (std_mnode* ar1)
{
	return mnode_error(SE_NOTRDY, "matrix_invert");
}

static s_mnode* matrix_one (std_mnode* model)
{
	int i, j, len = model->length;
	s_mnode *eltmodel, *zero, *one;
	std_mnode *mn, *mnl;

	if (len == 0) {
		/* No rows? */
		return copy_mnode((mn_ptr)model);
	}
	mnl = (smn_ptr)(model->x[0]);
	if (mnl->length != len) {
		/* Not a square matrix */
		return mnode_error(SE_SCONFL, "matrix_one");
	}
	eltmodel = mnl->x[0];
	zero = mnode_zero(eltmodel);
	one  = mnode_one(eltmodel);
	mn = mstd_alloc(ST_MATRIX, len);
	for (i = 0; i < len; i++) {
		mnl = mstd_alloc(ST_LINE, len);
		mn->x[i] = (mn_ptr)mnl;
		for (j = 0; j < len; j++)
			mnl->x[j] = zero;
		mnl->x[i] = one;
	}
	/* Adjust the reference counters */
	zero->refs += len * (len - 1) - 1;
	one ->refs += len - 1;
	return (mn_ptr)mn;
}

s_mnode* matrix_determinant (std_mnode* mat)
{
	int i, j, k, chsign = 0, len = mat->length;
	std_mnode *line;
	s_mnode ***m, *npiv, *det;

	if (!len) {
		/* Huh? The determinant of a void matrix? */
		return mnode_error(SE_WR_SIZE, "matrix_determinant");
	}
	line = (smn_ptr)(mat->x[0]);
	if (line->length != len) {
		/* Not a square matrix */
		return mnode_error(SE_SCONFL, "matrix_one");
	}
	if (len == 1) {
		/* A one-by-one determinant: that's easy! */
		return copy_mnode(line->x[0]);
	}
	/*
	 * For the general case, we use Bareiss' algorithm. We try to
	 * choose a pivot of minimal complexity, using the ->length field
	 * as an approximate measure of complexity -- this will work well
	 * for univariate and multivariate polynomials.
	 *
	 *   Bareiss, E.H., "Sylvester's identity and multistep
	 *   integer-preserving gaussian elimination",
	 *   Math. Comp. 22, pp 565-578 (1968)
	 *
	 * Temporary pointers-to-mnodes are put on the stack.
	 */
	m = (s_mnode ***)alloca(len * sizeof(s_mnode**));
	for (i = 0; i < len; i++) {
		m[i] = (s_mnode **)alloca(len * sizeof(s_mnode*));
		line = (smn_ptr)(mat->x[i]);
		for (j = 0; j < len; j++)
			m[i][j] = copy_mnode(line->x[j]);
	}
	/* Now the main loop */
	for (k = 0; k < len-1; k++) {
		int best_len = INT_MAX, cur_len, best_idx = -1;
		extern int apoly_length(s_mnode*);

		/* Find an appropriate pivot */
		for (i = k; i < len; i++) {
			npiv = m[i][k];
			if (!mnode_notzero(npiv))
				continue;

			if (npiv->type == ST_POLY)
				cur_len = ((smn_ptr)npiv)->length;
			else if (npiv->type == ST_APOLY)
				cur_len = apoly_length(npiv);
			else
				cur_len = 0;	/* unknown complexity */

			/* Too complicated? */
			if (cur_len >= best_len)
				continue;
			/* Found it */
			best_idx = i;
			best_len = cur_len;
			if (best_len <= 1)
				break;
		}
		if (best_idx < 0) {
			/*
			 * The k-th column is entirely zero, so we can free
			 * everything and report that the determinant
			 * is zero.
			 */
			for (i = 0; i < len; i++)
			    for (j = 0; j < len; j++)
				unlink_mnode(m[i][j]);
			line = (smn_ptr)(mat->x[0]);
			return mnode_zero(line->x[0]);
		}
		if ((i = best_idx) != k) {
			/* Swap lines i and k */
			s_mnode **tmp;
			tmp = m[i]; m[i] = m[k]; m[k] = tmp;
			++chsign;
		}
		npiv = m[k][k];
		for (i = k+1; i < len; i++)
		    for (j = k+1; j < len; j++) {
		    	s_mnode *t1, *t2, *t3;
		    	t1 = mnode_mul(npiv, m[i][j]);
		    	unlink_mnode(m[i][j]);
		    	t2 = mnode_mul(m[i][k], m[k][j]);
		    	t3 = mnode_sub(t1, t2);
		    	unlink_mnode(t1); unlink_mnode(t2);
		    	if (k == 0)
		    		m[i][j] = t3;
		    	else {
		    		m[i][j] = mnode_div(t3, m[k-1][k-1]);
		    		unlink_mnode(t3);
		    	}
		    }
	}
	/* The result is now in m[len-1][len-1], up to the sign */
	if (chsign & 1)
		det = mnode_negate(m[len-1][len-1]);
	else
		det = copy_mnode(m[len-1][len-1]);

	/* Free our temporary matrix and return the result */
	for (i = 0; i < len; i++)
	    for (j = 0; j < len; j++)
	    	unlink_mnode(m[i][j]);
	return det;
}