1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
divert(-1)
############################################################
#
# Macro definitions for m4
#
############################################################
# Synopsis: def_sum(node, i, start, end, expr)
# node := sum(i=start..end, expr)
#
# Synopsis: def_product(node, i, start, end, expr)
# node := prod(i=start..end, expr)
define(`def_sum', `
__$1[$2] = 0 if $2<$3;
__$1[$2] = __$1[$2-1] + $5;
$1 = __$1[$4];
')
define(`def_product', `
__$1[$2] = 1 if $2<$3;
__$1[$2] = __$1[$2-1].($5);
$1 = __$1[$4];
')
# Synopsis: def_sumx(node, i, start, end, expr, x)
# This function is best described on an example.
# If you say
# def_sumx(`foo', i, 1, 4, `i+10', `i+100')
# it defines
# foo := 11 + 101.(12 + 102.(13 + 103.14))
# == 11 + 101.12 + 101.102.13 + 101.102.103.14
# When x doesn't depend on i, it's equivalent to the evaluation of a
# polynomial on x using Horner's method.
define(`def_sumx', `
__$1[$2] = 0 if $2>$4;
__$1[$2] = $5 + ($6).__$1[$2+1];
$1 = __$1[$3];
')
# Synopsis: peel_polynomial(node, i, expr, lit)
# Meaning: node[i] := coefficient of lit^i in expr
define(`peel_polynomial', `
$1[$2] = 0 if $2<0;
$1[$2] = (__$1[$2],$4->0);
__$1[0] = $3;
__$1[$2] = (__$1[$2-1]-$1[$2-1])/($4);
')
# Synopsis: inverse_series(node2, node1)
# Meaning: the series sum(i=0..infty, node1[i].X^i) is inverted, and the
# coefficients of the inverse series are put into the node2[i].
define(`inverse_series', `
$1[0] = 1/$2[0];
__$1[i,-1] = 0;
__$1[i,j] = __$1[i,j-1] + $1[j].$2[i-j];
$1[i] = -__$1[i,i-1]/$2[0];
')
# Synopsis: additive_moebius_inversion(node, i, expr)
# Synopsis: multiplicative_moebius_inversion(node, i, expr)
# See the examples below.
define(`additive_moebius_inversion', `
$1[$2] = $3 - __$1[$2,$2/2];
__$1[i,0] = 0;
__$1[i,j] = __$1[i,j-1] if i%j;
__$1[i,j] = __$1[i,j-1] + $1[j];
')
define(`multiplicative_moebius_inversion', `
$1[$2] = ($3) / __$1[$2,$2/2];
__$1[i,0] = 1;
__$1[i,j] = __$1[i,j-1] if i%j;
__$1[i,j] = __$1[i,j-1] * $1[j];
')
### Exponential of a series
#
#define(`exp_integral', `
# $1[0] = 1;
# $1[k] = $1[k,k-1] / k;
# $1[k,-1] = 0;
# $1[k,l] = $1[k,l-1] + $2[k-1-l].$1[l] ifelse($#,2,,`.$3');
#')
#
#define(`exp_series', `
# $1[0] = 1;
# $1[k] = $1[k,k-1] / k;
# $1[k,-1] = 0;
# $1[k,l] = $1[k,l-1] + (k-l).$2[k-l].$1[l] ifelse($#,2,,`.$3');
#')
#
# End of macro definitions
#
divert(0)dnl
############################################################
#
# Rules for induce
#
############################################################
# Factorials
fact[0] = 1;
fact[k] = k.fact[k-1];
# You can't define ff[k] = fact[fact[k]], so how would you compute ff[k] ?
# (problem posed by maltey@enst-bretagne.fr); easy! just define the
# auxiliary nodes ff[k,l] = fact[fact[k].l], then it is plain that you
# have the following relations. NOTE: even ff[8] requires plenty of
# CPU time. You cannot compute ff[13] or more, because fact[13] >= 2^31,
# and the index will wrap around.
#
# Note also that such cleverness is no longer needed since induce(1) supports
# external functions; you just have to write fact[fact(k)] or fact(fact[k])
# or fact(fact(k)).
ffact[k] = ffact[k,1];
ffact[k,l] = ffact[k-1,k.l] if k>0;
ffact[0,l] = Fact[l];
# The following definition is probably more efficient if you have only one
# huge factorial to compute, because it tries to multiply numbers which
# have roughly the same size. We define
# Fact[n,s] = s.(s+1)...(s+n-1). Then the following relations hold:
Fact[n] = Fact[n,1];
Fact[n,s] = Fact[n/2,s].Fact[n-n/2,s+n/2] if n>100;
Fact[n,s] = s.(s+1).(s+2).(s+3).(s+4).(s+5).(s+6).(s+7).(s+8)
.(s+9).Fact[n-10,s+10] if n>10;
Fact[n,s] = s.Fact[n-1,s+1] if n>1;
Fact[1,s] = s;
Fact[0,s] = 1;
# It is a syntax error to put an index (or even a constant integral
# expression) in an exponent. It's probably a bad idea anyway, but
# here's a workaround for (-1)^k.
#
# alt[i] = (-1)^k
alt[i] = -1 if i % 2;
alt[i] = 1; # Otherwise.
# Two ways to compute approximations of the constant `e'. Compare them
# to see if they are equally sensitive to rounding errors.
# In both cases we compute 1+...+1/n!, but with Horner's method in the first
# case. This block of code is skipped if induce(1) runs in "exact" mode,
# for obvious reasons.
ifdef(`__PRECISION__', `
def_sumx(`approx_e1[n]', k, 0, n, `1', `1/(k+1)')
approx_e2[0] = 1;
approx_e2[n] = approx_e2[n-1] + 1/fact[n];
e1_e2[n] = approx_e1[n] - approx_e2[n];
')
# Let p[n] be the number of partitions of the integer n. These numbers
# verify the following recurrence relation (for n>0):
#
# p[n] - p[n-1] - p[n-2] + p[n-5] + ...
# + (-1)^k.p[n-k(3k-1)/2] + (-1)^k.p[n-k(3k+1)/2] + ... = 0.
#
# The only problem here is to stop the sum when the indices are negative.
part[n] = part[n,1] if n > 0;
part[0] = 1;
part[n] = 0; # When n is negative.
part[n,k] = 0 if n < k.(3.k-1)/2;
part[n,k] = part[n-k.(3.k-1)/2] + part[n-k.(3.k+1)/2] - part[n,k+1];
# The (in)famous Fibonacci numbers. Induce is perfectly adapted to this
# kind of definitions.
fibo[n] = fibo[n-1] + fibo[n-2] if n > 1;
fibo[0] = 0;
fibo[1] = 1;
fibo[n] = fibo[n+2] - fibo[n+1]; # when n is negative.
# This is mainly for fun. If Induce can't compute fun[n] for some positive n,
# publish your result! (Alas, 32-bit integers can easily overflow.)
fun[1] = 0;
fun[n] = 1 + fun[n/2] if n%2 = 0;
fun[n] = 1 + fun[(3.n+1)/2]; # when n is odd.
# Euler's totient function phi[n] and the Moebius function mu[n] can both
# be obtained with the Moebius inversion formula.
additive_moebius_inversion(phi, n, `n')
additive_moebius_inversion(mu, n, `!(n-1)')
# Inverse a series twice, and compare to the original series
s1[k] = 10 / (k+1);
inverse_series(s2,s1)
inverse_series(s3,s2)
s3error[k] = s3[k] - s1[k];
# Binomial coefficients
binom[n,p] = 0 if (p<0)+(p>n);
binom[n,0] = 1;
binom[n,n] = 1;
binom[n,p] = binom[n-1,p-1]+binom[n-1,p];
Binom[n,p] = fact[n] / fact[p] / fact[n-p];
# Some calculations on the iterates of P(a,b): z->az+bz2+z3
# First define z_exp[k]=z^k
z_exp[0] = 1;
z_exp[k] = z.z_exp[k-1];
# We suppose here that `a' is a n-th primitive root of unity. Let Iter[k,n]
# be the k-th iterate of P(a,b), reduced modulo the cyclotomic polynomial,
# computed up to z^(n+1). We know that Iter[n,n] will have the form
# Iter[n,n] = z + Cab[n].z^(n+1), and we want to compute Cab[n].
Iter[0,n] = z;
Iter[i,n] = (Iter[i-1,n], z -> a.z+b.z^2+z^3, z_exp[n+2] -> 0,
cmain[n] >> cmain[n]-cyclo[n]);
Iter[n] = Iter[n,n];
Cab[n] = (Iter[n] - z) / z_exp[n+1];
CabDisc[n] = (disc(Cab[n],b), cmain[n] >> cmain[n]-cyclo[n]);
CabDisc_e[n,x] = disc((Cab[n],a->x),b);
CabDisc_e[n,k,0] = CabDisc_e[n,k];
CabDisc_e[n,x,k] = (CabDisc_e[n,x+1,k-1] - CabDisc_e[n,x,k-1]) / k;
poch[0] = 1;
poch[k] = poch[k-1].(a-k+1);
CabDisc_i[n,-1] = 0;
CabDisc_i[n,k] = CabDisc_i[n,k-1] + CabDisc_e[n,0,k].poch[k];
CabDisc2[n,k] = (CabDisc_i[n,k], cmain[n] >> cmain[n]-cyclo[n]);
CabDisc2[n] = CabDisc2[n,(2.n-1).phi(n)];
# Cyclotomic polynomials (and their leading coefficient)
multiplicative_moebius_inversion(`cyclo', n, `(z_exp[n]-1,z->a)')
multiplicative_moebius_inversion(`cmain', n, `(z_exp[n],z->a)')
# Let phi(x) = x + O(1) such that phi(x^2) = phi(x)^2 + c.
# phi(x) = x + cphi[1]/x + cphi[2]/x^2 + ...
# In real mode we choose c=1/4.
ifdef(`__PRECISION__',`c=1/4;')
cphi[k] = 0 if k%2 = 0;
cphi[1] = -c/2;
cphi[k] = cphi[k/2]/2 - cphi[k-1,k-1] if k%2;
cphi[k] = - cphi[k-1,k-1]; # Otherwise.
cphi[k,0] = 0;
cphi[k,l] = cphi[k,l-1] + cphi[l].cphi[k-l];
# Let arrg[m,n] be the number of colourings of a m.n rectangle with three
# colours, such that two adjacent cells haven't the same color.
# This number can be computed as follows.
arrg[n,0,j] = 1;
arrg[n,i,0] = arrg[n,i-1,n];
arrg[n,i,j] = (
(arrg[n,i,j-1], c1[i-1,j]->0, c1[i,j-1]->0) . c1[i,j] +
(arrg[n,i,j-1], c2[i-1,j]->0, c2[i,j-1]->0) . c2[i,j] +
(arrg[n,i,j-1], c3[i-1,j]->0, c3[i,j-1]->0) . c3[i,j],
c1[i-1,j] -> 1, c2[i-1,j] -> 1, c3[i-1,j] -> 1 );
arrg_[m,n,0] = arrg[n,m,n];
arrg_[m,n,i] = (arrg_[m,n,i-1], c1[m,i]->1, c2[m,i]->1, c3[m,i]->1);
arrg[m,n] = arrg_[m,n,n];
arrg[n] = arrg[n,n];
# You can handle matrices too, with the appropriate notations. Let's check
# the Cauchy-Hamilton theorem on small matrices, for instance.
# We're cheating slightly here, because the difficult calculations are done
# with the external functions disc() and mxprod(). The point here is that you
# can use induce as a "shell" to coordinate many small processes.
identity[0] = 0;
identity[s] = identity[s-1] + __e[s,s];
def_sum(`generic[s,i]', j, 1, s, `a[i,j].__e[i,j]')
def_sum(`generic[s]', i, 1, s, `generic[s,i]')
# Generic matrices are too cpu-intensive? Define the symbol `HILBERT'
# if you simply want to check Cayley-Hamilton on Hilbert matrices.
ifdef(`HILBERT',`a[n,p] = 1/(n+p-1);')
# Let pcar[n,k] be the coefficient of X^k in pcar[n]
pcar[n] = det(X.identity[n]-generic[n],n);
peel_polynomial(`pcar[n]', k, `pcar[n]', X)
# Now we can prove the Cayley-Hamilton theorem
c_ham[n,n] = pcar[n,n].identity[n];
c_ham[n,k] = pcar[n,k].identity[n] + mxprod(generic[n],c_ham[n,k+1]);
c_ham[n] = c_ham[n,0]; # Should always be zero.
# End of file
|