File: Poly.c

package info (click to toggle)
saml 970418-9
  • links: PTS
  • area: main
  • in suites: woody
  • size: 1,188 kB
  • ctags: 1,703
  • sloc: ansic: 17,186; sh: 2,573; yacc: 497; perl: 264; makefile: 242; python: 242
file content (425 lines) | stat: -rw-r--r-- 10,999 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
/*
 * Copyright 1995,96 Thierry Bousch
 * Licensed under the Gnu Public License, Version 2
 *
 * $Id: Poly.c,v 2.5 1996/08/18 09:26:40 bousch Exp $
 *
 * Operations on Polynomials
 */

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "saml.h"
#include "saml-errno.h"
#include "mnode.h"
#include "builtin.h"

static gr_string* poly_stringify (std_mnode*);
static s_mnode* poly_make (s_mnode*);
static s_mnode* poly_add (std_mnode*, std_mnode*);
static s_mnode* poly_mul (std_mnode*, std_mnode*);
static s_mnode* poly_div (s_mnode*, s_mnode*);
static s_mnode* poly_gcd (std_mnode*, std_mnode*);
static int poly_notzero (std_mnode*);
static s_mnode* poly_zero (std_mnode*);
static s_mnode* poly_negate (std_mnode*);
static s_mnode* poly_one (std_mnode*);
static s_mnode* literal2poly (s_mnode*, std_mnode*);
static s_mnode* mono2poly (s_mnode*, std_mnode*);
static s_mnode* poly2poly (std_mnode*, std_mnode*);

extern s_mnode* decompose_powers_umono (std_mnode*, s_mnode*);
extern std_mnode* mono_unpack (s_mnode*);
extern s_mnode* upoly_eval (s_mnode*, s_mnode*);

static unsafe_s_mtype MathType_Polynomial = {
	"Polynomial",
	mstd_free, NULL, poly_stringify,
	poly_make, NULL,
	poly_add, mn_std_sub, poly_mul, poly_div, poly_gcd,
	poly_notzero, NULL, NULL, mn_std_differ, NULL,
	poly_zero, poly_negate, poly_one, NULL, NULL
};

void init_MathType_Polynomial (void)
{
	register_mtype(ST_POLY, &MathType_Polynomial);
	register_CV_routine(ST_LITERAL, ST_POLY, literal2poly);
	register_CV_routine(ST_MONO, ST_POLY, mono2poly);
	register_CV_routine(ST_POLY, ST_POLY, poly2poly);
}

static s_mnode* poly_zero (std_mnode* mn1)
{
	std_mnode* mn = mstd_alloc(ST_POLY, 1);
	mn->x[0] = copy_mnode(mn1->x[0]);
	return (mn_ptr)mn;
}

static s_mnode* poly_one (std_mnode* mn1)
{
	std_mnode* mn = mstd_alloc(ST_POLY, 2);
	mn->x[0] = copy_mnode(mn1->x[0]);
	mn->x[1] = mnode_one(mn1->x[0]);
	return (mn_ptr)mn;
}

static s_mnode* poly_make (s_mnode *constant)
{
	std_mnode *mn;
	s_mnode *cmono;
	int flag;

	flag = mnode_notzero(constant);
	mn = mstd_alloc(ST_POLY, flag? 2 : 1);
	cmono = mnode_make(ST_MONO, constant);
	if (cmono->type == ST_VOID) {
		unlink_mnode((mn_ptr)mn);
		return cmono;
	}
	if (flag) {
		mn->x[1] = cmono;
		mn->x[0] = mnode_zero(cmono);
	} else	
		mn->x[0] = cmono;

	return (mn_ptr)mn;
}
	
static s_mnode* literal2poly (s_mnode* lit, std_mnode* model)
{
	s_mnode *lmono, *lpoly;

	if (!model)
		return mnode_error(SE_ICAST, "literal2poly");
	lmono = mnode_promote(lit, model->x[0]);
	lpoly = mono2poly(lmono, NULL);
	unlink_mnode(lmono);
	return lpoly;
}

static s_mnode* mono2poly (s_mnode* mono, std_mnode* model)
{
	std_mnode* P;
	s_mnode* pmono;

	if (model)
		pmono = mnode_promote(mono, model->x[0]);
	else
		pmono = copy_mnode(mono);
	
	if (mnode_notzero(pmono)) {
		P = mstd_alloc(ST_POLY, 2);
		P->x[0] = mnode_zero(pmono);
		P->x[1] = copy_mnode(pmono);
	} else {
		P = mstd_alloc(ST_POLY, 1);
		P->x[0] = copy_mnode(pmono);
	}
	unlink_mnode(pmono);
	return (mn_ptr)P;
}

static s_mnode* poly2poly (std_mnode* P, std_mnode* model)
{
	std_mnode* Q;
	s_mnode *mmodel;
	int i, length;

	if (!model)
		return copy_mnode((mn_ptr)P);
	length = P->length;
	mmodel = model->x[0];
	Q = mstd_alloc(ST_POLY, length);
	Q->x[0] = copy_mnode(mmodel);
	for (i = 1; i < length; i++)
		Q->x[i] = mnode_promote(P->x[i], mmodel);
	return (mn_ptr) Q;
}

static s_mnode* poly_negate (std_mnode* mn1)
{
	std_mnode* mn;
	int i, length;

	length = mn1->length;
	mn = mstd_alloc(ST_POLY, length);
	mn->x[0] = copy_mnode(mn1->x[0]);
	for (i = 1; i < length; i++)
		mn->x[i] = mnode_negate(mn1->x[i]);
	return (mn_ptr)mn;
}

static int poly_notzero (std_mnode* mn1)
{
	return (mn1->length != 1);
}

static gr_string* poly_stringify (std_mnode* mn1)
{
	gr_string *grs, *grterm;
	char first;
	int i;

	if (mn1->length == 1)
		return mnode_stringify(mn1->x[0]);
	grs = new_gr_string(0);
	for (i = 1; i < mn1->length; i++) {
		grterm = mnode_stringify(mn1->x[i]);
		/* Does it begin with a sign? */
		first = grterm->s[0];
		if (first != '+' && first != '-')
			grs = grs_append1(grs, '+');
		grs = grs_append(grs, grterm->s, grterm->len);
		free(grterm);
	}
	return grs;
}

static s_mnode* poly_add (std_mnode* mn1, std_mnode* mn2)
{
	int diff, len, len1, len2;
	s_mnode **sum, **p1, **p2, **p, **p1_end, **p2_end;
	std_mnode *mn;
	extern int mono_compare (s_mnode*, s_mnode*);
	extern s_mnode* mono_add_sim (s_mnode*, s_mnode*);

	if ((len1 = mn1->length) == 1)
		return copy_mnode((mn_ptr)mn2);
	if ((len2 = mn2->length) == 1)
		return copy_mnode((mn_ptr)mn1);
	p = sum = alloca((len1+len2-2) * sizeof(s_mnode*));
	p1 = &mn1->x[1]; p1_end = &mn1->x[len1];
	p2 = &mn2->x[1]; p2_end = &mn2->x[len2];
	while (1) {
		if (p1 == p1_end) {
			/* Copy the remaining terms of mn2 */
			while (p2 < p2_end)
				*p++ = copy_mnode(*p2++);
			break;
		}
		if (p2 == p2_end) {
			/* Copy the remaining terms of mn1 */
			while (p1 < p1_end)
				*p++ = copy_mnode(*p1++);
			break;
		}
		assert(p1 < p1_end && p2 < p2_end);
		diff = mono_compare(*p1, *p2);
		if (diff < 0) {
			*p++ = copy_mnode(*p1++);
			continue;
		} else if (diff > 0) {
			*p++ = copy_mnode(*p2++);
			continue;
		}
		*p = mono_add_sim(*p1, *p2);
		if (!mnode_notzero(*p)) {
			/* The sum is the zero monomial; don't write it */
			unlink_mnode(*p);
			--p;
		}
		p++; p1++; p2++;
	}
	len = p - sum;
	assert(len <= len1+len2-2);
	mn = mstd_alloc(ST_POLY, len+1);
	mn->x[0] = copy_mnode(mn1->x[0]);
	memcpy(&mn->x[1], sum, len * sizeof(s_mnode*));
	return (mn_ptr)mn;
}

static std_mnode* poly_split_mul (std_mnode* mn1, s_mnode** list, int length)
{
	s_mnode **p, **a0, **a1, **p1, *tmp1, *tmp2;
	std_mnode *mn;

	if (length > 1) {
		int part1 = length / 2;
		std_mnode *p1, *p2;
		
		p1 = poly_split_mul(mn1, list, part1);
		p2 = poly_split_mul(mn1, list + part1, length - part1);
		mn = (smn_ptr)poly_add(p1, p2);
		unlink_mnode((mn_ptr)p1);
		unlink_mnode((mn_ptr)p2);
		return mn;
	}
	p = p1 = alloca((mn1->length) * sizeof(s_mnode*));
	*p1++ = copy_mnode(mn1->x[0]);
	a0 = &mn1->x[0];
	a1 = &mn1->x[mn1->length];
	tmp1 = list[0];
	while (++a0 < a1) {
		tmp2 = mnode_mul(*a0, tmp1);
		if (mnode_notzero(tmp2))
			*p1++ = tmp2;
		else
			unlink_mnode(tmp2);
	}
	length = p1 - p;
	assert(length <= mn1->length);
	mn = mstd_alloc(ST_POLY, length);
	memcpy(mn->x, p, length * sizeof(s_mnode*));
	return mn;
}

static s_mnode* poly_mul (std_mnode* mn1, std_mnode* mn2)
{
	int len1, len2;

	if ((len1 = mn1->length) == 1) {
		/* mn1 is zero */
		return copy_mnode((mn_ptr)mn1);
	}
	if ((len2 = mn2->length) == 1) {
		/* mn2 is zero */
		return copy_mnode((mn_ptr)mn2);
	}
	if (len1 > len2)
		return (mn_ptr)poly_split_mul(mn1, &mn2->x[1], len2 - 1);
	else
		return (mn_ptr)poly_split_mul(mn2, &mn1->x[1], len1 - 1);
}

static s_mnode* poly_div (s_mnode* mn1, s_mnode* mn2)
{
	int len1, len2;
	s_mnode *best1, *best2, *q, *quot, *rem, *t1, *t2, *t3;

	len2 = ((smn_ptr)mn2)->length;
	if (len2 == 1)
		return mnode_error(SE_DIVZERO, "poly_div");
	quot = mnode_zero(mn1);
	rem = copy_mnode(mn1);
next_term:
	len1 = ((smn_ptr)rem)->length;
	if (len1 == 1) {
		/* The remainder is zero */
		unlink_mnode(rem);
		return quot;
	}
	/*
	 * We know that the monomials of mn1 and mn2 are stored in
	 * increasing lexicographic order, and that this order is
	 * compatible with multiplication. Therefore, we essentially
	 * have to examine the most-significant (i.e., last) terms
	 * of these polynomials.
	 */
	best1 = ((smn_ptr)rem)->x[len1-1];
	best2 = ((smn_ptr)mn2)->x[len2-1];
	q = mnode_div(best1, best2);
	if (!mnode_notzero(q)) {
		/* The quotient is zero */
		unlink_mnode(q);
		unlink_mnode(rem);
		return quot;
	}
	t1 = mnode_promote(q, rem); unlink_mnode(q);
	t2 = mnode_add(quot, t1); unlink_mnode(quot); quot = t2;
	t2 = mnode_mul(t1, mn2); unlink_mnode(t1);
	t3 = mnode_sub(rem, t2); unlink_mnode(rem);
	unlink_mnode(t2); rem = t3;
	goto next_term;
}

s_mnode* poly_subs (std_mnode* poly, s_mnode* umono, s_mnode* exp)
{
	s_mnode *list, *result;

	/* The second argument must be a monomial */
	if (umono->type == ST_POLY && ((smn_ptr)umono)->length == 2)
		umono = ((smn_ptr)umono)->x[1];
	if (umono->type != ST_MONO || exp->type != ST_POLY)
		return mnode_error(SE_TCONFL, "poly_subs");
	list = decompose_powers_umono(poly, umono);
	result = upoly_eval(list, exp);
	unlink_mnode(list);
	return result;
}

static s_mnode* poly_gcd (std_mnode* mn1, std_mnode* mn2)
{
	s_mnode *lit, *lp, *mn1a, *mn2a, *gcda, *result;
	std_mnode *expanded_mono;

	if (mn1->length == 1) {
		/* mn1 is zero */
		return copy_mnode((mn_ptr)mn2);
	}
	if (mn2->length == 1) {
		/* mn2 is zero */
		return copy_mnode((mn_ptr)mn1);
	}
	/* Choose a literal in mn1 */
	expanded_mono = mono_unpack(mn1->x[mn1->length-1]);
	if (expanded_mono->length < 3) {
		/* Oh, mn1 is constant. What about mn2 ? */
		s_mnode *coef1, *coef2;
		coef1 = copy_mnode(expanded_mono->x[0]);
		unlink_mnode((mn_ptr)expanded_mono);
		expanded_mono = mono_unpack(mn2->x[mn2->length-1]);
		if (expanded_mono->length < 3) {
			/* So is mn2... */
			coef2 = copy_mnode(expanded_mono->x[0]);
			unlink_mnode((mn_ptr)expanded_mono);
			gcda = mnode_gcd(coef1,coef2);
			unlink_mnode(coef1); unlink_mnode(coef2);
			result = mnode_promote(gcda, (mn_ptr)mn1);
			unlink_mnode(gcda);
			return result;
		}
		unlink_mnode(coef1);
	}
	lit = mnode_promote(expanded_mono->x[1], mn1->x[0]);
	unlink_mnode((mn_ptr)expanded_mono);
	/* Write mn1 and mn2 as univariate polynomials */
	mn1a = decompose_powers_umono(mn1, lit);
	mn2a = decompose_powers_umono(mn2, lit);
	gcda = mnode_gcd(mn1a, mn2a);
	unlink_mnode(mn1a); unlink_mnode(mn2a);
	/* Convert back to a multivariate polynomial */
	lp = mnode_promote(lit, (mn_ptr)mn1);
	unlink_mnode(lit);
	result = upoly_eval(gcda, lp);
	unlink_mnode(gcda); unlink_mnode(lp);
	return result;
}

s_mnode* poly_sylvester (std_mnode* mn1, std_mnode* mn2, s_mnode* lit)
{
	s_mnode *mn1a, *mn2a, *sylva;
	extern s_mnode* upoly_sylvester(s_mnode*,s_mnode*);

	/* The third argument must be a monomial */
	if (lit->type == ST_POLY && ((smn_ptr)lit)->length == 2)
		lit = ((smn_ptr)lit)->x[1];
	if (lit->type != ST_MONO)
		return mnode_error(SE_TCONFL, "poly_sylvester");
	/* Write mn1 and mn2 as univariate polynomials */
	mn1a = decompose_powers_umono(mn1, lit);
	mn2a = decompose_powers_umono(mn2, lit);
	sylva = upoly_sylvester(mn1a, mn2a);
	unlink_mnode(mn1a); unlink_mnode(mn2a);
	return sylva;
}

s_mnode* poly_diff (std_mnode* mn1, s_mnode* lit)
{
	s_mnode *mn1a, *md1a, *md1, *x;
	extern s_mnode* upoly_diff(s_mnode*);

	/* The second argument must be a monomial */
	if (lit->type == ST_POLY && ((smn_ptr)lit)->length == 2)
		lit = ((smn_ptr)lit)->x[1];
	if (lit->type != ST_MONO)
		return mnode_error(SE_TCONFL, "poly_diff");
	mn1a = decompose_powers_umono(mn1, lit);
	md1a = upoly_diff(mn1a); unlink_mnode(mn1a);
	x = mnode_promote(lit, (mn_ptr)mn1); 
	md1 = upoly_eval(md1a, x);
	unlink_mnode(md1a); unlink_mnode(x);
	return md1;
}