File: bam2bcf.c

package info (click to toggle)
samtools-legacy 0.1.19-4
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 1,980 kB
  • sloc: ansic: 22,454; perl: 3,037; makefile: 214; java: 158; python: 141
file content (467 lines) | stat: -rw-r--r-- 14,804 bytes parent folder | download | duplicates (13)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
#include <math.h>
#include <stdint.h>
#include <assert.h>
#include "bam.h"
#include "kstring.h"
#include "bam2bcf.h"
#include "errmod.h"
#include "bcftools/bcf.h"

extern	void ks_introsort_uint32_t(size_t n, uint32_t a[]);

#define CALL_ETA 0.03f
#define CALL_MAX 256
#define CALL_DEFTHETA 0.83f
#define DEF_MAPQ 20

#define CAP_DIST 25

bcf_callaux_t *bcf_call_init(double theta, int min_baseQ)
{
	bcf_callaux_t *bca;
	if (theta <= 0.) theta = CALL_DEFTHETA;
	bca = calloc(1, sizeof(bcf_callaux_t));
	bca->capQ = 60;
	bca->openQ = 40; bca->extQ = 20; bca->tandemQ = 100;
	bca->min_baseQ = min_baseQ;
	bca->e = errmod_init(1. - theta);
	bca->min_frac = 0.002;
	bca->min_support = 1;
    bca->per_sample_flt = 0;
    bca->npos = 100;
    bca->ref_pos = calloc(bca->npos, sizeof(int));
    bca->alt_pos = calloc(bca->npos, sizeof(int));
 	return bca;
}


static int get_position(const bam_pileup1_t *p, int *len)
{
    int icig, n_tot_bases = 0, iread = 0, edist = p->qpos + 1;
    for (icig=0; icig<p->b->core.n_cigar; icig++) 
    {
        // Conversion from uint32_t to MIDNSHP
        //  0123456
        //  MIDNSHP
        int cig  = bam1_cigar(p->b)[icig] & BAM_CIGAR_MASK;
        int ncig = bam1_cigar(p->b)[icig] >> BAM_CIGAR_SHIFT;
        if ( cig==0 )
        {
            n_tot_bases += ncig;
            iread += ncig;
        }
        else if ( cig==1 )
        {
            n_tot_bases += ncig;
            iread += ncig;
        }
        else if ( cig==4 )
        {
            iread += ncig;
            if ( iread<=p->qpos ) edist -= ncig;
        }
    }
    *len = n_tot_bases;
    return edist;
}

void bcf_call_destroy(bcf_callaux_t *bca)
{
	if (bca == 0) return;
	errmod_destroy(bca->e);
    if (bca->npos) { free(bca->ref_pos); free(bca->alt_pos); bca->npos = 0; }
	free(bca->bases); free(bca->inscns); free(bca);
}
/* ref_base is the 4-bit representation of the reference base. It is
 * negative if we are looking at an indel. */
int bcf_call_glfgen(int _n, const bam_pileup1_t *pl, int ref_base, bcf_callaux_t *bca, bcf_callret1_t *r)
{
	int i, n, ref4, is_indel, ori_depth = 0;
	memset(r, 0, sizeof(bcf_callret1_t));
	if (ref_base >= 0) {
		ref4 = bam_nt16_nt4_table[ref_base];
		is_indel = 0;
	} else ref4 = 4, is_indel = 1;
	if (_n == 0) return -1;
	// enlarge the bases array if necessary
	if (bca->max_bases < _n) {
		bca->max_bases = _n;
		kroundup32(bca->max_bases);
		bca->bases = (uint16_t*)realloc(bca->bases, 2 * bca->max_bases);
	}
	// fill the bases array
	for (i = n = r->n_supp = 0; i < _n; ++i) {
		const bam_pileup1_t *p = pl + i;
		int q, b, mapQ, baseQ, is_diff, min_dist, seqQ;
		// set base
		if (p->is_del || p->is_refskip || (p->b->core.flag&BAM_FUNMAP)) continue;
		++ori_depth;
		baseQ = q = is_indel? p->aux&0xff : (int)bam1_qual(p->b)[p->qpos]; // base/indel quality
		seqQ = is_indel? (p->aux>>8&0xff) : 99;
		if (q < bca->min_baseQ) continue;
		if (q > seqQ) q = seqQ;
		mapQ = p->b->core.qual < 255? p->b->core.qual : DEF_MAPQ; // special case for mapQ==255
		mapQ = mapQ < bca->capQ? mapQ : bca->capQ;
		if (q > mapQ) q = mapQ;
		if (q > 63) q = 63;
		if (q < 4) q = 4;
		if (!is_indel) {
			b = bam1_seqi(bam1_seq(p->b), p->qpos); // base
			b = bam_nt16_nt4_table[b? b : ref_base]; // b is the 2-bit base
			is_diff = (ref4 < 4 && b == ref4)? 0 : 1;
		} else {
			b = p->aux>>16&0x3f;
			is_diff = (b != 0);
		}
		if (is_diff) ++r->n_supp;
		bca->bases[n++] = q<<5 | (int)bam1_strand(p->b)<<4 | b;
		// collect annotations
		if (b < 4) r->qsum[b] += q;
		++r->anno[0<<2|is_diff<<1|bam1_strand(p->b)];
		min_dist = p->b->core.l_qseq - 1 - p->qpos;
		if (min_dist > p->qpos) min_dist = p->qpos;
		if (min_dist > CAP_DIST) min_dist = CAP_DIST;
		r->anno[1<<2|is_diff<<1|0] += baseQ;
		r->anno[1<<2|is_diff<<1|1] += baseQ * baseQ;
		r->anno[2<<2|is_diff<<1|0] += mapQ;
		r->anno[2<<2|is_diff<<1|1] += mapQ * mapQ;
		r->anno[3<<2|is_diff<<1|0] += min_dist;
		r->anno[3<<2|is_diff<<1|1] += min_dist * min_dist;

        // collect read positions for ReadPosBias
        int len, pos = get_position(p, &len);
        int epos = (double)pos/(len+1) * bca->npos;
        if ( bam1_seqi(bam1_seq(p->b),p->qpos) == ref_base )
            bca->ref_pos[epos]++;
        else
            bca->alt_pos[epos]++;
	}
	r->depth = n; r->ori_depth = ori_depth;
	// glfgen
	errmod_cal(bca->e, n, 5, bca->bases, r->p);
	return r->depth;
}

double mann_whitney_1947(int n, int m, int U)
{
    if (U<0) return 0;
    if (n==0||m==0) return U==0 ? 1 : 0;
    return (double)n/(n+m)*mann_whitney_1947(n-1,m,U-m) + (double)m/(n+m)*mann_whitney_1947(n,m-1,U);
}

void calc_ReadPosBias(bcf_callaux_t *bca, bcf_call_t *call)
{
    int i, nref = 0, nalt = 0;
    unsigned long int U = 0;
    for (i=0; i<bca->npos; i++) 
    {
        nref += bca->ref_pos[i];
        nalt += bca->alt_pos[i];
        U += nref*bca->alt_pos[i];
        bca->ref_pos[i] = 0;
        bca->alt_pos[i] = 0;
    }
#if 0
//todo
    double var = 0, avg = (double)(nref+nalt)/bca->npos;
    for (i=0; i<bca->npos; i++) 
    {
        double ediff = bca->ref_pos[i] + bca->alt_pos[i] - avg;
        var += ediff*ediff;
        bca->ref_pos[i] = 0;
        bca->alt_pos[i] = 0;
    }
    call->read_pos.avg = avg;
    call->read_pos.var = sqrt(var/bca->npos);
    call->read_pos.dp  = nref+nalt;
#endif
    if ( !nref || !nalt )
    {
        call->read_pos_bias = -1;
        return;
    }

    if ( nref>=8 || nalt>=8 )
    {
        // normal approximation
        double mean = ((double)nref*nalt+1.0)/2.0;
        double var2 = (double)nref*nalt*(nref+nalt+1.0)/12.0;
        double z    = (U-mean)/sqrt(var2);
        call->read_pos_bias = z;
        //fprintf(stderr,"nref=%d  nalt=%d  U=%ld  mean=%e  var=%e  zval=%e\n", nref,nalt,U,mean,sqrt(var2),call->read_pos_bias);
    }
    else
    {
        double p = mann_whitney_1947(nalt,nref,U);
        // biased form claimed by GATK to behave better empirically
        // double var2 = (1.0+1.0/(nref+nalt+1.0))*(double)nref*nalt*(nref+nalt+1.0)/12.0;
        double var2 = (double)nref*nalt*(nref+nalt+1.0)/12.0;
        double z;
        if ( p >= 1./sqrt(var2*2*M_PI) ) z = 0;   // equal to mean
        else
        {
            if ( U >= nref*nalt/2. ) z = sqrt(-2*log(sqrt(var2*2*M_PI)*p));
            else z = -sqrt(-2*log(sqrt(var2*2*M_PI)*p));
        }
        call->read_pos_bias = z;
        //fprintf(stderr,"nref=%d  nalt=%d  U=%ld  p=%e var2=%e  zval=%e\n", nref,nalt,U, p,var2,call->read_pos_bias);
    }
}

float mean_diff_to_prob(float mdiff, int dp, int readlen)
{
    if ( dp==2 )
    {
        if ( mdiff==0 )
            return (2.0*readlen + 4.0*(readlen-1.0))/((float)readlen*readlen);
        else
            return 8.0*(readlen - 4.0*mdiff)/((float)readlen*readlen);
    }

    // This is crude empirical approximation and is not very accurate for
    // shorter read lengths (<100bp). There certainly is a room for
    // improvement.
    const float mv[24][2] = { {0,0}, {0,0}, {0,0},
        { 9.108, 4.934}, { 9.999, 3.991}, {10.273, 3.485}, {10.579, 3.160},
        {10.828, 2.889}, {11.014, 2.703}, {11.028, 2.546}, {11.244, 2.391},
        {11.231, 2.320}, {11.323, 2.138}, {11.403, 2.123}, {11.394, 1.994},
        {11.451, 1.928}, {11.445, 1.862}, {11.516, 1.815}, {11.560, 1.761},
        {11.544, 1.728}, {11.605, 1.674}, {11.592, 1.652}, {11.674, 1.613},
        {11.641, 1.570} };

    float m, v;
    if ( dp>=24 )
    {
        m = readlen/8.;
        if (dp>100) dp = 100;
        v = 1.476/(0.182*pow(dp,0.514));
        v = v*(readlen/100.);
    }
    else
    {
        m = mv[dp][0];
        v = mv[dp][1];
        m = m*readlen/100.;
        v = v*readlen/100.;
        v *= 1.2;   // allow more variability
    }
    return 1.0/(v*sqrt(2*M_PI)) * exp(-0.5*((mdiff-m)/v)*((mdiff-m)/v));
}

void calc_vdb(bcf_callaux_t *bca, bcf_call_t *call)
{
    int i, dp = 0;
    float mean_pos = 0, mean_diff = 0;
    for (i=0; i<bca->npos; i++)
    {
        if ( !bca->alt_pos[i] ) continue;
        dp += bca->alt_pos[i];
        int j = i<bca->npos/2 ? i : bca->npos - i;
        mean_pos += bca->alt_pos[i]*j;
    }
    if ( dp<2 )
    {
        call->vdb = -1;
        return;
    }
    mean_pos /= dp;
    for (i=0; i<bca->npos; i++)
    {
        if ( !bca->alt_pos[i] ) continue;
        int j = i<bca->npos/2 ? i : bca->npos - i;
        mean_diff += bca->alt_pos[i] * fabs(j - mean_pos);
    }
    mean_diff /= dp;
    call->vdb = mean_diff_to_prob(mean_diff, dp, bca->npos);
}

/**
 *  bcf_call_combine() - sets the PL array and VDB, RPB annotations, finds the top two alleles
 *  @n:         number of samples
 *  @calls:     each sample's calls
 *  @bca:       auxiliary data structure for holding temporary values
 *  @ref_base:  the reference base
 *  @call:      filled with the annotations
 */
int bcf_call_combine(int n, const bcf_callret1_t *calls, bcf_callaux_t *bca, int ref_base /*4-bit*/, bcf_call_t *call)
{
	int ref4, i, j, qsum[4];
	int64_t tmp;
	if (ref_base >= 0) {
		call->ori_ref = ref4 = bam_nt16_nt4_table[ref_base];
		if (ref4 > 4) ref4 = 4;
	} else call->ori_ref = -1, ref4 = 0;
	// calculate qsum
	memset(qsum, 0, 4 * sizeof(int));
	for (i = 0; i < n; ++i)
		for (j = 0; j < 4; ++j)
			qsum[j] += calls[i].qsum[j];
    int qsum_tot=0;
    for (j=0; j<4; j++) { qsum_tot += qsum[j]; call->qsum[j] = 0; }
	for (j = 0; j < 4; ++j) qsum[j] = qsum[j] << 2 | j;
	// find the top 2 alleles
	for (i = 1; i < 4; ++i) // insertion sort
		for (j = i; j > 0 && qsum[j] < qsum[j-1]; --j)
			tmp = qsum[j], qsum[j] = qsum[j-1], qsum[j-1] = tmp;
	// set the reference allele and alternative allele(s)
	for (i = 0; i < 5; ++i) call->a[i] = -1;
	call->unseen = -1;
	call->a[0] = ref4;
	for (i = 3, j = 1; i >= 0; --i) {
		if ((qsum[i]&3) != ref4) {
			if (qsum[i]>>2 != 0) 
            {
                if ( j<4 ) call->qsum[j] = (float)(qsum[i]>>2)/qsum_tot; // ref N can make j>=4
                call->a[j++]  = qsum[i]&3;
            }
			else break;
		}
        else 
            call->qsum[0] = (float)(qsum[i]>>2)/qsum_tot;
	}
	if (ref_base >= 0) { // for SNPs, find the "unseen" base
		if (((ref4 < 4 && j < 4) || (ref4 == 4 && j < 5)) && i >= 0)
			call->unseen = j, call->a[j++] = qsum[i]&3;
		call->n_alleles = j;
	} else {
		call->n_alleles = j;
		if (call->n_alleles == 1) return -1; // no reliable supporting read. stop doing anything
	}
	// set the PL array
	if (call->n < n) {
		call->n = n;
		call->PL = realloc(call->PL, 15 * n);
	}
	{
		int x, g[15], z;
		double sum_min = 0.;
		x = call->n_alleles * (call->n_alleles + 1) / 2;
		// get the possible genotypes
		for (i = z = 0; i < call->n_alleles; ++i)
			for (j = 0; j <= i; ++j)
				g[z++] = call->a[j] * 5 + call->a[i];
		for (i = 0; i < n; ++i) {
			uint8_t *PL = call->PL + x * i;
			const bcf_callret1_t *r = calls + i;
			float min = 1e37;
			for (j = 0; j < x; ++j)
				if (min > r->p[g[j]]) min = r->p[g[j]];
			sum_min += min;
			for (j = 0; j < x; ++j) {
				int y;
				y = (int)(r->p[g[j]] - min + .499);
				if (y > 255) y = 255;
				PL[j] = y;
			}
		}
//		if (ref_base < 0) fprintf(stderr, "%d,%d,%f,%d\n", call->n_alleles, x, sum_min, call->unseen);
		call->shift = (int)(sum_min + .499);
	}
	// combine annotations
	memset(call->anno, 0, 16 * sizeof(int));
	for (i = call->depth = call->ori_depth = 0, tmp = 0; i < n; ++i) {
		call->depth += calls[i].depth;
		call->ori_depth += calls[i].ori_depth;
		for (j = 0; j < 16; ++j) call->anno[j] += calls[i].anno[j];
	}

    calc_vdb(bca, call);
    calc_ReadPosBias(bca, call);

	return 0;
}

int bcf_call2bcf(int tid, int pos, bcf_call_t *bc, bcf1_t *b, bcf_callret1_t *bcr, int fmt_flag,
				 const bcf_callaux_t *bca, const char *ref)
{
	extern double kt_fisher_exact(int n11, int n12, int n21, int n22, double *_left, double *_right, double *two);
	kstring_t s;
	int i, j;
	b->n_smpl = bc->n;
	b->tid = tid; b->pos = pos; b->qual = 0;
	s.s = b->str; s.m = b->m_str; s.l = 0;
	kputc('\0', &s);
	if (bc->ori_ref < 0) { // an indel
		// write REF
		kputc(ref[pos], &s);
		for (j = 0; j < bca->indelreg; ++j) kputc(ref[pos+1+j], &s);
		kputc('\0', &s);
		// write ALT
		kputc(ref[pos], &s);
		for (i = 1; i < 4; ++i) {
			if (bc->a[i] < 0) break;
			if (i > 1) {
				kputc(',', &s); kputc(ref[pos], &s);
			}
			if (bca->indel_types[bc->a[i]] < 0) { // deletion
				for (j = -bca->indel_types[bc->a[i]]; j < bca->indelreg; ++j)
					kputc(ref[pos+1+j], &s);
			} else { // insertion; cannot be a reference unless a bug
				char *inscns = &bca->inscns[bc->a[i] * bca->maxins];
				for (j = 0; j < bca->indel_types[bc->a[i]]; ++j)
					kputc("ACGTN"[(int)inscns[j]], &s);
				for (j = 0; j < bca->indelreg; ++j) kputc(ref[pos+1+j], &s);
			}
		}
		kputc('\0', &s);
	} else { // a SNP
		kputc("ACGTN"[bc->ori_ref], &s); kputc('\0', &s);
		for (i = 1; i < 5; ++i) {
			if (bc->a[i] < 0) break;
			if (i > 1) kputc(',', &s);
			kputc(bc->unseen == i? 'X' : "ACGT"[bc->a[i]], &s);
		}
		kputc('\0', &s);
	}
	kputc('\0', &s);
	// INFO
	if (bc->ori_ref < 0) ksprintf(&s,"INDEL;IS=%d,%f;", bca->max_support, bca->max_frac);
	kputs("DP=", &s); kputw(bc->ori_depth, &s); kputs(";I16=", &s);
	for (i = 0; i < 16; ++i) {
		if (i) kputc(',', &s);
		kputw(bc->anno[i], &s);
	}
    //ksprintf(&s,";RPS=%d,%f,%f", bc->read_pos.dp,bc->read_pos.avg,bc->read_pos.var);
    ksprintf(&s,";QS=%f,%f,%f,%f", bc->qsum[0],bc->qsum[1],bc->qsum[2],bc->qsum[3]);
    if (bc->vdb != -1)
        ksprintf(&s, ";VDB=%e", bc->vdb);
    if (bc->read_pos_bias != -1 )
        ksprintf(&s, ";RPB=%e", bc->read_pos_bias);
	kputc('\0', &s);
	// FMT
	kputs("PL", &s);
	if (bcr && fmt_flag) {
		if (fmt_flag & B2B_FMT_DP) kputs(":DP", &s);
		if (fmt_flag & B2B_FMT_DV) kputs(":DV", &s);
		if (fmt_flag & B2B_FMT_SP) kputs(":SP", &s);
	}
	kputc('\0', &s);
	b->m_str = s.m; b->str = s.s; b->l_str = s.l;
	bcf_sync(b);
	memcpy(b->gi[0].data, bc->PL, b->gi[0].len * bc->n);
	if (bcr && fmt_flag) {
		uint16_t *dp = (fmt_flag & B2B_FMT_DP)? b->gi[1].data : 0;
		uint16_t *dv = (fmt_flag & B2B_FMT_DV)? b->gi[1 + ((fmt_flag & B2B_FMT_DP) != 0)].data : 0;
		int32_t  *sp = (fmt_flag & B2B_FMT_SP)? b->gi[1 + ((fmt_flag & B2B_FMT_DP) != 0) + ((fmt_flag & B2B_FMT_DV) != 0)].data : 0;
		for (i = 0; i < bc->n; ++i) {
			bcf_callret1_t *p = bcr + i;
			if (dp) dp[i] = p->depth  < 0xffff? p->depth  : 0xffff;
			if (dv) dv[i] = p->n_supp < 0xffff? p->n_supp : 0xffff;
			if (sp) {
				if (p->anno[0] + p->anno[1] < 2 || p->anno[2] + p->anno[3] < 2
					|| p->anno[0] + p->anno[2] < 2 || p->anno[1] + p->anno[3] < 2)
				{
					sp[i] = 0;
				} else {
					double left, right, two;
					int x;
					kt_fisher_exact(p->anno[0], p->anno[1], p->anno[2], p->anno[3], &left, &right, &two);
					x = (int)(-4.343 * log(two) + .499);
					if (x > 255) x = 255;
					sp[i] = x;
				}
			}
		}
	}
	return 0;
}