File: kprobaln.c

package info (click to toggle)
samtools-legacy 0.1.19-4
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 1,980 kB
  • sloc: ansic: 22,454; perl: 3,037; makefile: 214; java: 158; python: 141
file content (280 lines) | stat: -rw-r--r-- 10,675 bytes parent folder | download | duplicates (21)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
/* The MIT License

   Copyright (c) 2003-2006, 2008-2010, by Heng Li <lh3lh3@live.co.uk>

   Permission is hereby granted, free of charge, to any person obtaining
   a copy of this software and associated documentation files (the
   "Software"), to deal in the Software without restriction, including
   without limitation the rights to use, copy, modify, merge, publish,
   distribute, sublicense, and/or sell copies of the Software, and to
   permit persons to whom the Software is furnished to do so, subject to
   the following conditions:

   The above copyright notice and this permission notice shall be
   included in all copies or substantial portions of the Software.

   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
   EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
   MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
   NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
   BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
   ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
   CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
   SOFTWARE.
*/

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <math.h>
#include "kprobaln.h"

/*****************************************
 * Probabilistic banded glocal alignment *
 *****************************************/

#define EI .25
#define EM .33333333333

static float g_qual2prob[256];

#define set_u(u, b, i, k) { int x=(i)-(b); x=x>0?x:0; (u)=((k)-x+1)*3; }

kpa_par_t kpa_par_def = { 0.001, 0.1, 10 };
kpa_par_t kpa_par_alt = { 0.0001, 0.01, 10 };

/*
  The topology of the profile HMM:

           /\             /\        /\             /\
           I[1]           I[k-1]    I[k]           I[L]
            ^   \      \    ^    \   ^   \      \   ^
            |    \      \   |     \  |    \      \  |
    M[0]   M[1] -> ... -> M[k-1] -> M[k] -> ... -> M[L]   M[L+1]
                \      \/        \/      \/      /
                 \     /\        /\      /\     /
                       -> D[k-1] -> D[k] ->

   M[0] points to every {M,I}[k] and every {M,I}[k] points M[L+1].

   On input, _ref is the reference sequence and _query is the query
   sequence. Both are sequences of 0/1/2/3/4 where 4 stands for an
   ambiguous residue. iqual is the base quality. c sets the gap open
   probability, gap extension probability and band width.

   On output, state and q are arrays of length l_query. The higher 30
   bits give the reference position the query base is matched to and the
   lower two bits can be 0 (an alignment match) or 1 (an
   insertion). q[i] gives the phred scaled posterior probability of
   state[i] being wrong.
 */
int kpa_glocal(const uint8_t *_ref, int l_ref, const uint8_t *_query, int l_query, const uint8_t *iqual,
			   const kpa_par_t *c, int *state, uint8_t *q)
{
	double **f, **b = 0, *s, m[9], sI, sM, bI, bM, pb;
	float *qual, *_qual;
	const uint8_t *ref, *query;
	int bw, bw2, i, k, is_diff = 0, is_backward = 1, Pr;

    if ( l_ref<=0 || l_query<=0 ) return 0; // FIXME: this may not be an ideal fix, just prevents sefgault

	/*** initialization ***/
	is_backward = state && q? 1 : 0;
	ref = _ref - 1; query = _query - 1; // change to 1-based coordinate
	bw = l_ref > l_query? l_ref : l_query;
	if (bw > c->bw) bw = c->bw;
	if (bw < abs(l_ref - l_query)) bw = abs(l_ref - l_query);
	bw2 = bw * 2 + 1;
	// allocate the forward and backward matrices f[][] and b[][] and the scaling array s[]
	f = calloc(l_query+1, sizeof(void*));
	if (is_backward) b = calloc(l_query+1, sizeof(void*));
	for (i = 0; i <= l_query; ++i) {    // FIXME: this will lead in segfault for l_query==0
		f[i] = calloc(bw2 * 3 + 6, sizeof(double)); // FIXME: this is over-allocated for very short seqs
		if (is_backward) b[i] = calloc(bw2 * 3 + 6, sizeof(double));
	}
	s = calloc(l_query+2, sizeof(double)); // s[] is the scaling factor to avoid underflow
	// initialize qual
	_qual = calloc(l_query, sizeof(float));
	if (g_qual2prob[0] == 0)
		for (i = 0; i < 256; ++i)
			g_qual2prob[i] = pow(10, -i/10.);
	for (i = 0; i < l_query; ++i) _qual[i] = g_qual2prob[iqual? iqual[i] : 30];
	qual = _qual - 1;
	// initialize transition probability
	sM = sI = 1. / (2 * l_query + 2); // the value here seems not to affect results; FIXME: need proof
	m[0*3+0] = (1 - c->d - c->d) * (1 - sM); m[0*3+1] = m[0*3+2] = c->d * (1 - sM);
	m[1*3+0] = (1 - c->e) * (1 - sI); m[1*3+1] = c->e * (1 - sI); m[1*3+2] = 0.;
	m[2*3+0] = 1 - c->e; m[2*3+1] = 0.; m[2*3+2] = c->e;
	bM = (1 - c->d) / l_ref; bI = c->d / l_ref; // (bM+bI)*l_ref==1
	/*** forward ***/
	// f[0]
	set_u(k, bw, 0, 0);
	f[0][k] = s[0] = 1.;
	{ // f[1]
		double *fi = f[1], sum;
		int beg = 1, end = l_ref < bw + 1? l_ref : bw + 1, _beg, _end;
		for (k = beg, sum = 0.; k <= end; ++k) {
			int u;
			double e = (ref[k] > 3 || query[1] > 3)? 1. : ref[k] == query[1]? 1. - qual[1] : qual[1] * EM;
			set_u(u, bw, 1, k);
			fi[u+0] = e * bM; fi[u+1] = EI * bI;
			sum += fi[u] + fi[u+1];
		}
		// rescale
		s[1] = sum;
		set_u(_beg, bw, 1, beg); set_u(_end, bw, 1, end); _end += 2;
		for (k = _beg; k <= _end; ++k) fi[k] /= sum;
	}
	// f[2..l_query]
	for (i = 2; i <= l_query; ++i) {
		double *fi = f[i], *fi1 = f[i-1], sum, qli = qual[i];
		int beg = 1, end = l_ref, x, _beg, _end;
		uint8_t qyi = query[i];
		x = i - bw; beg = beg > x? beg : x; // band start
		x = i + bw; end = end < x? end : x; // band end
		for (k = beg, sum = 0.; k <= end; ++k) {
			int u, v11, v01, v10;
			double e;
			e = (ref[k] > 3 || qyi > 3)? 1. : ref[k] == qyi? 1. - qli : qli * EM;
			set_u(u, bw, i, k); set_u(v11, bw, i-1, k-1); set_u(v10, bw, i-1, k); set_u(v01, bw, i, k-1);
			fi[u+0] = e * (m[0] * fi1[v11+0] + m[3] * fi1[v11+1] + m[6] * fi1[v11+2]);
			fi[u+1] = EI * (m[1] * fi1[v10+0] + m[4] * fi1[v10+1]);
			fi[u+2] = m[2] * fi[v01+0] + m[8] * fi[v01+2];
			sum += fi[u] + fi[u+1] + fi[u+2];
//			fprintf(stderr, "F (%d,%d;%d): %lg,%lg,%lg\n", i, k, u, fi[u], fi[u+1], fi[u+2]); // DEBUG
		}
		// rescale
		s[i] = sum;
		set_u(_beg, bw, i, beg); set_u(_end, bw, i, end); _end += 2;
		for (k = _beg, sum = 1./sum; k <= _end; ++k) fi[k] *= sum;
	}
	{ // f[l_query+1]
		double sum;
		for (k = 1, sum = 0.; k <= l_ref; ++k) {
			int u;
			set_u(u, bw, l_query, k);
			if (u < 3 || u >= bw2*3+3) continue;
		    sum += f[l_query][u+0] * sM + f[l_query][u+1] * sI;
		}
		s[l_query+1] = sum; // the last scaling factor
	}
	{ // compute likelihood
		double p = 1., Pr1 = 0.;
		for (i = 0; i <= l_query + 1; ++i) {
			p *= s[i];
			if (p < 1e-100) Pr1 += -4.343 * log(p), p = 1.;
		}
		Pr1 += -4.343 * log(p * l_ref * l_query);
		Pr = (int)(Pr1 + .499);
		if (!is_backward) { // skip backward and MAP
			for (i = 0; i <= l_query; ++i) free(f[i]);
			free(f); free(s); free(_qual);
			return Pr;
		}
	}
	/*** backward ***/
	// b[l_query] (b[l_query+1][0]=1 and thus \tilde{b}[][]=1/s[l_query+1]; this is where s[l_query+1] comes from)
	for (k = 1; k <= l_ref; ++k) {
		int u;
		double *bi = b[l_query];
		set_u(u, bw, l_query, k);
		if (u < 3 || u >= bw2*3+3) continue;
		bi[u+0] = sM / s[l_query] / s[l_query+1]; bi[u+1] = sI / s[l_query] / s[l_query+1];
	}
	// b[l_query-1..1]
	for (i = l_query - 1; i >= 1; --i) {
		int beg = 1, end = l_ref, x, _beg, _end;
		double *bi = b[i], *bi1 = b[i+1], y = (i > 1), qli1 = qual[i+1];
		uint8_t qyi1 = query[i+1];
		x = i - bw; beg = beg > x? beg : x;
		x = i + bw; end = end < x? end : x;
		for (k = end; k >= beg; --k) {
			int u, v11, v01, v10;
			double e;
			set_u(u, bw, i, k); set_u(v11, bw, i+1, k+1); set_u(v10, bw, i+1, k); set_u(v01, bw, i, k+1);
			e = (k >= l_ref? 0 : (ref[k+1] > 3 || qyi1 > 3)? 1. : ref[k+1] == qyi1? 1. - qli1 : qli1 * EM) * bi1[v11];
			bi[u+0] = e * m[0] + EI * m[1] * bi1[v10+1] + m[2] * bi[v01+2]; // bi1[v11] has been foled into e.
			bi[u+1] = e * m[3] + EI * m[4] * bi1[v10+1];
			bi[u+2] = (e * m[6] + m[8] * bi[v01+2]) * y;
//			fprintf(stderr, "B (%d,%d;%d): %lg,%lg,%lg\n", i, k, u, bi[u], bi[u+1], bi[u+2]); // DEBUG
		}
		// rescale
		set_u(_beg, bw, i, beg); set_u(_end, bw, i, end); _end += 2;
		for (k = _beg, y = 1./s[i]; k <= _end; ++k) bi[k] *= y;
	}
	{ // b[0]
		int beg = 1, end = l_ref < bw + 1? l_ref : bw + 1;
		double sum = 0.;
		for (k = end; k >= beg; --k) {
			int u;
			double e = (ref[k] > 3 || query[1] > 3)? 1. : ref[k] == query[1]? 1. - qual[1] : qual[1] * EM;
			set_u(u, bw, 1, k);
			if (u < 3 || u >= bw2*3+3) continue;
		    sum += e * b[1][u+0] * bM + EI * b[1][u+1] * bI;
		}
		set_u(k, bw, 0, 0);
		pb = b[0][k] = sum / s[0]; // if everything works as is expected, pb == 1.0
	}
	is_diff = fabs(pb - 1.) > 1e-7? 1 : 0;
	/*** MAP ***/
	for (i = 1; i <= l_query; ++i) {
		double sum = 0., *fi = f[i], *bi = b[i], max = 0.;
		int beg = 1, end = l_ref, x, max_k = -1;
		x = i - bw; beg = beg > x? beg : x;
		x = i + bw; end = end < x? end : x;
		for (k = beg; k <= end; ++k) {
			int u;
			double z;
			set_u(u, bw, i, k);
			z = fi[u+0] * bi[u+0]; if (z > max) max = z, max_k = (k-1)<<2 | 0; sum += z;
			z = fi[u+1] * bi[u+1]; if (z > max) max = z, max_k = (k-1)<<2 | 1; sum += z;
		}
		max /= sum; sum *= s[i]; // if everything works as is expected, sum == 1.0
		if (state) state[i-1] = max_k;
		if (q) k = (int)(-4.343 * log(1. - max) + .499), q[i-1] = k > 100? 99 : k;
#ifdef _MAIN
		fprintf(stderr, "(%.10lg,%.10lg) (%d,%d:%c,%c:%d) %lg\n", pb, sum, i-1, max_k>>2,
				"ACGT"[query[i]], "ACGT"[ref[(max_k>>2)+1]], max_k&3, max); // DEBUG
#endif
	}
	/*** free ***/
	for (i = 0; i <= l_query; ++i) {
		free(f[i]); free(b[i]);
	}
	free(f); free(b); free(s); free(_qual);
	return Pr;
}

#ifdef _MAIN
#include <unistd.h>
int main(int argc, char *argv[])
{
	uint8_t conv[256], *iqual, *ref, *query;
	int c, l_ref, l_query, i, q = 30, b = 10, P;
	while ((c = getopt(argc, argv, "b:q:")) >= 0) {
		switch (c) {
		case 'b': b = atoi(optarg); break;
		case 'q': q = atoi(optarg); break;
		}
	}
	if (optind + 2 > argc) {
		fprintf(stderr, "Usage: %s [-q %d] [-b %d] <ref> <query>\n", argv[0], q, b); // example: acttc attc
		return 1;
	}
	memset(conv, 4, 256);
	conv['a'] = conv['A'] = 0; conv['c'] = conv['C'] = 1;
	conv['g'] = conv['G'] = 2; conv['t'] = conv['T'] = 3;
	ref = (uint8_t*)argv[optind]; query = (uint8_t*)argv[optind+1];
	l_ref = strlen((char*)ref); l_query = strlen((char*)query);
	for (i = 0; i < l_ref; ++i) ref[i] = conv[ref[i]];
	for (i = 0; i < l_query; ++i) query[i] = conv[query[i]];
	iqual = malloc(l_query);
	memset(iqual, q, l_query);
	kpa_par_def.bw = b;
	P = kpa_glocal(ref, l_ref, query, l_query, iqual, &kpa_par_alt, 0, 0);
	fprintf(stderr, "%d\n", P);
	free(iqual);
	return 0;
}
#endif