1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
|
#!/usr/bin/env luajit
-----------------------------------
-- BEGIN: routines from klib.lua --
-----------------------------------
-- Description: getopt() translated from the BSD getopt(); compatible with the default Unix getopt()
--[[ Example:
for o, a in os.getopt(arg, 'a:b') do
print(o, a)
end
]]--
function os.getopt(args, ostr)
local arg, place = nil, 0;
return function ()
if place == 0 then -- update scanning pointer
place = 1
if #args == 0 or args[1]:sub(1, 1) ~= '-' then place = 0; return nil end
if #args[1] >= 2 then
place = place + 1
if args[1]:sub(2, 2) == '-' then -- found "--"
table.remove(args, 1);
place = 0
return nil;
end
end
end
local optopt = place <= #args[1] and args[1]:sub(place, place) or nil
place = place + 1;
local oli = optopt and ostr:find(optopt) or nil
if optopt == ':' or oli == nil then -- unknown option
if optopt == '-' then return nil end
if place > #args[1] then
table.remove(args, 1);
place = 0;
end
return '?';
end
oli = oli + 1;
if ostr:sub(oli, oli) ~= ':' then -- do not need argument
arg = nil;
if place > #args[1] then
table.remove(args, 1);
place = 0;
end
else -- need an argument
if place <= #args[1] then -- no white space
arg = args[1]:sub(place);
else
table.remove(args, 1);
if #args == 0 then -- an option requiring argument is the last one
place = 0;
if ostr:sub(1, 1) == ':' then return ':' end
return '?';
else arg = args[1] end
end
table.remove(args, 1);
place = 0;
end
return optopt, arg;
end
end
-- Description: string split
function string:split(sep, n)
local a, start = {}, 1;
sep = sep or "%s+";
repeat
local b, e = self:find(sep, start);
if b == nil then
table.insert(a, self:sub(start));
break
end
a[#a+1] = self:sub(start, b - 1);
start = e + 1;
if n and #a == n then
table.insert(a, self:sub(start));
break
end
until start > #self;
return a;
end
-- Description: smart file open
function io.xopen(fn, mode)
mode = mode or 'r';
if fn == nil then return io.stdin;
elseif fn == '-' then return (mode == 'r' and io.stdin) or io.stdout;
elseif fn:sub(-3) == '.gz' then return (mode == 'r' and io.popen('gzip -dc ' .. fn, 'r')) or io.popen('gzip > ' .. fn, 'w');
elseif fn:sub(-4) == '.bz2' then return (mode == 'r' and io.popen('bzip2 -dc ' .. fn, 'r')) or io.popen('bgzip2 > ' .. fn, 'w');
else return io.open(fn, mode) end
end
-- Description: log gamma function
-- Required by: math.lbinom()
-- Reference: AS245, 2nd algorithm, http://lib.stat.cmu.edu/apstat/245
function math.lgamma(z)
local x;
x = 0.1659470187408462e-06 / (z+7);
x = x + 0.9934937113930748e-05 / (z+6);
x = x - 0.1385710331296526 / (z+5);
x = x + 12.50734324009056 / (z+4);
x = x - 176.6150291498386 / (z+3);
x = x + 771.3234287757674 / (z+2);
x = x - 1259.139216722289 / (z+1);
x = x + 676.5203681218835 / z;
x = x + 0.9999999999995183;
return math.log(x) - 5.58106146679532777 - z + (z-0.5) * math.log(z+6.5);
end
-- Description: regularized incomplete gamma function
-- Dependent on: math.lgamma()
--[[
Formulas are taken from Wiki, with additional input from Numerical
Recipes in C (for modified Lentz's algorithm) and AS245
(http://lib.stat.cmu.edu/apstat/245).
A good online calculator is available at:
http://www.danielsoper.com/statcalc/calc23.aspx
It calculates upper incomplete gamma function, which equals
math.igamma(s,z,true)*math.exp(math.lgamma(s))
]]--
function math.igamma(s, z, complement)
local function _kf_gammap(s, z)
local sum, x = 1, 1;
for k = 1, 100 do
x = x * z / (s + k);
sum = sum + x;
if x / sum < 1e-14 then break end
end
return math.exp(s * math.log(z) - z - math.lgamma(s + 1.) + math.log(sum));
end
local function _kf_gammaq(s, z)
local C, D, f, TINY;
f = 1. + z - s; C = f; D = 0.; TINY = 1e-290;
-- Modified Lentz's algorithm for computing continued fraction. See Numerical Recipes in C, 2nd edition, section 5.2
for j = 1, 100 do
local d;
local a, b = j * (s - j), j*2 + 1 + z - s;
D = b + a * D;
if D < TINY then D = TINY end
C = b + a / C;
if C < TINY then C = TINY end
D = 1. / D;
d = C * D;
f = f * d;
if math.abs(d - 1) < 1e-14 then break end
end
return math.exp(s * math.log(z) - z - math.lgamma(s) - math.log(f));
end
if complement then
return ((z <= 1 or z < s) and 1 - _kf_gammap(s, z)) or _kf_gammaq(s, z);
else
return ((z <= 1 or z < s) and _kf_gammap(s, z)) or (1 - _kf_gammaq(s, z));
end
end
function math.brent(func, a, b, tol)
local gold1, gold2, tiny, max_iter = 1.6180339887, 0.3819660113, 1e-20, 100
local fa, fb = func(a, data), func(b, data)
if fb > fa then -- swap, such that f(a) > f(b)
a, b, fa, fb = b, a, fb, fa
end
local c = b + gold1 * (b - a)
local fc = func(c) -- golden section extrapolation
while fb > fc do
local bound = b + 100.0 * (c - b) -- the farthest point where we want to go
local r = (b - a) * (fb - fc)
local q = (b - c) * (fb - fa)
if math.abs(q - r) < tiny then -- avoid 0 denominator
tmp = q > r and tiny or 0.0 - tiny
else tmp = q - r end
u = b - ((b - c) * q - (b - a) * r) / (2.0 * tmp) -- u is the parabolic extrapolation point
if (b > u and u > c) or (b < u and u < c) then -- u lies between b and c
fu = func(u)
if fu < fc then -- (b,u,c) bracket the minimum
a, b, fa, fb = b, u, fb, fu
break
elseif fu > fb then -- (a,b,u) bracket the minimum
c, fc = u, fu
break
end
u = c + gold1 * (c - b)
fu = func(u) -- golden section extrapolation
elseif (c > u and u > bound) or (c < u and u < bound) then -- u lies between c and bound
fu = func(u)
if fu < fc then -- fb > fc > fu
b, c, u = c, u, c + gold1 * (c - b)
fb, fc, fu = fc, fu, func(u)
else -- (b,c,u) bracket the minimum
a, b, c = b, c, u
fa, fb, fc = fb, fc, fu
break
end
elseif (u > bound and bound > c) or (u < bound and bound < c) then -- u goes beyond the bound
u = bound
fu = func(u)
else -- u goes the other way around, use golden section extrapolation
u = c + gold1 * (c - b)
fu = func(u)
end
a, b, c = b, c, u
fa, fb, fc = fb, fc, fu
end
if a > c then a, c = c, a end -- swap
-- now, a<b<c, fa>fb and fb<fc, move on to Brent's algorithm
local e, d = 0, 0
local w, v, fw, fv
w, v = b, b
fw, fv = fb, fb
for iter = 1, max_iter do
local mid = 0.5 * (a + c)
local tol1 = tol * math.abs(b) + tiny
local tol2 = 2.0 * tol1
if math.abs(b - mid) <= tol2 - 0.5 * (c - a) then return fb, b end -- found
if math.abs(e) > tol1 then
-- related to parabolic interpolation
local r = (b - w) * (fb - fv)
local q = (b - v) * (fb - fw)
local p = (b - v) * q - (b - w) * r
q = 2.0 * (q - r)
if q > 0.0 then p = 0.0 - p
else q = 0.0 - q end
eold, e = e, d
if math.abs(p) >= math.abs(0.5 * q * eold) or p <= q * (a - b) or p >= q * (c - b) then
e = b >= mid and a - b or c - b
d = gold2 * e
else
d, u = p / q, b + d -- actual parabolic interpolation happens here
if u - a < tol2 or c - u < tol2 then
d = mid > b and tol1 or 0.0 - tol1
end
end
else -- golden section interpolation
e = b >= min and a - b or c - b
d = gold2 * e
end
u = fabs(d) >= tol1 and b + d or b + (d > 0.0 and tol1 or -tol1);
fu = func(u)
if fu <= fb then -- u is the minimum point so far
if u >= b then a = b
else c = b end
v, w, b = w, b, u
fv, fw, fb = fw, fb, fu
else -- adjust (a,c) and (u,v,w)
if u < b then a = u
else c = u end
if fu <= fw or w == b then
v, w = w, u
fv, fw = fw, fu
elseif fu <= fv or v == b or v == w then
v, fv = u, fu;
end
end
end
return fb, b
end
matrix = {}
-- Description: chi^2 test for contingency tables
-- Dependent on: math.igamma()
function matrix.chi2(a)
if #a == 2 and #a[1] == 2 then -- 2x2 table
local x, z
x = (a[1][1] + a[1][2]) * (a[2][1] + a[2][2]) * (a[1][1] + a[2][1]) * (a[1][2] + a[2][2])
if x == 0 then return 0, 1, false end
z = a[1][1] * a[2][2] - a[1][2] * a[2][1]
z = (a[1][1] + a[1][2] + a[2][1] + a[2][2]) * z * z / x
return z, math.igamma(.5, .5 * z, true), true
else -- generic table
local rs, cs, n, m, N, z = {}, {}, #a, #a[1], 0, 0
for i = 1, n do rs[i] = 0 end
for j = 1, m do cs[j] = 0 end
for i = 1, n do -- compute column sum and row sum
for j = 1, m do cs[j], rs[i] = cs[j] + a[i][j], rs[i] + a[i][j] end
end
for i = 1, n do N = N + rs[i] end
for i = 1, n do -- compute the chi^2 statistics
for j = 1, m do
local E = rs[i] * cs[j] / N;
z = z + (a[i][j] - E) * (a[i][j] - E) / E
end
end
return z, math.igamma(.5 * (n-1) * (m-1), .5 * z, true), true;
end
end
---------------------------------
-- END: routines from klib.lua --
---------------------------------
--------------------------
-- BEGIN: misc routines --
--------------------------
-- precompute an array for PL->probability conversion
-- @param m maximum PL
function algo_init_q2p(m)
local q2p = {}
for i = 0, m do
q2p[i] = math.pow(10, -i / 10)
end
return q2p
end
-- given the haplotype frequency, compute r^2
-- @param f 4 haplotype frequencies; f[] is 0-indexed.
-- @return r^2
function algo_r2(f)
local p = { f[0] + f[1], f[0] + f[2] }
local D = f[0] * f[3] - f[1] * f[2]
return (p[1] == 0 or p[2] == 0 or 1-p[1] == 0 or 1-p[2] == 0) and 0 or D * D / (p[1] * p[2] * (1 - p[1]) * (1 - p[2]))
end
-- parse a VCF line to get PL
-- @param q2p is computed by algo_init_q2p()
function text_parse_pl(t, q2p, parse_GT)
parse_GT = parse_GT == nil and true or false
local ht, gt, pl = {}, {}, {}
local s, j0 = t[9]:split(':'), 0
for j = 1, #s do
if s[j] == 'PL' then j0 = j break end
end
local has_GT = (s[1] == 'GT' and parse_GT) and true or false
for i = 10, #t do
if j0 > 0 then
local s = t[i]:split(':')
local a, b = 1, s[j0]:find(',')
pl[#pl+1] = q2p[tonumber(s[j0]:sub(a, b - 1))]
a, b = b + 1, s[j0]:find(',', b + 1)
pl[#pl+1] = q2p[tonumber(s[j0]:sub(a, b - 1))]
a, b = b + 1, s[j0]:find(',', b + 1)
pl[#pl+1] = q2p[tonumber(s[j0]:sub(a, (b and b - 1) or nil))]
end
if has_GT then
if t[i]:sub(1, 1) ~= '.' then
local g = tonumber(t[i]:sub(1, 1)) + tonumber(t[i]:sub(3, 3));
gt[#gt+1] = 1e-6; gt[#gt+1] = 1e-6; gt[#gt+1] = 1e-6
gt[#gt - 2 + g] = 1
ht[#ht+1] = tonumber(t[i]:sub(1, 1)); ht[#ht+1] = tonumber(t[i]:sub(3, 3));
else
gt[#gt+1] = 1; gt[#gt+1] = 1; gt[#gt+1] = 1
ht[#ht+1] = -1; ht[#ht+1] = -1;
end
end
-- print(t[i], pl[#pl-2], pl[#pl-1], pl[#pl], gt[#gt-2], gt[#gt-1], gt[#gt])
end
if #pl == 0 then pl = nil end
local x = has_GT and { t[1], t[2], ht, gt, pl } or { t[1], t[2], nil, nil, pl }
return x
end
-- Infer haplotype frequency
-- @param pdg genotype likelihoods P(D|g) generated by text_parse_pl(). pdg[] is 1-indexed.
-- @param eps precision [1e-5]
-- @return 2-locus haplotype frequencies, 0-indexed array
function algo_hapfreq2(pdg, eps)
eps = eps or 1e-5
local n, f = #pdg[1] / 3, {[0]=0.25, 0.25, 0.25, 0.25}
for iter = 1, 100 do
local F = {[0]=0, 0, 0, 0}
for i = 0, n - 1 do
local p1, p2 = {[0]=pdg[1][i*3+1], pdg[1][i*3+2], pdg[1][i*3+3]}, {[0]=pdg[2][i*3+1], pdg[2][i*3+2], pdg[2][i*3+3]}
local u = { [0]=
f[0] * (f[0] * p1[0] * p2[0] + f[1] * p1[0] * p2[1] + f[2] * p1[1] * p2[0] + f[3] * p1[1] * p2[1]),
f[1] * (f[0] * p1[0] * p2[1] + f[1] * p1[0] * p2[2] + f[2] * p1[1] * p2[1] + f[3] * p1[1] * p2[2]),
f[2] * (f[0] * p1[1] * p2[0] + f[1] * p1[1] * p2[1] + f[2] * p1[2] * p2[0] + f[3] * p1[2] * p2[1]),
f[3] * (f[0] * p1[1] * p2[1] + f[1] * p1[1] * p2[2] + f[2] * p1[2] * p2[1] + f[3] * p1[2] * p2[2])
}
local s = u[0] + u[1] + u[2] + u[3]
s = 1 / (s * n)
F[0] = F[0] + u[0] * s
F[1] = F[1] + u[1] * s
F[2] = F[2] + u[2] * s
F[3] = F[3] + u[3] * s
end
local e = 0
for k = 0, 3 do
e = math.abs(f[k] - F[k]) > e and math.abs(f[k] - F[k]) or e
end
for k = 0, 3 do f[k] = F[k] end
if e < eps then break end
-- print(f[0], f[1], f[2], f[3])
end
return f
end
------------------------
-- END: misc routines --
------------------------
---------------------
-- BEGIN: commands --
---------------------
-- CMD vcf2bgl: convert PL tagged VCF to Beagle input --
function cmd_vcf2bgl()
if #arg == 0 then
print("\nUsage: vcf2bgl.lua <in.vcf>")
print("\nNB: This command finds PL by matching /(\\d+),(\\d+),(\\d+)/.\n");
os.exit(1)
end
local lookup = {}
for i = 0, 10000 do lookup[i] = string.format("%.4f", math.pow(10, -i/10)) end
local fp = io.xopen(arg[1])
for l in fp:lines() do
if l:sub(1, 2) == '##' then -- meta lines; do nothing
elseif l:sub(1, 1) == '#' then -- sample lines
local t, s = l:split('\t'), {}
for i = 10, #t do s[#s+1] = t[i]; s[#s+1] = t[i]; s[#s+1] = t[i] end
print('marker', 'alleleA', 'alleleB', table.concat(s, '\t'))
else -- data line
local t = l:split('\t');
if t[5] ~= '.' and t[5]:find(",") == nil and #t[5] == 1 and #t[4] == 1 then -- biallic SNP
local x, z = -1, {};
if t[9]:find('PL') then
for i = 10, #t do
local AA, Aa, aa = t[i]:match('(%d+),(%d+),(%d+)')
AA = tonumber(AA); Aa = tonumber(Aa); aa = tonumber(aa);
if AA ~= nil then
z[#z+1] = lookup[AA]; z[#z+1] = lookup[Aa]; z[#z+1] = lookup[aa];
else z[#z+1] = 1; z[#z+1] = 1; z[#z+1] = 1; end
end
print(t[1]..':'..t[2], t[4], t[5], table.concat(z, '\t'))
elseif t[9]:find('GL') then
print('Error: not implemented')
os.exit(1)
end
end
end
end
fp:close()
end
-- CMD bgl2vcf: convert Beagle output to VCF
function cmd_bgl2vcf()
if #arg < 2 then
print('Usage: bgl2vcf.lua <in.phased> <in.gprobs>')
os.exit(1)
end
local fpp = io.xopen(arg[1]);
local fpg = io.xopen(arg[2]);
for lg in fpg:lines() do
local tp, tg, a = fpp:read():split('%s'), lg:split('%s', 4), {}
if tp[1] == 'I' then
for i = 3, #tp, 2 do a[#a+1] = tp[i] end
print('#CHROM', 'POS', 'ID', 'REF', 'ALT', 'QUAL', 'FILTER', 'INFO', 'FORMAT', table.concat(a, '\t'))
else
local chr, pos = tg[1]:match('(%S+):(%d+)$')
a = {chr, pos, '.', tg[2], tg[3], 30, '.', '.', 'GT'}
for i = 3, #tp, 2 do
a[#a+1] = ((tp[i] == tg[2] and 0) or 1) .. '|' .. ((tp[i+1] == tg[2] and 0) or 1)
end
print(table.concat(a, '\t'))
end
end
fpg:close(); fpp:close();
end
-- CMD freq: count alleles in each population
function cmd_freq()
-- parse the command line
local site_only = true; -- print site allele frequency or not
for c in os.getopt(arg, 's') do
if c == 's' then site_only = false end
end
if #arg == 0 then
print("\nUsage: vcfutils.lua freq [-s] <in.vcf> [samples.txt]\n")
print("NB: 1) This command only considers biallelic variants.")
print(" 2) Apply '-s' to get the allele frequency spectrum.")
print(" 3) 'samples.txt' is TAB-delimited with each line consisting of sample and population.")
print("")
os.exit(1)
end
-- read the sample-population pairs
local pop, sample = {}, {}
if #arg > 1 then
local fp = io.xopen(arg[2]);
for l in fp:lines() do
local s, p = l:match("^(%S+)%s+(%S+)"); -- sample, population pair
sample[s] = p; -- FIXME: check duplications
if pop[p] then table.insert(pop[p], s)
else pop[p] = {s} end
end
fp:close();
end
pop['NA'] = {}
-- parse VCF
fp = (#arg >= 2 and io.xopen(arg[1])) or io.stdin;
local col, cnt = {}, {};
for k in pairs(pop) do
col[k], cnt[k] = {}, {[0]=0};
end
for l in fp:lines() do
if l:sub(1, 2) == '##' then -- meta lines; do nothing
elseif l:sub(1, 1) == '#' then -- the sample line
local t, del_NA = l:split('\t'), true;
for i = 10, #t do
local k = sample[t[i]]
if k == nil then
k, del_NA = 'NA', false
table.insert(pop[k], t[i])
end
table.insert(col[k], i);
table.insert(cnt[k], 0);
table.insert(cnt[k], 0);
end
if del_NA then pop['NA'], col['NA'], cnt['NA'] = nil, nil, nil end
else -- data lines
local t = l:split('\t');
if t[5] ~= '.' and t[5]:find(",") == nil then -- biallic
if site_only == true then io.write(t[1], '\t', t[2], '\t', t[4], '\t', t[5]) end
for k, v in pairs(col) do
local ac, an = 0, 0;
for i = 1, #v do
local a1, a2 = t[v[i]]:match("^(%d).(%d)");
if a1 ~= nil then ac, an = ac + a1 + a2, an + 2 end
end
if site_only == true then io.write('\t', k, ':', an, ':', ac) end
if an == #cnt[k] then cnt[k][ac] = cnt[k][ac] + 1 end
end
if site_only == true then io.write('\n') end
end
end
end
fp:close();
-- print
if site_only == false then
for k, v in pairs(cnt) do
io.write(k .. "\t" .. #v);
for i = 0, #v do io.write("\t" .. v[i]) end
io.write('\n');
end
end
end
function cmd_vcf2chi2()
if #arg < 3 then
print("Usage: vcfutils.lua vcf2chi2 <in.vcf> <group1.list> <group2.list>");
os.exit(1)
end
local g = {};
-- read the list of groups
local fp = io.xopen(arg[2]);
for l in fp:lines() do local x = l:match("^(%S+)"); g[x] = 1 end -- FIXME: check duplicate
fp:close()
fp = io.xopen(arg[3]);
for l in fp:lines() do local x = l:match("^(%S+)"); g[x] = 2 end
fp:close()
-- process VCF
fp = io.xopen(arg[1])
local h = {{}, {}}
for l in fp:lines() do
if l:sub(1, 2) == '##' then print(l) -- meta lines; do nothing
elseif l:sub(1, 1) == '#' then -- sample lines
local t = l:split('\t');
for i = 10, #t do
if g[t[i]] == 1 then table.insert(h[1], i)
elseif g[t[i]] == 2 then table.insert(h[2], i) end
end
while #t > 8 do table.remove(t) end
print(table.concat(t, "\t"))
else -- data line
local t = l:split('\t');
if t[5] ~= '.' and t[5]:find(",") == nil then -- biallic
local a = {{0, 0}, {0, 0}}
for i = 1, 2 do
for _, k in pairs(h[i]) do
if t[k]:find("^0.0") then a[i][1] = a[i][1] + 2
elseif t[k]:find("^1.1") then a[i][2] = a[i][2] + 2
elseif t[k]:find("^0.1") or t[k]:find("^1.0") then
a[i][1], a[i][2] = a[i][1] + 1, a[i][2] + 1
end
end
end
local chi2, p, succ = matrix.chi2(a);
while #t > 8 do table.remove(t) end
--print(a[1][1], a[1][2], a[2][1], a[2][2], chi2, p);
if succ then print(table.concat(t, "\t") .. ";PCHI2=" .. string.format("%.3g", p)
.. string.format(';AF1=%.4g;AF2=%.4g,%.4g', (a[1][2]+a[2][2]) / (a[1][1]+a[1][2]+a[2][1]+a[2][2]),
a[1][2]/(a[1][1]+a[1][2]), a[2][2]/(a[2][1]+a[2][2])))
else print(table.concat(t, "\t")) end
end
end
end
fp:close()
end
-- CMD: compute r^2
function cmd_r2()
local w, is_ht, is_gt = 1, false, false
for o, a in os.getopt(arg, 'w:hg') do
if o == 'w' then w = tonumber(a)
elseif o == 'h' then is_ht, is_gt = true, true
elseif o == 'g' then is_gt = true
end
end
if #arg == 0 then
print("Usage: vcfutils.lua r2 [-hg] [-w 1] <in.vcf>")
os.exit(1)
end
local stack, fp, q2p = {}, io.xopen(arg[1]), algo_init_q2p(1023)
for l in fp:lines() do
if l:sub(1, 1) ~= '#' then
local t = l:split('\t')
local x = text_parse_pl(t, q2p)
if #t[5] == 1 and t[5] ~= '.' then -- biallelic
local r2 = {}
for k = 1, w do
if is_gt == false then -- use PL
if stack[k] then
local pdg = { stack[k][5], x[5] }
r2[#r2+1] = algo_r2(algo_hapfreq2(pdg))
else r2[#r2+1] = 0 end
elseif is_ht == false then -- use unphased GT
if stack[k] then
local pdg = { stack[k][4], x[4] }
r2[#r2+1] = algo_r2(algo_hapfreq2(pdg))
else r2[#r2+1] = 0 end
else -- use phased GT
if stack[k] then
local f, ht = { [0]=0, 0, 0, 0 }, { stack[k][3], x[3] }
for i = 1, #ht[1] do
local j = ht[1][i] * 2 + ht[2][i]
f[j] = f[j] + 1
end
local sum = f[0] + f[1] + f[2] + f[3]
for k = 0, 3 do f[k] = f[k] / sum end
r2[#r2+1] = algo_r2(f)
else r2[#r2+1] = 0 end
end
end
for k = 1, #r2 do
r2[k] = string.format('%.3f', r2[k])
end
print(x[1], x[2], table.concat(r2, '\t'))
if #stack == w then table.remove(stack, 1) end
stack[#stack+1] = x
end
end
end
fp:close()
end
-------------------
-- END: commands --
-------------------
-------------------
-- MAIN FUNCTION --
-------------------
if #arg == 0 then
print("\nUsage: vcfutils.lua <command> <arguments>\n")
print("Command: freq count biallelic alleles in each population")
print(" r2 compute r^2")
print(" vcf2chi2 compute 1-degree chi-square between two groups of samples")
print(" vcf2bgl convert PL annotated VCF to Beagle input")
print(" bgl2vcf convert Beagle input to VCF")
print("")
os.exit(1)
end
local cmd = arg[1]
table.remove(arg, 1)
if cmd == 'vcf2bgl' then cmd_vcf2bgl()
elseif cmd == 'bgl2vcf' then cmd_bgl2vcf()
elseif cmd == 'freq' then cmd_freq()
elseif cmd == 'r2' then cmd_r2()
elseif cmd == 'vcf2chi2' then cmd_vcf2chi2()
else
print('ERROR: unknown command "' .. cmd .. '"')
os.exit(1)
end
|