1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
|
/* sane - Scanner Access Now Easy.
Copyright (C) 2005, 2006 Pierre Willenbrock <pierre@pirsoft.dnsalias.org>
Copyright (C) 2010-2013 Stéphane Voltz <stef.dev@free.fr>
This file is part of the SANE package.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA.
As a special exception, the authors of SANE give permission for
additional uses of the libraries contained in this release of SANE.
The exception is that, if you link a SANE library with other files
to produce an executable, this does not by itself cause the
resulting executable to be covered by the GNU General Public
License. Your use of that executable is in no way restricted on
account of linking the SANE library code into it.
This exception does not, however, invalidate any other reasons why
the executable file might be covered by the GNU General Public
License.
If you submit changes to SANE to the maintainers to be included in
a subsequent release, you agree by submitting the changes that
those changes may be distributed with this exception intact.
If you write modifications of your own for SANE, it is your choice
whether to permit this exception to apply to your modifications.
If you do not wish that, delete this exception notice.
*/
/*
* Conversion filters for genesys backend
*/
/*8 bit*/
#define SINGLE_BYTE
#define BYTES_PER_COMPONENT 1
#define COMPONENT_TYPE uint8_t
#define FUNC_NAME(f) f ## _8
#include "genesys_conv_hlp.c"
#undef FUNC_NAME
#undef COMPONENT_TYPE
#undef BYTES_PER_COMPONENT
#undef SINGLE_BYTE
/*16 bit*/
#define DOUBLE_BYTE
#define BYTES_PER_COMPONENT 2
#define COMPONENT_TYPE uint16_t
#define FUNC_NAME(f) f ## _16
#include "genesys_conv_hlp.c"
#undef FUNC_NAME
#undef COMPONENT_TYPE
#undef BYTES_PER_COMPONENT
#undef DOUBLE_BYTE
static SANE_Status
genesys_reverse_bits(
uint8_t *src_data,
uint8_t *dst_data,
size_t bytes)
{
size_t i;
for(i = 0; i < bytes; i++) {
*dst_data++ = ~ *src_data++;
}
return SANE_STATUS_GOOD;
}
/**
* uses the threshold/threshold_curve to control software binarization
* This code was taken from the epjistsu backend by m. allan noah
* @param dev device set up for the scan
* @param src pointer to raw data
* @param dst pointer where to store result
* @param width width of the processed line
* */
static SANE_Status
binarize_line(Genesys_Device * dev, uint8_t *src, uint8_t *dst, int width)
{
int j, windowX, sum = 0;
int thresh;
int offset, addCol, dropCol;
unsigned char mask;
int x;
uint8_t min, max;
/* normalize line */
min = 255;
max = 0;
for (x = 0; x < width; x++)
{
if (src[x] > max)
{
max = src[x];
}
if (src[x] < min)
{
min = src[x];
}
}
/* safeguard against dark or white areas */
if(min>80)
min=0;
if(max<80)
max=255;
for (x = 0; x < width; x++)
{
src[x] = ((src[x] - min) * 255) / (max - min);
}
/* ~1mm works best, but the window needs to have odd # of pixels */
windowX = (6 * dev->settings.xres) / 150;
if (!(windowX % 2))
windowX++;
/* second, prefill the sliding sum */
for (j = 0; j < windowX; j++)
sum += src[j];
/* third, walk the input buffer, update the sliding sum, */
/* determine threshold, output bits */
for (j = 0; j < width; j++)
{
/* output image location */
offset = j % 8;
mask = 0x80 >> offset;
thresh = dev->settings.threshold;
/* move sum/update threshold only if there is a curve */
if (dev->settings.threshold_curve)
{
addCol = j + windowX / 2;
dropCol = addCol - windowX;
if (dropCol >= 0 && addCol < width)
{
sum -= src[dropCol];
sum += src[addCol];
}
thresh = dev->lineart_lut[sum / windowX];
}
/* use average to lookup threshold */
if (src[j] > thresh)
*dst &= ~mask; /* white */
else
*dst |= mask; /* black */
if (offset == 7)
dst++;
}
return SANE_STATUS_GOOD;
}
/**
* software lineart using data from a 8 bit gray scan. We assume true gray
* or monochrome scan as input.
*/
static SANE_Status
genesys_gray_lineart(
Genesys_Device *dev,
uint8_t *src_data,
uint8_t *dst_data,
size_t pixels,
size_t lines,
uint8_t threshold)
{
size_t y;
DBG (DBG_io2, "genesys_gray_lineart: converting %lu lines of %lu pixels\n",
(unsigned long)lines, (unsigned long)pixels);
DBG (DBG_io2, "genesys_gray_lineart: threshold=%d\n",threshold);
for (y = 0; y < lines; y++)
{
binarize_line (dev, src_data + y * pixels, dst_data, pixels);
dst_data += pixels / 8;
}
return SANE_STATUS_GOOD;
}
/** @brief shrink or grow scanned data to fit the final scan size
* This function shrinks the scanned data it the required resolution is lower than the hardware one,
* or grows it in case it is the opposite like when motor resolution is higher than
* sensor's one.
*/
static SANE_Status
genesys_shrink_lines_1 (
uint8_t *src_data,
uint8_t *dst_data,
unsigned int lines,
unsigned int src_pixels,
unsigned int dst_pixels,
unsigned int channels)
{
unsigned int dst_x, src_x, y, c, cnt;
unsigned int avg[3], val;
uint8_t *src = (uint8_t *) src_data;
uint8_t *dst = (uint8_t *) dst_data;
/* choose between case where me must reduce or grow the scanned data */
if (src_pixels > dst_pixels)
{
/* shrink data */
/* TODO action must be taken at bit level, no bytes */
src_pixels /= 8;
dst_pixels /= 8;
/*take first _byte_ */
for (y = 0; y < lines; y++)
{
cnt = src_pixels / 2;
src_x = 0;
for (dst_x = 0; dst_x < dst_pixels; dst_x++)
{
while (cnt < src_pixels && src_x < src_pixels)
{
cnt += dst_pixels;
for (c = 0; c < channels; c++)
avg[c] = *src++;
src_x++;
}
cnt -= src_pixels;
for (c = 0; c < channels; c++)
*dst++ = avg[c];
}
}
}
else
{
/* common case where y res is double x res */
for (y = 0; y < lines; y++)
{
if (2 * src_pixels == dst_pixels)
{
/* double and interleave on line */
for (c = 0; c < src_pixels/8; c++)
{
/* first 4 bits */
val = 0;
val |= (*src & 0x80) >> 0; /* X___ ____ --> X___ ____ */
val |= (*src & 0x80) >> 1; /* X___ ____ --> _X__ ____ */
val |= (*src & 0x40) >> 1; /* _X__ ____ --> __X_ ____ */
val |= (*src & 0x40) >> 2; /* _X__ ____ --> ___X ____ */
val |= (*src & 0x20) >> 2; /* __X_ ____ --> ____ X___ */
val |= (*src & 0x20) >> 3; /* __X_ ____ --> ____ _X__ */
val |= (*src & 0x10) >> 3; /* ___X ____ --> ____ __X_ */
val |= (*src & 0x10) >> 4; /* ___X ____ --> ____ ___X */
*dst = val;
dst++;
/* last for bits */
val = 0;
val |= (*src & 0x08) << 4; /* ____ X___ --> X___ ____ */
val |= (*src & 0x08) << 3; /* ____ X___ --> _X__ ____ */
val |= (*src & 0x04) << 3; /* ____ _X__ --> __X_ ____ */
val |= (*src & 0x04) << 2; /* ____ _X__ --> ___X ____ */
val |= (*src & 0x02) << 2; /* ____ __X_ --> ____ X___ */
val |= (*src & 0x02) << 1; /* ____ __X_ --> ____ _X__ */
val |= (*src & 0x01) << 1; /* ____ ___X --> ____ __X_ */
val |= (*src & 0x01) << 0; /* ____ ___X --> ____ ___X */
*dst = val;
dst++;
src++;
}
}
else
{
/* TODO: since depth is 1, we must interpolate bit within bytes */
DBG (DBG_warn, "%s: inaccurate bit expansion!\n", __func__);
cnt = dst_pixels / 2;
dst_x = 0;
for (src_x = 0; src_x < src_pixels; src_x++)
{
for (c = 0; c < channels; c++)
avg[c] = *src++;
while (cnt < dst_pixels && dst_x < dst_pixels)
{
cnt += src_pixels;
for (c = 0; c < channels; c++)
*dst++ = avg[c];
dst_x++;
}
cnt -= dst_pixels;
}
}
}
}
return SANE_STATUS_GOOD;
}
/** Look in image for likely left/right/bottom paper edges, then crop image.
* Since failing to crop isn't fatal, we always return SANE_STATUS_GOOD .
*/
static SANE_Status
genesys_crop(Genesys_Scanner *s)
{
SANE_Status status;
Genesys_Device *dev = s->dev;
int top = 0;
int bottom = 0;
int left = 0;
int right = 0;
DBG (DBG_proc, "%s: start\n", __func__);
/* first find edges if any */
status = sanei_magic_findEdges (&s->params,
dev->img_buffer,
dev->settings.xres,
dev->settings.yres,
&top,
&bottom,
&left,
&right);
if (status != SANE_STATUS_GOOD)
{
DBG (DBG_info, "%s: bad or no edges, bailing\n", __func__);
goto cleanup;
}
DBG (DBG_io, "%s: t:%d b:%d l:%d r:%d\n", __func__, top, bottom, left,
right);
/* now crop the image */
status =
sanei_magic_crop (&(s->params), dev->img_buffer, top, bottom, left, right);
if (status)
{
DBG (DBG_warn, "%s: failed to crop\n", __func__);
goto cleanup;
}
/* update counters to new image size */
dev->total_bytes_to_read = s->params.bytes_per_line * s->params.lines;
cleanup:
DBG (DBG_proc, "%s: completed\n", __func__);
return SANE_STATUS_GOOD;
}
/** Look in image for likely upper and left paper edges, then rotate
* image so that upper left corner of paper is upper left of image.
* @return since failure doens't prevent scanning, we always return
* SANE_STATUS_GOOD
*/
static SANE_Status
genesys_deskew(Genesys_Scanner *s)
{
SANE_Status status;
Genesys_Device *dev = s->dev;
int x = 0, y = 0, bg;
double slope = 0;
DBG (DBG_proc, "%s: start\n", __func__);
bg=0;
if(s->params.format==SANE_FRAME_GRAY && s->params.depth == 1)
{
bg=0xff;
}
status = sanei_magic_findSkew (&s->params,
dev->img_buffer,
dev->sensor.optical_res,
dev->sensor.optical_res,
&x,
&y,
&slope);
if (status!=SANE_STATUS_GOOD)
{
DBG (DBG_error, "%s: bad findSkew, bailing\n", __func__);
return SANE_STATUS_GOOD;
}
DBG(DBG_info, "%s: slope=%f => %f\n",__func__,slope, (slope/M_PI_2)*90);
/* rotate image slope is in [-PI/2,PI/2]
* positive values rotate trigonometric direction wise */
status = sanei_magic_rotate (&s->params,
dev->img_buffer,
x,
y,
slope,
bg);
if (status!=SANE_STATUS_GOOD)
{
DBG (DBG_error, "%s: rotate error: %s", __func__, sane_strstatus(status));
}
DBG (DBG_proc, "%s: completed\n", __func__);
return SANE_STATUS_GOOD;
}
/** remove lone dots
* @return since failure doens't prevent scanning, we always return
* SANE_STATUS_GOOD
*/
static SANE_Status
genesys_despeck(Genesys_Scanner *s)
{
if(sanei_magic_despeck(&s->params,
s->dev->img_buffer,
s->val[OPT_DESPECK].w)!=SANE_STATUS_GOOD)
{
DBG (DBG_error, "%s: bad despeck, bailing\n",__func__);
}
return SANE_STATUS_GOOD;
}
/** Look if image needs rotation and apply it
* */
static SANE_Status
genesys_derotate (Genesys_Scanner * s)
{
SANE_Status status;
int angle = 0;
int resolution = s->val[OPT_RESOLUTION].w;
DBGSTART;
status = sanei_magic_findTurn (&s->params,
s->dev->img_buffer,
resolution,
resolution,
&angle);
if (status)
{
DBG (DBG_warn, "%s: failed : %d\n", __func__, status);
DBGCOMPLETED;
return SANE_STATUS_GOOD;
}
/* apply rotation angle found */
status = sanei_magic_turn (&s->params, s->dev->img_buffer, angle);
if (status)
{
DBG (DBG_warn, "%s: failed : %d\n", __func__, status);
DBGCOMPLETED;
return SANE_STATUS_GOOD;
}
/* update counters to new image size */
s->dev->total_bytes_to_read = s->params.bytes_per_line * s->params.lines;
DBGCOMPLETED;
return SANE_STATUS_GOOD;
}
/* vim: set sw=2 cino=>2se-1sn-1s{s^-1st0(0u0 smarttab expandtab: */
|