1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
|
/* sane - Scanner Access Now Easy.
Copyright (C) Marian Eichholz 2001
This file is part of the SANE package.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA.
As a special exception, the authors of SANE give permission for
additional uses of the libraries contained in this release of SANE.
The exception is that, if you link a SANE library with other files
to produce an executable, this does not by itself cause the
resulting executable to be covered by the GNU General Public
License. Your use of that executable is in no way restricted on
account of linking the SANE library code into it.
This exception does not, however, invalidate any other reasons why
the executable file might be covered by the GNU General Public
License.
If you submit changes to SANE to the maintainers to be included in
a subsequent release, you agree by submitting the changes that
those changes may be distributed with this exception intact.
If you write modifications of your own for SANE, it is your choice
whether to permit this exception to apply to your modifications.
If you do not wish that, delete this exception notice.
*/
/* ======================================================================
Userspace scan tool for the Microtek 3600 scanner
color scan routine
(C) Marian Eichholz 2001
====================================================================== */
#include "sm3600-scantool.h"
#define ORDER_RGB "012"
#define ORDER_BRG "120"
/* **********************************************************************
ReadNextColorLine()
********************************************************************** */
static TState ReadNextColorLine(PTInstance this)
{
int iWrite,i;
int iRead; /* read position in raw line */
int nInterpolator;
int iOffsetR,iOffsetG,iOffsetB;
short *pchLineSwap;
TBool bVisible;
bVisible=false;
do {
iWrite=0;
while (iWrite<3*this->state.cxMax) /* max 1 time in reality */
{
while (iWrite<3*this->state.cxMax &&
this->state.iBulkReadPos<this->state.cchBulk)
this->state.ppchLines[0][iWrite++] =
this->state.pchBuf[this->state.iBulkReadPos++];
if (iWrite<3*this->state.cxMax) /* we need an additional chunk */
{
if (this->state.bLastBulk)
return SANE_STATUS_EOF;
this->state.cchBulk=BulkReadBuffer(this,this->state.pchBuf,
USB_CHUNK_SIZE);
dprintf(DEBUG_SCAN,"bulk read: %d byte(s), line #%d\n",
this->state.cchBulk, this->state.iLine);
if (this->bWriteRaw)
fwrite(this->state.pchBuf,1,this->state.cchBulk,this->fhScan);
INST_ASSERT();
if (this->state.cchBulk!=USB_CHUNK_SIZE)
this->state.bLastBulk=true;
this->state.iBulkReadPos=0;
}
} /* while raw line buffer acquiring */
this->state.iLine++;
if (this->state.iLine>2*this->state.ySensorSkew)
{
bVisible=true;
iOffsetR=(this->state.szOrder[0]-'0')*this->state.cxMax;
iOffsetG=(this->state.szOrder[1]-'0')*this->state.cxMax;
iOffsetB=(this->state.szOrder[2]-'0')*this->state.cxMax;
for (nInterpolator=100, iWrite=0, iRead=0;
iRead<3*this->state.cxMax && iWrite<this->state.cchLineOut;
iRead++)
{
nInterpolator+=this->state.nFixAspect;
if (nInterpolator<100) continue; /* res. reduction */
nInterpolator-=100;
/* dprintf(DEBUG_SCAN," i=%d",iTo); */
/* the first scan lines only fill the line backlog buffer */
{
/* dprintf(DEBUG_SCAN,"assembling line %d\n",++this->state.iLine); */
this->state.pchLineOut[iWrite++]=
this->state.ppchLines[2*this->state.ySensorSkew][iRead+iOffsetR];
this->state.pchLineOut[iWrite++]=
this->state.ppchLines[1*this->state.ySensorSkew][iRead+iOffsetG];
this->state.pchLineOut[iWrite++]=
this->state.ppchLines[0*this->state.ySensorSkew][iRead+iOffsetB];
}
}
} /* if visible line */
/* cycle backlog buffers */
pchLineSwap=this->state.ppchLines[this->state.cBacklog-1];
for (i=this->state.cBacklog-2; i>=0; i--)
this->state.ppchLines[i+1]=this->state.ppchLines[i];
this->state.ppchLines[0]=pchLineSwap;
} while (!bVisible);
return SANE_STATUS_GOOD;
}
/* ======================================================================
StartScanColor()
====================================================================== */
/* Parameter are in resolution units! */
__SM3600EXPORT__
TState StartScanColor(TInstance *this)
{
/* live could be easy: Simple calculate a window, start the scan,
get the data and get off. It dimply does not work. We have to
deal with the fact, that the pixels are reported with color scan
line by color scan line, and have to be rearranged to RGB
triples. They even ar enot always in RGB order, but mostly in BRG
order. And they have a skew of 2/300 inch , given by the slider
construction. Thus, we have to deal with several buffers, some
interpolation, and related management stuff. */
int i;
if (this->state.bScanning)
return SetError(this,SANE_STATUS_DEVICE_BUSY,"scan active");
memset(&(this->state),0,sizeof(this->state));
this->state.ReadProc =ReadNextColorLine;
this->state.ySensorSkew=0;
GetAreaSize(this);
switch (this->param.res)
{
case 200: this->state.ySensorSkew=1; break;
case 300: this->state.ySensorSkew=2; break;
case 600: this->state.ySensorSkew=4; break;
default: break;
}
/* since we need 2*this->state.ySensorSkew additional scan lines for de-skewing of
the sensor lines, we enlarge the window and shorten the initial movement
accordingly */
this->state.cyTotalPath =
this->param.y/2-(2*this->state.ySensorSkew)*600/this->param.res;
DoJog(this,this->state.cyTotalPath); INST_ASSERT();
this->state.cyTotalPath +=
(this->state.cyPixel+2*this->state.ySensorSkew)
*600/this->param.res; /* for jogging back */
/*
regular scan is asynchronously, that is,
the scanning is issued, and the driver does bulk reads,
until there are no data left.
Each line has a full R, G and B subline, 8bit each sample.
*/
{
unsigned char uchRegs[]={
0xFC /*!!R_SPOS!!*/, 0x00 /*R_SPOSH*/, 0x24 /*!!0x03!!*/,
0xB0 /*!!R_SWID!!*/, 0xC4 /*!!R_SWIDH!!*/,
1,0,
0xFF /*!!0x08!!*/, 0xFF /*!!0x09!!*/,
0x22 /*!!R_LEN!!*/, 0x07 /*!!R_LENH!!*/, 0x6D /*0x0C*/,
0x70 /*0x0D*/, 0x69 /*0x0E*/, 0xD0 /*0x0F*/,
0x00 /*0x10*/, 0x00 /*0x11*/, 0x42 /*!!0x12!!*/,
0x15 /*0x13*/, 0x84 /*!!0x14!!*/, 0x2A /*0x15*/,
0xC5 /*!!0x16!!*/, 0x40 /*0x17*/, 0xC5 /*!!0x18!!*/,
0x40 /*0x19*/, 0xFF /*0x1A*/, 0x01 /*0x1B*/,
0x88 /*0x1C*/, 0x40 /*0x1D*/, 0x4C /*0x1E*/,
0x50 /*0x1F*/, 0x00 /*0x20*/, 0x0C /*0x21*/,
0x21 /*0x22*/, 0xF0 /*0x23*/, 0x40 /*0x24*/,
0x00 /*0x25*/, 0x0A /*0x26*/, 0xF0 /*0x27*/,
0x00 /*0x28*/, 0x00 /*0x29*/, 0x4E /*0x2A*/,
0xF0 /*0x2B*/, 0x00 /*0x2C*/, 0x00 /*0x2D*/,
0x4E /*0x2E*/, 0x80 /*R_CCAL*/, 0x80 /*R_CCAL2*/,
0x80 /*R_CCAL3*/, 0x0B /*0x32*/, 0x2D /*0x33*/,
0x43 /*!!0x34!!*/, 0x29 /*0x35*/, 0x00 /*0x36*/,
0x00 /*0x37*/, 0x00 /*0x38*/, 0x00 /*0x39*/,
0x00 /*0x3A*/, 0x00 /*0x3B*/, 0xFF /*0x3C*/,
0x0F /*0x3D*/, 0x00 /*0x3E*/, 0x00 /*0x3F*/,
0x01 /*0x40*/, 0x00 /*0x41*/, 0x80 /*R_CSTAT*/,
0x03 /*0x43*/, 0x01 /*R_LMP*/, 0x00 /*0x45*/,
0x39 /*R_CTL*/, 0xC5 /*!!0x47!!*/, 0x40 /*0x48*/,
0x9E /*0x49*/, 0x8C /*0x4A*/ };
RegWriteArray(this,R_ALL, NUM_SCANREGS, uchRegs);
RegWrite(this,R_SPOS, 2, this->param.x/2 + this->calibration.xMargin);
RegWrite(this,R_SLEN, 2,
this->state.cyWindow+
(2*this->state.ySensorSkew)*600/this->param.res);
this->state.szOrder=ORDER_BRG;
RegWrite(this,R_CCAL, 3, this->calibration.rgbBias); INST_ASSERT(); /* 0xBBGGRR */
switch (this->param.res)
{
case 75:
RegWrite(this,R_XRES,1, 0x20); /* ups, can do only 100 dpi horizontal */
RegWrite(this,R_SWID, 2, 0xC000 | this->state.cxWindow);
RegWrite(this,0x34, 1, 0x83); /* halfs the vertical resolution */
RegWrite(this,0x47,1,0xC0); /* reduces the speed a bit */
break;
case 100:
RegWrite(this,R_XRES,1, 0x20);
RegWrite(this,R_SWID, 2, 0xC000 | this->state.cxWindow);
RegWrite(this,0x34, 1, 0x63); /* halfs the vertical resolution */
RegWrite(this,0x47,1,0xC0); /* reduces the speed a bit */
/* I have no idea, what these differences are good for. The seem to produce
a slight blue presence.
RegWrite(this,0x16, 1, 0xC0); RegWrite(this,0x18, 1, 0xC0);
RegWrite(this,0x12, 1, 0x40); RegWrite(this,0x10, 2, 0x0728);
RegWrite(this,0x14, 1, 0x80); */
break;
case 200:
RegWrite(this,R_XRES,1, 0x24);
RegWrite(this,R_SWID, 2, 0xC000 | this->state.cxWindow);
break;
case 300:
RegWrite(this,0x08,2, 0x6A6A);
RegWrite(this,R_XRES,1, 0x2A);
RegWrite(this,R_SWID, 2, 0x4000 | this->state.cxWindow);
RegWrite(this,0x34, 1, 0x03); /* halfs the vertical resolution */
RegWrite(this,0x47,1,0xC0); /* reduces the speed a bit */
this->state.szOrder=ORDER_RGB;
break;
case 600:
RegWrite(this,R_XRES,1, 0x3F);
RegWrite(this,R_SWID, 2, 0xC000 | this->state.cxWindow);
RegWrite(this,0x34, 1, 0x03); /* halfs the vertical resolution */
RegWrite(this,0x47,1,0xC2); /* reduces the speed a bit */
break;
case 1200:
/* not supported, since the driver supports only 600 dpi in color */
break;
}
}
/* setup gamma tables */
RegWrite(this,0x41,1,0x03); /* gamma, RGB */
RegWrite(this,0x40,1,0x28); /* offset FIFO 8*3 (GAMMA)+16 KB(gain) spared */
/*
hey, surprise: Although the color lines are sent in a strange order,
the gamma tables are mapped constantly to the sensors (i.e. RGB)
*/
UploadGammaTable(this,0x0000,this->agammaR);
UploadGammaTable(this,0x2000,this->agammaG);
UploadGammaTable(this,0x4000,this->agammaB);
INST_ASSERT();
UploadGainCorrection(this,0x6000);
INST_ASSERT();
/* enough for 1/100 inch sensor distance */
this->state.cBacklog=1+2*this->state.ySensorSkew;
/* allocate raw line buffers */
this->state.ppchLines=calloc(this->state.cBacklog,sizeof(short*));
this->state.pchBuf=malloc(0x8000);
if (!this->state.ppchLines || !this->state.pchBuf)
return FreeState(this,SetError(this,
SANE_STATUS_NO_MEM,"no buffers available"));
for (i=0; i<this->state.cBacklog; i++)
{
this->state.ppchLines[i]=calloc(1,3*this->state.cxMax*sizeof(short)); /* must be less than 0x8000 */
if (!this->state.ppchLines[i])
return FreeState(this,
SetError(this,SANE_STATUS_NO_MEM,
"no line buffer available"));
}
/* calculate and prepare intermediate line transfer buffer */
this->state.cchLineOut=3*this->state.cxPixel;
this->state.pchLineOut = malloc(this->state.cchLineOut);
if (!this->state.pchLineOut)
return FreeState(this,SetError(this,
SANE_STATUS_NO_MEM,
"no buffers available"));
RegWrite(this,R_CTL, 1, 0x39); /* #1532[005.0] */
RegWrite(this,R_CTL, 1, 0x79); /* #1533[005.0] */
RegWrite(this,R_CTL, 1, 0xF9); /* #1534[005.0] */
INST_ASSERT();
this->state.bScanning = true;
return SANE_STATUS_GOOD;
}
|