1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
|
/*
*class++
* Name:
* WinMap
* Purpose:
* Map one window on to another by scaling and shifting each axis.
* Constructor Function:
c astWinMap
f AST_WINMAP
* Description:
* A Winmap is a linear Mapping which transforms a rectangular
* window in one coordinate system into a similar window in another
* coordinate system by scaling and shifting each axis (the window
* edges being parallel to the coordinate axes).
*
* A WinMap is specified by giving the coordinates of two opposite
* corners (A and B) of the window in both the input and output
* coordinate systems.
* Inheritance:
* The WinMap class inherits from the Mapping class.
* Attributes:
* The WinMap class does not define any new attributes beyond those
* which are applicable to all Mappings.
* Functions:
c The WinMap class does not define any new functions beyond those
f The WinMap class does not define any new routines beyond those
* which are applicable to all Mappings.
* Copyright:
* Copyright (C) 2004 Central Laboratory of the Research Councils
* Authors:
* DSB: David Berry (Starlink)
* RFWS: R.F. Warren-Smith (Starlink)
* History:
* 23-OCT-1996 (DSB):
* Original version.
* 4-MAR-1997 (RFWS):
* Tidied public prologues.
* 11-MAR-1997 (DSB):
* Added MapMerge method and associated bits.
* 30-JUN-1997 (DSB):
* Bug fixed which caused the MapMerge method to generate a
* segmentation violation.
* 24-MAR-1998 (RFWS):
* Improved output format from Dump.
* 9-APR-1998 (DSB):
* MapMerge modified to allow merging of WinMaps with ZoomMaps and
* and UnitMaps in parallel.
* 4-SEP-1998 (DSB):
* Improved MapMerge so that WinMaps can change places with a wider
* range of PermMaps, allowing them to approach closer to a Mapping
* with which they can merge.
* 22-FEB-1999 (DSB):
* Corrected logic of MapMerge method to avoid infinite looping.
* 5-MAY-1999 (DSB):
* More corrections to MapMerge: Cleared up errors in the use of the
* supplied invert flags, and corrected logic for deciding which
* neighbouring Mapping to swap with.
* 16-JUL-1999 (DSB):
* Fixed memory leaks in WinMat and MapMerge.
* 8-JAN-2003 (DSB):
* Changed private InitVtab method to protected astInitWinMapVtab
* method.
* 8-SEP-2003 (DSB):
* Allow WinMaps to swap with WcsMaps if possible.
* 10-NOV-2003 (DSB):
* Modified functions which swap a WinMap with another Mapping
* (e.g. WinPerm, etc), to simplify the returned Mappings.
* 23-APR-2004 (DSB):
* Changes to simplification algorithm.
* 1-SEP-2004 (DSB):
* Ensure do1 and do2 are initialised before use in MapMerge.
*class--
*/
/* Module Macros. */
/* ============== */
/* Set the name of the class we are implementing. This indicates to
the header files that define class interfaces that they should make
"protected" symbols available. */
#define astCLASS WinMap
/* Include files. */
/* ============== */
/* Interface definitions. */
/* ---------------------- */
#include "error.h" /* Error reporting facilities */
#include "memory.h" /* Memory management facilities */
#include "object.h" /* Base Object class */
#include "pointset.h" /* Sets of points/coordinates */
#include "matrixmap.h" /* Linear mappings */
#include "unitmap.h" /* Unit mappings */
#include "zoommap.h" /* Zoom mappings */
#include "permmap.h" /* Axis permutations */
#include "cmpmap.h" /* Compound mappings */
#include "wcsmap.h" /* Celestial projections */
#include "mapping.h" /* Coordinate mappings (parent class) */
#include "channel.h" /* I/O channels */
#include "winmap.h" /* Interface definition for this class */
/* Error code definitions. */
/* ----------------------- */
#include "ast_err.h" /* AST error codes */
/* C header files. */
/* --------------- */
#include <float.h>
#include <math.h>
#include <stdarg.h>
#include <stddef.h>
#include <stdio.h>
#include <string.h>
/* Module Variables. */
/* ================= */
/* Define the class virtual function table and its initialisation flag
as static variables. */
static AstWinMapVtab class_vtab; /* Virtual function table */
static int class_init = 0; /* Virtual function table initialised? */
/* Pointers to parent class methods which are extended by this class. */
static AstPointSet *(* parent_transform)( AstMapping *, AstPointSet *, int, AstPointSet * );
static const char *(* parent_getattrib)( AstObject *, const char * );
static int (* parent_testattrib)( AstObject *, const char * );
static void (* parent_clearattrib)( AstObject *, const char * );
static void (* parent_setattrib)( AstObject *, const char * );
/* External Interface Function Prototypes. */
/* ======================================= */
/* The following functions have public prototypes only (i.e. no
protected prototypes), so we must provide local prototypes for use
within this module. */
AstWinMap *astWinMapId_( int, const double [], const double [],
const double [], const double [], const char *, ... );
/* Prototypes for Private Member Functions. */
/* ======================================== */
static AstPointSet *Transform( AstMapping *, AstPointSet *, int, AstPointSet * );
static AstWinMap *WinUnit( AstWinMap *, AstUnitMap *, int, int );
static AstWinMap *WinWin( AstMapping *, AstMapping *, int, int, int );
static AstWinMap *WinZoom( AstWinMap *, AstZoomMap *, int, int, int, int );
static const char *GetAttrib( AstObject *, const char * );
static int CanSwap( AstMapping *, AstMapping *, int, int, int * );
static int MapMerge( AstMapping *, int, int, int *, AstMapping ***, int ** );
static int TestAttrib( AstObject *, const char * );
static int WinTerms( AstWinMap *, double **, double ** );
static void ClearAttrib( AstObject *, const char * );
static void Copy( const AstObject *, AstObject * );
static void Delete( AstObject * );
static void Dump( AstObject *, AstChannel * );
static void PermGet( AstPermMap *, int **, int **, double ** );
static void SetAttrib( AstObject *, const char * );
static void WinMat( AstMapping **, int *, int );
static void WinPerm( AstMapping **, int *, int );
static void WinWcs( AstMapping **, int *, int );
/* Function Macros */
/* =============== */
/* Macros which return the maximum and minimum of two values. */
#define MAX(aa,bb) ((aa)>(bb)?(aa):(bb))
#define MIN(aa,bb) ((aa)<(bb)?(aa):(bb))
/* Macro to check for equality of floating point values. We cannot
compare bad values directory because of the danger of floating point
exceptions, so bad values are dealt with explicitly. */
#define EQUAL(aa,bb) (((aa)==AST__BAD)?(((bb)==AST__BAD)?1:0):(((bb)==AST__BAD)?0:(fabs((aa)-(bb))<=1.0E5*MAX((fabs(aa)+fabs(bb))*DBL_EPSILON,DBL_MIN))))
/* Member functions. */
/* ================= */
static int CanSwap( AstMapping *map1, AstMapping *map2, int inv1, int inv2,
int *simpler ){
/*
* Name:
* CanSwap
* Purpose:
* Determine if two Mappings could be swapped.
* Type:
* Private function.
* Synopsis:
* #include "winmap.h"
* int CanSwap( AstMapping *map1, AstMapping *map2, int inv1, int inv2,
* int *simpler )
* Class Membership:
* WinMap member function
* Description:
* This function returns a flag indicating if the pair of supplied
* Mappings could be replaced by an equivalent pair of Mappings from the
* same classes as the supplied pair, but in reversed order. Each pair
* of Mappings is considered to be compunded in series. The supplied
* Mapings are not changed in any way.
* Parameters:
* map1
* The Mapping to be applied first.
* map2
* The Mapping to be applied second.
* inv1
* The invert flag to use with map1. A value of zero causes the forward
* mapping to be used, and a non-zero value causes the inverse
* mapping to be used.
* inv2
* The invert flag to use with map2.
* simpler
* Addresss of a location at which to return a flag indicating if
* the swapped Mappings would be intrinsically simpler than the
* original Mappings.
* Returned Value:
* 1 if the Mappings could be swapped, 0 otherwise.
* Notes:
* - One of the supplied pair of Mappings must be a WinMap.
* - A value of 0 is returned if the two Mappings could be merged into
* a single Mapping.
* - A value of 0 is returned if an error has already occurred, or if
* this function should fail for any reason.
*/
/* Local Variables: */
AstMapping *nowin; /* Pointer to non-WinMap Mapping */
AstWinMap *win; /* Pointer to the WinMap */
const char *class1; /* Pointer to map1 class string */
const char *class2; /* Pointer to map2 class string */
const char *nowin_class; /* Pointer to non-WinMap class string */
double *consts; /* Pointer to constants array */
int *inperm; /* Pointer to input axis permutation array */
int *outperm; /* Pointer to output axis permutation array */
int axlat; /* Latitude axis in WcsMap */
int axlon; /* Longitude axis in WcsMap */
int i; /* Loop count */
int invert[ 2 ]; /* Original invert flags */
int nin; /* No. of input coordinates for the PermMap */
int nout; /* No. of output coordinates for the PermMap */
int ret; /* Returned flag */
/* Check the global error status. */
if ( !astOK ) return 0;
/* Initialise */
ret = 0;
*simpler = 0;
/* Temporarily set the Invert attributes of both Mappings to the supplied
values. */
invert[ 0 ] = astGetInvert( map1 );
astSetInvert( map1, inv1 );
invert[ 1 ] = astGetInvert( map2 );
astSetInvert( map2, inv2 );
/* Get the classes of the two mappings. */
class1 = astGetClass( map1 );
class2 = astGetClass( map2 );
if( astOK ){
/* Get a pointer to the non-WinMap Mapping. */
if( !strcmp( class1, "WinMap" ) ){
nowin = map2;
nowin_class = class2;
win = (AstWinMap *) map1;
} else {
nowin = map1;
nowin_class = class1;
win = (AstWinMap *) map2;
}
/* If it is a MatrixMap, the Mappings can be swapped. */
if( !strcmp( nowin_class, "MatrixMap" ) ){
ret = 1;
/* If it is a WcsMap, the Mappings can be swapped if the WinMap is
equivalent to a unit transformation on the celestial axes of the
WcsMap. */
} else if( !strcmp( nowin_class, "WcsMap" ) ){
/* Get the indices of the celestial coordinates inthe WcsMap. */
axlat = astGetWcsAxis( (AstWcsMap *) nowin, 1 );
axlon = astGetWcsAxis( (AstWcsMap *) nowin, 0 );
/* Check the shift and scale for these axes. */
ret = ( win->a[ axlon ] == 0.0 && win->b[ axlon ] == 1.0 &&
win->a[ axlat ] == 0.0 && win->b[ axlat ] == 1.0 );
/* If it is a PermMap, the Mappings can be swapped so long as all links
between input and output axes in the PermMap are bi-directional. This
does not preclude the existence of unconnected axes, which do not
have links (bi-directional or otherwise). */
} else if( !strcmp( nowin_class, "PermMap" ) ){
/* Get the number of input and output coordinates. */
nin = astGetNin( nowin );
nout = astGetNout( nowin );
/* We need to know the axis permutation arrays and constants array for
the PermMap. */
PermGet( (AstPermMap *) nowin, &outperm, &inperm, &consts );
if( astOK ) {
/* Indicate we can swap with the PermMap. */
ret = 1;
/* Check each output axis. If any links between axes are found which are
not bi-directional, indicate that we cannot swap with the PermMap. */
for( i = 0; i < nout; i++ ){
if( outperm[ i ] >= 0 && outperm[ i ] < nin ) {
if( inperm[ outperm[ i ] ] != i ) {
ret = 0;
break;
}
}
}
/* Check each input axis. If any links between axes are found which are
not bi-directional, indicate that we cannot swap with the PermMap. */
for( i = 0; i < nin; i++ ){
if( inperm[ i ] >= 0 && inperm[ i ] < nout ) {
if( outperm[ inperm[ i ] ] != i ) {
ret = 0;
break;
}
}
}
/* If we can swap with the PermMap, the swapped Mappings may be
intrinsically simpler than the original mappings. */
if( ret ) {
/* If the PermMap preceeds the WinMap, this will be the case if the PermMap
has more outputs than inputs. If the WinMap preceeds the PermMap, this
will be the case if the PermMap has more inputs than outputs. */
*simpler = ( nowin == map1 ) ? nout > nin : nin > nout;
}
/* Free the axis permutation and constants arrays. */
outperm = (int *) astFree( (void *) outperm );
inperm = (int *) astFree( (void *) inperm );
consts = (double *) astFree( (void *) consts );
}
}
}
/* Re-instate the original settings of the Invert attributes for the
supplied MatrixMaps. */
astSetInvert( map1, invert[ 0 ] );
astSetInvert( map2, invert[ 1 ] );
/* Return the answer. */
return astOK ? ret : 0;
}
static void ClearAttrib( AstObject *this_object, const char *attrib ) {
/*
* Name:
* ClearAttrib
* Purpose:
* Clear an attribute value for a WinMap.
* Type:
* Private function.
* Synopsis:
* #include "winmap.h"
* void ClearAttrib( AstObject *this, const char *attrib )
* Class Membership:
* WinMap member function (over-rides the astClearAttrib protected
* method inherited from the Mapping class).
* Description:
* This function clears the value of a specified attribute for a
* WinMap, so that the default value will subsequently be used.
* Parameters:
* this
* Pointer to the WinMap.
* attrib
* Pointer to a null-terminated string specifying the attribute
* name. This should be in lower case with no surrounding white
* space.
*/
/* Local Variables: */
AstWinMap *this; /* Pointer to the WinMap structure */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain a pointer to the WinMap structure. */
this = (AstWinMap *) this_object;
/* At the moment the WinMap class has no attributes, so pass it on to the
parent method for further interpretation. */
(*parent_clearattrib)( this_object, attrib );
}
static const char *GetAttrib( AstObject *this_object, const char *attrib ) {
/*
* Name:
* GetAttrib
* Purpose:
* Get the value of a specified attribute for a WinMap.
* Type:
* Private function.
* Synopsis:
* #include "winmap.h"
* const char *GetAttrib( AstObject *this, const char *attrib )
* Class Membership:
* WinMap member function (over-rides the protected astGetAttrib
* method inherited from the Mapping class).
* Description:
* This function returns a pointer to the value of a specified
* attribute for a WinMap, formatted as a character string.
* Parameters:
* this
* Pointer to the WinMap.
* attrib
* Pointer to a null-terminated string containing the name of
* the attribute whose value is required. This name should be in
* lower case, with all white space removed.
* Returned Value:
* - Pointer to a null-terminated string containing the attribute
* value.
* Notes:
* - The returned string pointer may point at memory allocated
* within the WinMap, or at static memory. The contents of the
* string may be over-written or the pointer may become invalid
* following a further invocation of the same function or any
* modification of the WinMap. A copy of the string should
* therefore be made if necessary.
* - A NULL pointer will be returned if this function is invoked
* with the global error status set, or if it should fail for any
* reason.
*/
/* Local Constants: */
#define BUFF_LEN 50 /* Max. characters in result buffer */
/* Local Variables: */
AstWinMap *this; /* Pointer to the WinMap structure */
const char *result; /* Pointer value to return */
/* Initialise. */
result = NULL;
/* Check the global error status. */
if ( !astOK ) return result;
/* Obtain a pointer to the WinMap structure. */
this = (AstWinMap *) this_object;
/* At the moment the WinMap class has no attributes, so pass it on to the
parent method for further interpretation. */
result = (*parent_getattrib)( this_object, attrib );
/* Return the result. */
return result;
/* Undefine macros local to this function. */
#undef BUFF_LEN
}
void astInitWinMapVtab_( AstWinMapVtab *vtab, const char *name ) {
/*
*+
* Name:
* astInitWinMapVtab
* Purpose:
* Initialise a virtual function table for a WinMap.
* Type:
* Protected function.
* Synopsis:
* #include "winmap.h"
* void astInitWinMapVtab( AstWinMapVtab *vtab, const char *name )
* Class Membership:
* WinMap vtab initialiser.
* Description:
* This function initialises the component of a virtual function
* table which is used by the WinMap class.
* Parameters:
* vtab
* Pointer to the virtual function table. The components used by
* all ancestral classes will be initialised if they have not already
* been initialised.
* name
* Pointer to a constant null-terminated character string which contains
* the name of the class to which the virtual function table belongs (it
* is this pointer value that will subsequently be returned by the Object
* astClass function).
*-
*/
/* Local Variables: */
AstObjectVtab *object; /* Pointer to Object component of Vtab */
AstMappingVtab *mapping; /* Pointer to Mapping component of Vtab */
/* Check the local error status. */
if ( !astOK ) return;
/* Initialize the component of the virtual function table used by the
parent class. */
astInitMappingVtab( (AstMappingVtab *) vtab, name );
/* Store a unique "magic" value in the virtual function table. This
will be used (by astIsAWinMap) to determine if an object belongs
to this class. We can conveniently use the address of the (static)
class_init variable to generate this unique value. */
vtab->check = &class_init;
/* Initialise member function pointers. */
/* ------------------------------------ */
/* Store pointers to the member functions (implemented here) that provide
virtual methods for this class. */
vtab->WinTerms = WinTerms;
/* Save the inherited pointers to methods that will be extended, and
replace them with pointers to the new member functions. */
object = (AstObjectVtab *) vtab;
mapping = (AstMappingVtab *) vtab;
parent_clearattrib = object->ClearAttrib;
object->ClearAttrib = ClearAttrib;
parent_getattrib = object->GetAttrib;
object->GetAttrib = GetAttrib;
parent_setattrib = object->SetAttrib;
object->SetAttrib = SetAttrib;
parent_testattrib = object->TestAttrib;
object->TestAttrib = TestAttrib;
parent_transform = mapping->Transform;
mapping->Transform = Transform;
/* Store replacement pointers for methods which will be over-ridden by
new member functions implemented here. */
mapping->MapMerge = MapMerge;
/* Declare the class dump, copy and delete functions.*/
astSetDump( vtab, Dump, "WinMap", "Map one window on to another" );
astSetCopy( (AstObjectVtab *) vtab, Copy );
astSetDelete( (AstObjectVtab *) vtab, Delete );
}
static int MapMerge( AstMapping *this, int where, int series, int *nmap,
AstMapping ***map_list, int **invert_list ) {
/*
* Name:
* MapMerge
* Purpose:
* Simplify a sequence of Mappings containing a WinMap.
* Type:
* Private function.
* Synopsis:
* #include "mapping.h"
* int MapMerge( AstMapping *this, int where, int series, int *nmap,
* AstMapping ***map_list, int **invert_list )
* Class Membership:
* WinMap method (over-rides the protected astMapMerge method
* inherited from the Mapping class).
* Description:
* This function attempts to simplify a sequence of Mappings by
* merging a nominated WinMap in the sequence with its neighbours,
* so as to shorten the sequence if possible.
*
* In many cases, simplification will not be possible and the
* function will return -1 to indicate this, without further
* action.
*
* In most cases of interest, however, this function will either
* attempt to replace the nominated WinMap with a Mapping which it
* considers simpler, or to merge it with the Mappings which
* immediately precede it or follow it in the sequence (both will
* normally be considered). This is sufficient to ensure the
* eventual simplification of most Mapping sequences by repeated
* application of this function.
*
* In some cases, the function may attempt more elaborate
* simplification, involving any number of other Mappings in the
* sequence. It is not restricted in the type or scope of
* simplification it may perform, but will normally only attempt
* elaborate simplification in cases where a more straightforward
* approach is not adequate.
* Parameters:
* this
* Pointer to the nominated WinMap which is to be merged with
* its neighbours. This should be a cloned copy of the WinMap
* pointer contained in the array element "(*map_list)[where]"
* (see below). This pointer will not be annulled, and the
* WinMap it identifies will not be modified by this function.
* where
* Index in the "*map_list" array (below) at which the pointer
* to the nominated WinMap resides.
* series
* A non-zero value indicates that the sequence of Mappings to
* be simplified will be applied in series (i.e. one after the
* other), whereas a zero value indicates that they will be
* applied in parallel (i.e. on successive sub-sets of the
* input/output coordinates).
* nmap
* Address of an int which counts the number of Mappings in the
* sequence. On entry this should be set to the initial number
* of Mappings. On exit it will be updated to record the number
* of Mappings remaining after simplification.
* map_list
* Address of a pointer to a dynamically allocated array of
* Mapping pointers (produced, for example, by the astMapList
* method) which identifies the sequence of Mappings. On entry,
* the initial sequence of Mappings to be simplified should be
* supplied.
*
* On exit, the contents of this array will be modified to
* reflect any simplification carried out. Any form of
* simplification may be performed. This may involve any of: (a)
* removing Mappings by annulling any of the pointers supplied,
* (b) replacing them with pointers to new Mappings, (c)
* inserting additional Mappings and (d) changing their order.
*
* The intention is to reduce the number of Mappings in the
* sequence, if possible, and any reduction will be reflected in
* the value of "*nmap" returned. However, simplifications which
* do not reduce the length of the sequence (but improve its
* execution time, for example) may also be performed, and the
* sequence might conceivably increase in length (but normally
* only in order to split up a Mapping into pieces that can be
* more easily merged with their neighbours on subsequent
* invocations of this function).
*
* If Mappings are removed from the sequence, any gaps that
* remain will be closed up, by moving subsequent Mapping
* pointers along in the array, so that vacated elements occur
* at the end. If the sequence increases in length, the array
* will be extended (and its pointer updated) if necessary to
* accommodate any new elements.
*
* Note that any (or all) of the Mapping pointers supplied in
* this array may be annulled by this function, but the Mappings
* to which they refer are not modified in any way (although
* they may, of course, be deleted if the annulled pointer is
* the final one).
* invert_list
* Address of a pointer to a dynamically allocated array which,
* on entry, should contain values to be assigned to the Invert
* attributes of the Mappings identified in the "*map_list"
* array before they are applied (this array might have been
* produced, for example, by the astMapList method). These
* values will be used by this function instead of the actual
* Invert attributes of the Mappings supplied, which are
* ignored.
*
* On exit, the contents of this array will be updated to
* correspond with the possibly modified contents of the
* "*map_list" array. If the Mapping sequence increases in
* length, the "*invert_list" array will be extended (and its
* pointer updated) if necessary to accommodate any new
* elements.
* Returned Value:
* If simplification was possible, the function returns the index
* in the "map_list" array of the first element which was
* modified. Otherwise, it returns -1 (and makes no changes to the
* arrays supplied).
* Notes:
* - A value of -1 will be returned if this function is invoked
* with the global error status set, or if it should fail for any
* reason.
*/
/* Local Variables: */
AstCmpMap *cm; /* Pointer to neighbouring CmpMap */
AstMapping **maplt; /* New mappings list pointer */
AstMapping *map2; /* Pointer to replacement Mapping */
AstMapping *mc[2]; /* Copies of supplied Mappings to swap */
AstMapping *nc[2]; /* Copies of neighbouring Mappings to merge */
AstMapping *smc0; /* Simplified Mapping */
AstMapping *smc1; /* Simplified Mapping */
AstMapping *simp1; /* Simplified Mapping */
AstMapping *simp2; /* Simplified Mapping */
AstMatrixMap *mtr; /* Pointer to replacement MatrixMap */
AstWinMap *newwm2; /* Second component WinMap */
AstWinMap *newwm; /* Pointer to replacement WinMap */
AstWinMap *oldwm; /* Pointer to supplied WinMap */
const char *class1; /* Pointer to first Mapping class string */
const char *class2; /* Pointer to second Mapping class string */
const char *nclass; /* Pointer to neighbouring Mapping class */
double *a; /* Pointer to zero terms */
double *b; /* Pointer to scale terms */
int *invlt; /* New invert flags list pointer */
int cmlow; /* Is lower neighbour a CmpMap? */
int diag; /* Is WinMap equivalent to a diagonal matrix? */
int do1; /* Would a backward swap make a simplification? */
int do2; /* Would a forward swap make a simplification? */
int i1; /* Index of first WinMap to merge */
int i2; /* Index of last WinMap to merge */
int i; /* Loop counter */
int ic[2]; /* Copies of supplied invert flags to swap */
int inc[4]; /* Copies of supplied invert flags to merge */
int invert; /* Should the inverted Mapping be used? */
int neighbour; /* Index of Mapping with which to swap */
int nin2; /* No. of inputs for second component WinMap */
int nin; /* Number of coordinates for WinMap */
int nmapt; /* No. of Mappings in list */
int nstep1; /* No. of Mappings backwards to next mergable Mapping */
int nstep2; /* No. of Mappings forward to next mergable Mapping */
int old_winv; /* original Invert value for supplied WinMap */
int result; /* Result value to return */
int ser; /* Are Mappings applied in series? */
int simpler; /* Is the resulting Mapping simpler than original? */
int swap; /* Is there an advantage in swapping mappings? */
int swaphi; /* Can WinMap be swapped with higher neighbour? */
int swaplo; /* Can WinMap be swapped with lower neighbour? */
/* Initialise. */
result = -1;
/* Check the global error status. */
if ( !astOK ) return result;
/* Initialise variables to avoid "used of uninitialised variable"
messages from dumb compilers. */
i1 = 0;
i2 = 0;
neighbour = 0;
/* Get the number of axes for the WinMap. */
nin = astGetNin( ( *map_list )[ where ] );
/* Get a pointer to the WinMap. */
oldwm = (AstWinMap *) this;
/* First of all, see if the WinMap can be replaced by a simpler Mapping,
without reference to the neighbouring Mappings in the list. */
/* ======================================================================*/
/* If the shift terms in the WinMap are all zero, the WinMap can be
replaced by a diagonal MatrixMap (which is faster to compute). Check the
shift terms. */
diag = 1;
newwm = (AstWinMap *) ( *map_list )[ where ];
for( i = 0; i < nin; i++ ){
if( !EQUAL( ( newwm->a )[ i ], 0.0 ) ){
diag = 0;
break;
}
}
/* If all the shift terms are zero... */
if( diag ){
/* Temporarily set the Invert attribute of the WinMap to the supplied
value. */
old_winv = astGetInvert( newwm );
astSetInvert( newwm, ( *invert_list )[ where ] );
/* Get a copy of the scale terms from the WinMap. */
astWinTerms( newwm, NULL, &b );
/* Create a diagonal MatrixMap holding the scale terms. */
mtr = astMatrixMap( nin, nin, 1, b, "" );
/* Restore the Invert attribute of the supplied WinMap. */
astSetInvert( newwm, old_winv );
/* Free the memory used to hold the scale terms. */
b = (double *) astFree( (void *) b );
/* Annul the WinMap pointer in the list and replace it with the MatrixMap
pointer, and indicate that the forward transformation of the returned
MatrixMap should be used. */
(void) astAnnul( ( *map_list )[ where ] );
( *map_list )[ where ] = (AstMapping *) mtr;
( *invert_list )[ where ] = 0;
/* Return the index of the first modified element. */
result = where;
/* If the WinMap itself could not be simplified, see if it can be merged
with the Mappings on either side of it in the list. */
} else {
/* Store the classes of the neighbouring Mappings in the list. */
class1 = ( where > 0 ) ? astGetClass( ( *map_list )[ where - 1 ] ) : NULL;
class2 = ( where < *nmap - 1 ) ? astGetClass( ( *map_list )[ where + 1 ] ) : NULL;
/* In series. */
/* ========== */
if ( series ) {
/* We first look to see if the WinMap can be merged with one of its
neighbours, resulting in a reduction of one in the number of Mappings
in the list. WinMaps can only merge directly with another WinMap, a
ZoomMap, or a UnitMap. */
if( class1 && ( !strcmp( class1, "WinMap" ) ||
!strcmp( class1, "ZoomMap" ) ||
!strcmp( class1, "UnitMap" ) ) ){
nclass = class1;
i1 = where - 1;
i2 = where;
} else if( class2 && ( !strcmp( class2, "WinMap" ) ||
!strcmp( class2, "ZoomMap" ) ||
!strcmp( class2, "UnitMap" ) ) ){
nclass = class2;
i1 = where;
i2 = where + 1;
} else {
nclass = NULL;
}
/* If the WinMap can merge with one of its neighbours, create the merged
Mapping. */
if( nclass ){
if( !strcmp( nclass, "WinMap" ) ){
newwm = WinWin( ( *map_list )[ i1 ], ( *map_list )[ i2 ],
( *invert_list )[ i1 ], ( *invert_list )[ i2 ],
1 );
invert = 0;
} else if( !strcmp( nclass, "ZoomMap" ) ){
if( i1 == where ){
newwm = WinZoom( (AstWinMap *)( *map_list )[ i1 ],
(AstZoomMap *)( *map_list )[ i2 ],
( *invert_list )[ i1 ], ( *invert_list )[ i2 ], 1, 1 );
} else {
newwm = WinZoom( (AstWinMap *)( *map_list )[ i2 ],
(AstZoomMap *)( *map_list )[ i1 ],
( *invert_list )[ i2 ], ( *invert_list )[ i1 ], 0, 1 );
}
invert = 0;
} else {
newwm = astClone( ( *map_list )[ where ] );
invert = ( *invert_list )[ where ];
}
/* If succesfull... */
if( astOK ){
/* Annul the first of the two Mappings, and replace it with the merged
WinMap. Also set the invert flag. */
(void) astAnnul( ( *map_list )[ i1 ] );
( *map_list )[ i1 ] = (AstMapping *) newwm;
( *invert_list )[ i1 ] = invert;
/* Annul the second of the two Mappings, and shuffle down the rest of the
list to fill the gap. */
(void) astAnnul( ( *map_list )[ i2 ] );
for ( i = i2 + 1; i < *nmap; i++ ) {
( *map_list )[ i - 1 ] = ( *map_list )[ i ];
( *invert_list )[ i - 1 ] = ( *invert_list )[ i ];
}
/* Clear the vacated element at the end. */
( *map_list )[ *nmap - 1 ] = NULL;
( *invert_list )[ *nmap - 1 ] = 0;
/* Decrement the Mapping count and return the index of the first
modified element. */
( *nmap )--;
result = i1;
}
/* If one of the neighbours is a (parallel) CmpMap, we convert the WinMap
into an equivalent parallel CmpMap, and then merge this parallel
CmpMap with the neighbouring parallel CmpMap to create a parallel CmpMap
containing two series CmpMaps. */
} else if( ( class1 && !strcmp( "CmpMap", class1 ) ) ||
( class2 && !strcmp( "CmpMap", class2 ) ) ) {
/* Identify the WinMap and the CmpMap. */
if( class1 && !strcmp( "CmpMap", class1 ) ) {
i1 = where - 1;
i2 = where;
cm = (AstCmpMap *) ( *map_list )[ where - 1 ];
cmlow = 1;
} else {
i1 = where;
i2 = where + 1;
cm = (AstCmpMap *) ( *map_list )[ where + 1 ];
cmlow = 0;
}
/* Temporarily set the required Invert attributes in the two Mappings. */
inc[ 0 ] = astGetInvert( ( *map_list )[ i1 ] );
astSetInvert( ( *map_list )[ i1 ], ( *invert_list )[ i1 ] );
inc[ 1 ] = astGetInvert( ( *map_list )[ i2 ] );
astSetInvert( ( *map_list )[ i2 ], ( *invert_list )[ i2 ] );
/* Now get pointers to the scale and zero terms of the nominated WinMap
(these describe the forward transformation, taking into account the
setting of the Invert flag). */
(void) astWinTerms( oldwm , &a, &b );
/* Get pointers to the two components of the parallel CmpMap. */
astDecompose( cm, mc, mc + 1, &ser, ic, ic + 1 );
/* Check component Mappings are combined in parallel. */
map2 = NULL;
if( astOK && !ser ) {
/* Temporarily set the required Invert attributes in the two component
Mappings to the indicated values. */
inc[ 2 ] = astGetInvert( mc[ 0 ] );
astSetInvert( mc[ 0 ], ic[ 0 ] );
inc[ 3 ] = astGetInvert( mc[ 1 ] );
astSetInvert( mc[ 1 ], ic[ 1 ] );
/* Create the first of two corresponding WinMaps, initially with undefined
corners. These could be combined into a parallel CmpMap which would be
equivalent to the nominated WinMap. The number of inputs for each WinMap
is equal to either the number of outputs or inputs of the corresponding
component of the CmpMap, depending on whether the CmpMap is upper or lower
neighbour. */
nin = cmlow ? astGetNout( mc[ 0 ] ):astGetNin( mc[ 0 ] );
newwm = astWinMap( nin, NULL, NULL, NULL, NULL, "" );
if( astOK ) {
/* Store the first "nin" scale and zero terms from the nominated WinMap
in the new WinMap. */
for( i = 0; i < nin; i++ ) {
(newwm->a)[ i ] = a[ i ];
(newwm->b)[ i ] = b[ i ];
}
}
/* Now create the second WinMap in the same way, which transforms the
remaining outputs of the CmpMap. */
nin2 = cmlow ? astGetNout( mc[ 1 ] ):astGetNin( mc[ 1 ] );
newwm2 = astWinMap( nin2, NULL, NULL, NULL, NULL, "" );
if( astOK ) {
/* Store the remaining scale and zero terms from the nominated WinMap
in the new WinMap. */
for( i = 0; i < nin2; i++ ) {
(newwm2->a)[ i ] = a[ i + nin ];
(newwm2->b)[ i ] = b[ i + nin ];
}
}
/* Combine the two corresponding lower component Mappings into a series
CmpMap, and likewise combine the two corresponding upper component
Mappings into a series CmpMap. */
if( cmlow ) {
nc[ 0 ] = (AstMapping *) astCmpMap( mc[ 0 ], newwm, 1, "" );
nc[ 1 ] = (AstMapping *) astCmpMap( mc[ 1 ], newwm2, 1, "" );
} else {
nc[ 0 ] = (AstMapping *) astCmpMap( newwm, mc[ 0 ], 1, "" );
nc[ 1 ] = (AstMapping *) astCmpMap( newwm2, mc[ 1 ], 1, "" );
}
newwm = astAnnul( newwm );
newwm2 = astAnnul( newwm2 );
/* Attempt to simplify each of the two new series CmpMaps. If neither of
them simplify then there is no point in doing the current merger. In fact
it would be dangerous to do so since we may end up in an infinite loop
where the resulting parallel CmpMap gets converted back into the
existing series CmpMap by the CmpMap MapMerge method, and then back
again by this method, etc. */
simp1 = astSimplify( nc[ 0 ] );
simp2 = astSimplify( nc[ 1 ] );
/* Test if either could be simplified by checking if its pointer value
has changed. */
simpler = ( simp1 != nc[ 0 ] ) || ( simp2 != nc[ 1 ] );
/* If either CmpMap was simplified, then combine the two series CmpMap into
a single parallel CmpMap. */
if( simpler ) {
map2 = (AstMapping *) astCmpMap( simp1, simp2, 0, "" );
}
/* Re-instate the original Invert attributes in the two component Mappings. */
astSetInvert( mc[ 0 ], inc[ 2 ] );
astSetInvert( mc[ 1 ], inc[ 3 ] );
/* Free resources. */
simp1 = astAnnul( simp1 );
simp2 = astAnnul( simp2 );
nc[ 0 ] = astAnnul( nc[ 0 ] );
nc[ 1 ] = astAnnul( nc[ 1 ] );
}
/* Free resources. */
mc[ 0 ] = astAnnul( mc[ 0 ] );
mc[ 1 ] = astAnnul( mc[ 1 ] );
a = astFree( a );
b = astFree( b );
/* Re-instate the original Invert attributes. */
astSetInvert( ( *map_list )[ i1 ], inc[ 0 ] );
astSetInvert( ( *map_list )[ i2 ], inc[ 1 ] );
/* If the above produced a new Mapping, annul the supplied pointers for
the two merged Mappings, store the pointer for the new merged Mapping,
and shuffle the remaining Mappings down to fill the space left. Nullify
the end slot which is no longer used, reduce the number of Mappings in
the list by 1, and return the index of the first modified Mapping. */
if( map2 ) {
astAnnul( ( *map_list )[ i1 ] );
astAnnul( ( *map_list )[ i2 ] );
( *map_list )[ i1 ] = map2;
( *invert_list )[ i1 ] = 0;
for( i = i2 + 1; i < *nmap; i++ ){
( *map_list )[ i - 1 ] = ( *map_list )[ i ];
( *invert_list )[ i - 1 ] = ( *invert_list )[ i ];
}
( *map_list )[ *nmap - 1 ] = NULL;
(*nmap)--;
result = i1;
}
/* If the WinMap could not merge directly with either of its neighbours,
we consider whether it would be worthwhile to swap the WinMap with
either of its neighbours. This can only be done for certain classes
of Mapping (MatrixMap & some PermMaps & WcsMaps), and will usually require both
Mappings to be modified (unless they are commutative). The advantage of
swapping the order of the Mappings is that it may result in the WinMap
being adjacent to a Mapping with which it can merge directly on the next
invocation of this function, thus reducing the number of Mappings
in the list. */
} else {
/* Set a flag if we could swap the WinMap with its higher neighbour. "do2"
is returned if swapping the Mappings would simplify either of the
Mappings. */
if( where + 1 < *nmap ){
swaphi = CanSwap( ( *map_list )[ where ],
( *map_list )[ where + 1 ],
( *invert_list )[ where ],
( *invert_list )[ where + 1 ], &do2 );
} else {
swaphi = 0;
do2 = 0;
}
/* If so, step through each of the Mappings which follow the WinMap,
looking for a Mapping with which the WinMap could merge directly. Stop
when such a Mapping is found, or if a Mapping is found with which the
WinMap could definitely not swap. Note the number of Mappings which
separate the WinMap from the Mapping with which it could merge (if
any). */
nstep2 = -1;
if( swaphi ){
for( i2 = where + 1; i2 < *nmap; i2++ ){
/* See if we can merge with this Mapping. If so, note the number of steps
between the two Mappings and leave the loop. */
nclass = astGetClass( ( *map_list )[ i2 ] );
if( !strcmp( nclass, "WinMap" ) ||
!strcmp( nclass, "ZoomMap" ) ||
!strcmp( nclass, "UnitMap" ) ) {
nstep2 = i2 - where - 1;
break;
}
/* If there is no chance that we can swap with this Mapping, leave the loop
with -1 for the number of steps to indicate that no merging is possible.
WinMaps can swap with MatrixMaps and some PermMaps. */
if( strcmp( nclass, "MatrixMap" ) &&
strcmp( nclass, "WcsMap" ) &&
strcmp( nclass, "PermMap" ) ) {
break;
}
}
}
/* Do the same working forward from the WinMap towards the start of the map
list. */
if( where > 0 ){
swaplo = CanSwap( ( *map_list )[ where - 1 ],
( *map_list )[ where ],
( *invert_list )[ where - 1 ],
( *invert_list )[ where ], &do1 );
} else {
swaplo = 0;
do1 = 0;
}
nstep1 = -1;
if( swaplo ){
for( i1 = where - 1; i1 >= 0; i1-- ){
nclass = astGetClass( ( *map_list )[ i1 ] );
if( !strcmp( nclass, "WinMap" ) ||
!strcmp( nclass, "ZoomMap" ) ||
!strcmp( nclass, "UnitMap" ) ) {
nstep1 = where - 1 - i1;
break;
}
if( strcmp( nclass, "MatrixMap" ) &&
strcmp( nclass, "WcsMap" ) &&
strcmp( nclass, "PermMap" ) ) {
break;
}
}
}
/* Choose which neighbour to swap with so that the WinMap moves towards the
nearest Mapping with which it can merge. */
if( do1 || (
nstep1 != -1 && ( nstep2 == -1 || nstep2 > nstep1 ) ) ){
nclass = class1;
i1 = where - 1;
i2 = where;
neighbour = i1;
} else if( do2 || nstep2 != -1 ){
nclass = class2;
i1 = where;
i2 = where + 1;
neighbour = i2;
} else {
nclass = NULL;
}
/* If there is a target Mapping in the list with which the WinMap could
merge, replace the supplied Mappings with swapped Mappings to bring a
WinMap closer to the target Mapping. */
if( nclass ){
/* It is possible that the neighbouring Mapping with which we are about to
swap could also merge with the target Mapping. When the neighbouring
Mapping is reconsidered it may well swap the pair back to put itself nearer
the target Mapping. We need to be careful not to end up in an infinite loop
in which the pair of neighbouring Mappings are constantly swapped backwards
and forwards as each attempts to put itself closer to the target Mapping.
To prevent this, we only swap the pair of Mappings if the neighbouring
Mapping could not itself merge with the target Mapping. Check to see
if this is the case by attempting to merge the neighbouring Mapping with
the target Mapping. */
map2 = astClone( (*map_list)[ neighbour ] );
nmapt = *nmap - neighbour;
maplt = *map_list + neighbour;
invlt = *invert_list + neighbour;
result = astMapMerge( map2, 0, series, &nmapt, &maplt, &invlt );
map2 = astAnnul( map2 );
/* If the above call produced a change in the Mapping list, return the
remaining number of mappings.. */
if( result != -1 ){
*nmap = nmapt + neighbour;
/* Otherwise, if there was no change in the mapping list... */
} else {
if( !strcmp( nclass, "MatrixMap" ) ){
WinMat( (*map_list) + i1, (*invert_list) + i1, where - i1 );
} else if( !strcmp( nclass, "PermMap" ) ){
WinPerm( (*map_list) + i1, (*invert_list) + i1, where - i1 );
} else if( !strcmp( nclass, "WcsMap" ) ){
WinWcs( (*map_list) + i1, (*invert_list) + i1, where - i1 );
}
/* Store the index of the first modified Mapping. */
result = i1;
}
/* If there is no Mapping available for merging, it may still be
advantageous to swap with a neighbour because the swapped Mapping may
be simpler than the original Mappings. For instance, a PermMap may
strip axes of the WinMap leaving only a UnitMap. Also, the two neighbours
may be able to merge. */
} else if( swaphi || swaplo ) {
/* Try swapping with each possible neighbour in turn. */
for( i = 0; i < 2; i++ ) {
/* Set up the class and pointers for the mappings to be swapped, first
the lower neighbour, then the upper neighbour. */
if( i == 0 && swaplo ){
nclass = class1;
i1 = where - 1;
i2 = where;
} else if( i == 1 && swaphi ){
nclass = class2;
i1 = where;
i2 = where + 1;
} else {
nclass = NULL;
}
/* If we have a Mapping to swap with... */
if( nclass ) {
/* Take copies of the Mapping and Invert flag arrays so we do not change
the supplied values. */
mc[ 0 ] = (AstMapping *) astCopy( ( (*map_list) + i1 )[0] );
mc[ 1 ] = (AstMapping *) astCopy( ( (*map_list) + i1 )[1] );
ic[ 0 ] = ( (*invert_list) + i1 )[0];
ic[ 1 ] = ( (*invert_list) + i1 )[1];
/* Swap these Mappings. */
if( !strcmp( nclass, "MatrixMap" ) ){
WinMat( mc, ic, where - i1 );
} else if( !strcmp( nclass, "PermMap" ) ){
WinPerm( mc, ic, where - i1 );
} else if( !strcmp( nclass, "WcsMap" ) ){
WinWcs( mc, ic, where - i1 );
}
/* See if the two neighbouring Mappings can merge now that the nominated
Mapping is no longer in between them. First get a list of Mapping
pointers containing the two Mappings to be merged, and associated
invert flags. */
if( i == 0 && where != *nmap - 1 ) {
nc[ 0 ] = astClone( mc[ 1 ] );
nc[ 1 ] = astClone( (*map_list)[ where + 1 ] );
inc[ 0 ] = ic[ 1 ];
inc[ 1 ] = (*invert_list)[ where + 1 ];
} else if( i == 1 && where > 0 ) {
nc[ 0 ] = astClone( (*map_list)[ where - 1 ] );
nc[ 1 ] = astClone( mc[ 0 ] );
inc[ 0 ] = (*invert_list)[ where - 1 ];
inc[ 1 ] = ic[ 0 ];
} else {
nc[ 0 ] = NULL;
nc[ 1 ] = NULL;
}
/* If both neighbours are available, use astMapMerge to see if it is
possible to merge the two Mappings. */
swap = 0;
if( nc[ 0 ] && nc[ 1 ] ) {
nmapt = 2;
maplt = nc;
invlt = inc;
map2 = astClone( nc[ 0 ] );
swap = astMapMerge( map2, 0, series, &nmapt, &maplt, &invlt );
map2 = astAnnul( map2 );
if( swap == -1 ) {
map2 = astClone( nc[ 1 ] );
swap = astMapMerge( map2, 1, series, &nmapt, &maplt, &invlt );
map2 = astAnnul( map2 );
}
swap = ( nmapt < 2 ) ? 1 : 0;
}
/* Free resources. */
if( nc[ 0 ] ) nc[ 0 ] = astAnnul( nc[ 0 ] );
if( nc[ 1 ] ) nc[ 1 ] = astAnnul( nc[ 1 ] );
/* If the neighbours could not merge, see if either swapped Mapping can
be simplified. */
if( !swap ) {
smc0 = astSimplify( mc[0] );
if( smc0 != mc[0] ) {
swap = 1;
} else {
smc1 = astSimplify( mc[1] );
swap = ( smc1 != mc[1] );
smc1 = astAnnul( smc1 );
}
smc0 = astAnnul( smc0 );
}
/* If there is some point in swapping the Mappings, swap them in the
supplied lists. Otherwise annul the swapped Mappings. */
if( swap ) {
(*map_list)[ i1 ] = astAnnul( (*map_list)[ i1 ] );
(*map_list)[ i2 ] = astAnnul( (*map_list)[ i2 ] );
(*map_list)[ i1 ] = mc[ 0 ];
(*map_list)[ i2 ] = mc[ 1 ];
(*invert_list)[ i1 ] = ic[ 0 ];
(*invert_list)[ i2 ] = ic[ 1 ];
result = i1;
break;
} else {
mc[ 0 ] = astAnnul( mc[ 0 ] );
mc[ 1 ] = astAnnul( mc[ 1 ] );
}
}
}
}
}
/* In parallel. */
/* ============ */
/* WinMaps are combined in parallel with neighbouring WinMaps, ZoomMaps and
UnitMaps. */
} else {
/* We first look to see if the WinMap can be merged with one of its
neighbours, resulting in a reduction of one in the number of Mappings
in the list. WinMaps can only merge directly with another WinMap, a
ZoomMap, or a UnitMap. */
if( class1 && ( !strcmp( class1, "WinMap" ) ||
!strcmp( class1, "ZoomMap" ) ||
!strcmp( class1, "UnitMap" ) ) ){
nclass = class1;
i1 = where - 1;
i2 = where;
} else if( class2 && ( !strcmp( class2, "WinMap" ) ||
!strcmp( class2, "ZoomMap" ) ||
!strcmp( class2, "UnitMap" ) ) ){
nclass = class2;
i1 = where;
i2 = where + 1;
} else {
nclass = NULL;
}
/* If the WinMap can merge with one of its neighbours, create the merged
Mapping. */
if( nclass ){
if( !strcmp( nclass, "WinMap" ) ){
newwm = WinWin( ( *map_list )[ i1 ], ( *map_list )[ i2 ],
( *invert_list )[ i1 ], ( *invert_list )[ i2 ],
0 );
invert = 0;
} else if( !strcmp( nclass, "ZoomMap" ) ){
if( i1 == where ){
newwm = WinZoom( (AstWinMap *)( *map_list )[ i1 ],
(AstZoomMap *)( *map_list )[ i2 ],
( *invert_list )[ i1 ], ( *invert_list )[ i2 ], 1, 0 );
} else {
newwm = WinZoom( (AstWinMap *)( *map_list )[ i2 ],
(AstZoomMap *)( *map_list )[ i1 ],
( *invert_list )[ i2 ], ( *invert_list )[ i1 ], 0, 0 );
}
invert = 0;
} else {
if( i1 == where ){
newwm = WinUnit( (AstWinMap *)( *map_list )[ i1 ],
(AstUnitMap *)( *map_list )[ i2 ],
( *invert_list )[ i1 ], 1 );
} else {
newwm = WinUnit( (AstWinMap *)( *map_list )[ i2 ],
(AstUnitMap *)( *map_list )[ i1 ],
( *invert_list )[ i2 ], 0 );
}
invert = 0;
}
/* If succesfull... */
if( astOK ){
/* Annul the first of the two Mappings, and replace it with the merged
WinMap. Also set the invert flag. */
(void) astAnnul( ( *map_list )[ i1 ] );
( *map_list )[ i1 ] = (AstMapping *) newwm;
( *invert_list )[ i1 ] = invert;
/* Annul the second of the two Mappings, and shuffle down the rest of the
list to fill the gap. */
(void) astAnnul( ( *map_list )[ i2 ] );
for ( i = i2 + 1; i < *nmap; i++ ) {
( *map_list )[ i - 1 ] = ( *map_list )[ i ];
( *invert_list )[ i - 1 ] = ( *invert_list )[ i ];
}
/* Clear the vacated element at the end. */
( *map_list )[ *nmap - 1 ] = NULL;
( *invert_list )[ *nmap - 1 ] = 0;
/* Decrement the Mapping count and return the index of the first
modified element. */
( *nmap )--;
result = i1;
}
}
}
}
/* Return the result. */
return result;
}
static void PermGet( AstPermMap *map, int **outperm, int **inperm,
double **consts ){
/*
* Name:
* PermGet
* Purpose:
* Get the axis permutation and constants array for a PermMap.
* Type:
* Private function.
* Synopsis:
* #include "winmap.h"
* void PermGet( AstPermMap *map, int **outperm, int **inperm,
* double **const )
* Class Membership:
* WinMap member function
* Description:
* This function returns axis permutation and constants arrays which can
* be used to create a PermMap which is equivalent to the supplied PermMap.
* Parameters:
* map
* The PermMap.
* outperm
* An address at which to return a popinter to an array of ints
* holding the output axis permutation array. The array should be
* released using astFree when no longer needed.
* inperm
* An address at which to return a popinter to an array of ints
* holding the input axis permutation array. The array should be
* released using astFree when no longer needed.
* consts
* An address at which to return a popinter to an array of doubles
* holding the constants array. The array should be released using
* astFree when no longer needed.
* Notes:
* - NULL pointers are returned if an error has already occurred, or if
* this function should fail for any reason.
*/
/* Local Variables: */
AstPointSet *pset1; /* PointSet holding input positions for PermMap */
AstPointSet *pset2; /* PointSet holding output positions for PermMap */
double **ptr1; /* Pointer to pset1 data */
double **ptr2; /* Pointer to pset2 data */
double *cnst; /* Pointer to constants array */
double cn; /* Potential new constant value */
double ip; /* Potential output axis index */
double op; /* Potential input axis index */
int *inprm; /* Pointer to input axis permutation array */
int *outprm; /* Pointer to output axis permutation array */
int i; /* Axis count */
int nc; /* Number of constants stored so far */
int nin; /* No. of input coordinates for the PermMap */
int nout; /* No. of output coordinates for the PermMap */
/* Initialise. */
if( outperm ) *outperm = NULL;
if( inperm ) *inperm = NULL;
if( consts ) *consts = NULL;
/* Check the global error status and the supplied pointers. */
if ( !astOK || !outperm || !inperm || !consts ) return;
/* Initialise variables to avoid "used of uninitialised variable"
messages from dumb compilers. */
nc = 0;
/* Get the number of input and output axes for the supplied PermMap. */
nin = astGetNin( map );
nout = astGetNout( map );
/* Allocate the memory for the returned arrays. */
outprm = (int *) astMalloc( sizeof( int )* (size_t) nout );
inprm = (int *) astMalloc( sizeof( int )* (size_t) nin );
cnst = (double *) astMalloc( sizeof( double )* (size_t) ( nout + nin ) );
/* Returned the pointers to these arrays.*/
*outperm = outprm;
*inperm = inprm;
*consts = cnst;
/* Create two PointSets, each holding two points, which can be used for
input and output positions with the PermMap. */
pset1 = astPointSet( 2, nin, "" );
pset2 = astPointSet( 2, nout, "" );
/* Set up the two input positions to be [0,1,2...] and [-1,-1,-1,...]. The
first position is used to enumerate the axes, and the second is used to
check for constant axis values. */
ptr1 = astGetPoints( pset1 );
if( astOK ){
for( i = 0; i < nin; i++ ){
ptr1[ i ][ 0 ] = ( double ) i;
ptr1[ i ][ 1 ] = -1.0;
}
}
/* Use the PermMap to transform these positions in the forward direction. */
(void) astTransform( map, pset1, 1, pset2 );
/* Look at the mapped positions to determine the output axis permutation
array. */
ptr2 = astGetPoints( pset2 );
if( astOK ){
/* No constant axis valeus found yet. */
nc = 0;
/* Do each output axis. */
for( i = 0; i < nout; i++ ){
/* If the output axis value is copied from an input axis value, the index
of the appropriate input axis will be in the mapped first position. */
op = ptr2[ i ][ 0 ];
/* If the output axis value is assigned a constant value, the result of
mapping the two different input axis values will be the same. */
cn = ptr2[ i ][ 1 ];
if( op == cn ) {
/* We have found another constant. Store it in the constants array, and
store the index of the constant in the output axis permutation array. */
cnst[ nc ] = cn;
outprm[ i ] = -( nc + 1 );
nc++;
/* If the output axis values are different, then the output axis value
must be copied from the input axis value. */
} else {
outprm[ i ] = (int) ( op + 0.5 );
}
}
}
/* Now do the same thing to determine the input permutation array. */
if( astOK ){
for( i = 0; i < nout; i++ ){
ptr2[ i ][ 0 ] = ( double ) i;
ptr2[ i ][ 1 ] = -1.0;
}
}
(void) astTransform( map, pset2, 0, pset1 );
if( astOK ){
for( i = 0; i < nin; i++ ){
ip = ptr1[ i ][ 0 ];
cn = ptr1[ i ][ 1 ];
if( ip == cn ) {
cnst[ nc ] = cn;
inprm[ i ] = -( nc + 1 );
nc++;
} else {
inprm[ i ] = (int) ( ip + 0.5 );
}
}
}
/* Annul the PointSets. */
pset1 = astAnnul( pset1 );
pset2 = astAnnul( pset2 );
/* If an error has occurred, attempt to free the returned arrays. */
if( !astOK ) {
*outperm = (int *) astFree( (void *) *outperm );
*inperm = (int *) astFree( (void *) *inperm );
*consts = (double *) astFree( (void *) *consts );
}
/* Return. */
return;
}
static void SetAttrib( AstObject *this_object, const char *setting ) {
/*
* Name:
* astSetAttrib
* Purpose:
* Set an attribute value for a WinMap.
* Type:
* Private function.
* Synopsis:
* #include "winmap.h"
* void SetAttrib( AstObject *this, const char *setting )
* Class Membership:
* WinMap member function (over-rides the astSetAttrib protected
* method inherited from the Mapping class).
* Description:
* This function assigns an attribute value for a WinMap, the
* attribute and its value being specified by means of a string of
* the form:
*
* "attribute= value "
*
* Here, "attribute" specifies the attribute name and should be in
* lower case with no white space present. The value to the right
* of the "=" should be a suitable textual representation of the
* value to be assigned and this will be interpreted according to
* the attribute's data type. White space surrounding the value is
* only significant for string attributes.
* Parameters:
* this
* Pointer to the WinMap.
* setting
* Pointer to a null-terminated string specifying the new attribute
* value.
*/
/* Local Variables: */
AstWinMap *this; /* Pointer to the WinMap structure */
int len; /* Length of setting string */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain a pointer to the WinMap structure. */
this = (AstWinMap *) this_object;
/* Obtain the length of the setting string. */
len = (int) strlen( setting );
/* The WinMap class currently has no attributes, so pass it on to the parent
method for further interpretation. */
(*parent_setattrib)( this_object, setting );
}
static int TestAttrib( AstObject *this_object, const char *attrib ) {
/*
* Name:
* TestAttrib
* Purpose:
* Test if a specified attribute value is set for a WinMap.
* Type:
* Private function.
* Synopsis:
* #include "winmap.h"
* int TestAttrib( AstObject *this, const char *attrib )
* Class Membership:
* WinMap member function (over-rides the astTestAttrib protected
* method inherited from the Mapping class).
* Description:
* This function returns a boolean result (0 or 1) to indicate whether
* a value has been set for one of a WinMap's attributes.
* Parameters:
* this
* Pointer to the WinMap.
* attrib
* Pointer to a null-terminated string specifying the attribute
* name. This should be in lower case with no surrounding white
* space.
* Returned Value:
* One if a value has been set, otherwise zero.
* Notes:
* - A value of zero will be returned if this function is invoked
* with the global status set, or if it should fail for any reason.
*/
/* Local Variables: */
AstWinMap *this; /* Pointer to the WinMap structure */
int result; /* Result value to return */
/* Initialise. */
result = 0;
/* Check the global error status. */
if ( !astOK ) return result;
/* Obtain a pointer to the WinMap structure. */
this = (AstWinMap *) this_object;
/* The WinMap class currently has no attributes, so pass it on to the parent
method for further interpretation. */
result = (*parent_testattrib)( this_object, attrib );
/* Return the result, */
return result;
}
static AstPointSet *Transform( AstMapping *this, AstPointSet *in,
int forward, AstPointSet *out ) {
/*
* Name:
* Transform
* Purpose:
* Apply a WinMap to transform a set of points.
* Type:
* Private function.
* Synopsis:
* #include "winmap.h"
* AstPointSet *Transform( AstMapping *this, AstPointSet *in,
* int forward, AstPointSet *out )
* Class Membership:
* WinMap member function (over-rides the astTransform protected
* method inherited from the Mapping class).
* Description:
* This function takes a WinMap and a set of points encapsulated in a
* PointSet and transforms the points so as to map them into the
* required window.
* Parameters:
* this
* Pointer to the WinMap.
* in
* Pointer to the PointSet holding the input coordinate data.
* forward
* A non-zero value indicates that the forward coordinate transformation
* should be applied, while a zero value requests the inverse
* transformation.
* out
* Pointer to a PointSet which will hold the transformed (output)
* coordinate values. A NULL value may also be given, in which case a
* new PointSet will be created by this function.
* Returned Value:
* Pointer to the output (possibly new) PointSet.
* Notes:
* - A null pointer will be returned if this function is invoked with the
* global error status set, or if it should fail for any reason.
* - The number of coordinate values per point in the input PointSet must
* match the number of coordinates for the WinMap being applied.
* - If an output PointSet is supplied, it must have space for sufficient
* number of points and coordinate values per point to accommodate the
* result. Any excess space will be ignored.
*/
/* Local Variables: */
AstPointSet *result; /* Pointer to output PointSet */
AstWinMap *map; /* Pointer to WinMap to be applied */
const char *class; /* Object class */
double **ptr_in; /* Pointer to input coordinate data */
double **ptr_out; /* Pointer to output coordinate data */
double *axin; /* Pointer to next input axis value */
double *axout; /* Pointer to next output axis value */
double *a; /* Pointer to next constant term */
double *b; /* Pointer to next multiplicative term */
double aa; /* Constant term */
double bb; /* Multiplicative term */
int coord; /* Loop counter for coordinates */
int def; /* Is mapping defined? */
int ncoord; /* Number of coordinates per point */
int npoint; /* Number of points */
int point; /* Loop counter for points */
/* Check the global error status. */
if ( !astOK ) return NULL;
/* Initialise variables to avoid "used of uninitialised variable"
messages from dumb compilers. */
aa = 0.0;
bb = 0.0;
/* Obtain a pointer to the WinMap. */
map = (AstWinMap *) this;
/* Apply the parent mapping using the stored pointer to the Transform member
function inherited from the parent Mapping class. This function validates
all arguments and generates an output PointSet if necessary, but does not
actually transform any coordinate values. */
result = (*parent_transform)( this, in, forward, out );
/* We will now extend the parent astTransform method by performing the
calculations needed to generate the output coordinate values. */
/* Determine the numbers of points and coordinates per point from the input
PointSet and obtain pointers for accessing the input and output coordinate
values. */
ncoord = astGetNcoord( in );
npoint = astGetNpoint( in );
ptr_in = astGetPoints( in );
ptr_out = astGetPoints( result );
/* Determine whether to apply the forward or inverse mapping, according to the
direction specified and whether the mapping has been inverted. */
if ( astGetInvert( map ) ) forward = !forward;
/* Report an error if the WinMap does not contain any scales or shifts. */
if( !(map->a && map->b) && astOK ){
class = astGetClass( this );
astError( AST__BADWM, "astTransform(%s): The supplied %s does not "
"contain any window information.", class, class );
}
/* Perform coordinate arithmetic. */
/* ------------------------------ */
if( astOK ){
/* Store pointers to the shift and scale for the next axis. */
a = map->a;
b = map->b;
/* Apply the mapping to each axis. */
for( coord = 0; coord < ncoord; coord++ ){
/* If either the scale or shift is bad indicate that the mapping is
not defined on this axis. */
if( *a == AST__BAD || *b == AST__BAD ){
def = 0;
/* Otherwise, get the scale and offset factors for this axis, taking account of
whether the mapping is inverted or not. If the mapping is undefined, set
the "def" flag to indicate this. */
} else {
aa = *a;
bb = *b;
if( forward ){
def = 1;
} else if( bb != 0.0 ){
bb = 1.0/bb;
aa = -aa*bb;
def = 1;
} else {
def = 0;
}
}
/* Store pointers to the first inpout and output values on this axis. */
axin = ptr_in[ coord ];
axout = ptr_out[ coord ];
/* If the mapping is defined, apply it to the supplied points. */
if( def ){
for( point = 0; point < npoint; point++ ){
if( *axin != AST__BAD ){
*(axout++) = aa + bb*(*axin);
} else {
*(axout++) = AST__BAD;
}
axin++;
}
/* If the mapping is not defined, store bad values on this axis in the
returned points. */
} else {
for( point = 0; point < npoint; point++ ) *(axout++) = AST__BAD;
}
/* Point to the scale and shift for the next axis. */
a++;
b++;
}
}
/* Return a pointer to the output PointSet. */
return result;
}
static void WinMat( AstMapping **maps, int *inverts, int iwm ){
/*
* Name:
* WinMat
* Purpose:
* Swap a WinMap and a MatrixMap.
* Type:
* Private function.
* Synopsis:
* #include "winmap.h"
* void WinMat( AstMapping **maps, int *inverts, int iwm )
* Class Membership:
* WinMap member function
* Description:
* A list of two Mappings is supplied containing a WinMap and a
* MatrixMap. These Mappings are annulled, and replaced with
* another pair of Mappings consisting of a WinMap and a MatrixMap
* in the opposite order. These Mappings are chosen so that their
* combined effect is the same as the original pair of Mappings.
* The scale factors in the returned WinMap are always unity (i.e.
* the differences in scaling get absorbed into the returned
* MatrixMap).
* Parameters:
* maps
* A pointer to an array of two Mapping pointers.
* inverts
* A pointer to an array of two invert flags.
* iwm
* The index within "maps" of the WinMap.
*/
/* Local Variables: */
AstMatrixMap *m1; /* Pointer to Diagonal scale factor MatrixMap */
AstMatrixMap *m2; /* Pointer to returned MatrixMap */
AstMatrixMap *sm2; /* Pointer to simplified returned MatrixMap */
AstMatrixMap *mm; /* Pointer to the supplied MatrixMap */
AstPointSet *pset1; /* Shift terms from supplied WinMap */
AstPointSet *pset2; /* Shift terms for returned WinMap */
AstWinMap *w1; /* Pointer to the returned WinMap */
AstWinMap *sw1; /* Pointer to the simplified returned WinMap */
AstWinMap *wm; /* Pointer to the supplied WinMap */
double **ptr1; /* Pointer to pset1 data */
double **ptr2; /* Pointer to pset2 data */
double *a; /* Array of shift terms from supplied WinMap */
double *aa; /* Pointer to next shift term */
double *b; /* Array of scale terms from supplied WinMap */
double *bb; /* Pointer to next scale term */
int i; /* Axis count */
int nin; /* No. of axes in supplied WinMap */
int nout; /* No. of axes in returned WinMap */
int old_minv; /* Invert value for the supplied MatrixMap */
int old_winv; /* Invert value for the supplied WinMap */
/* Check the global error status. */
if ( !astOK ) return;
/* Store pointers to the supplied WinMap and the MatrixMap. */
wm = (AstWinMap *) maps[ iwm ];
mm = (AstMatrixMap *) maps[ 1 - iwm ];
/* Temporarily set the Invert attribute of the supplied Mappings to the
supplied values. */
old_winv = astGetInvert( wm );
astSetInvert( wm, inverts[ iwm ] );
old_minv = astGetInvert( mm );
astSetInvert( mm, inverts[ 1 - iwm ] );
/* Get copies of the shift and scale terms used by the WinMap. This
also returns the number of axes in the WinMap. */
nin = astWinTerms( wm, &a, &b );
/* Create a diagonal MatrixMap holding the scale factors from the
supplied WinMap. */
m1 = astMatrixMap( nin, nin, 1, b, "" );
/* Create a PointSet holding a single position given by the shift terms
in the supplied WinMap. */
pset1 = astPointSet( 1, nin, "" );
ptr1 = astGetPoints( pset1 );
if( astOK ){
aa = a;
for( i = 0; i < nin; i++ ) ptr1[ i ][ 0 ] = *(aa++);
}
/* First deal with cases when the WinMap is applied first, followed by
the MatrixMap. */
if( iwm == 0 ){
/* Multiply the diagonal matrix holding the WinMap scale factors by the
supplied matrix. The resulting MatrixMap is the one to return in the
map list. */
m2 = astMtrMult( m1, mm );
/* Transform the position given by the shift terms from the supplied
WinMap using the supplied MatrixMap to get the shift terms for
the returned WinMap. */
pset2 = astTransform( mm, pset1, 1, NULL );
/* Now deal with cases when the MatrixMap is applied first, followed by
the WinMap. */
} else {
/* Multiply the supplied MatrixMap by the diagonal matrix holding scale
factors from the supplied WinMap. The resulting MatrixMap is the one to
return in the map list. */
m2 = astMtrMult( mm, m1 );
/* Transform the position given by the shift terms from the supplied
WinMap using the inverse of the returned MatrixMap to get the shift
terms for the returned WinMap. */
pset2 = astTransform( m2, pset1, 0, NULL );
}
/* Re-instate the original value of the Invert attributes of the supplied
Mappings. */
astSetInvert( wm, old_winv );
astSetInvert( mm, old_minv );
/* Get pointers to the shift terms for the returned WinMap. */
ptr2 = astGetPoints( pset2 );
/* Create the returned WinMap, initially with undefined corners. The number of
axes in the WinMap must equal the number of shift terms. */
nout = astGetNcoord( pset2 );
w1 = astWinMap( nout, NULL, NULL, NULL, NULL, "" );
/* If succesful, store the scale and shift terms in the WinMap. The scale
terms are always unity. */
if( astOK ){
bb = w1->b;
aa = w1->a;
for( i = 0; i < nout; i++ ) {
*(bb++) = 1.0;
*(aa++) = ptr2[ i ][ 0 ];
}
/* Replace the supplied Mappings and invert flags with the ones found
above. Remember that the order of the Mappings is now swapped */
(void) astAnnul( maps[ 0 ] );
(void) astAnnul( maps[ 1 ] );
sw1 = astSimplify( w1 );
w1 = astAnnul( w1 );
maps[ 1 - iwm ] = (AstMapping *) sw1;
inverts[ 1 - iwm ] = astGetInvert( sw1 );
sm2 = astSimplify( m2 );
m2 = astAnnul( m2 );
maps[ iwm ] = (AstMapping *) sm2;
inverts[ iwm ] = astGetInvert( sm2 );
}
/* Annul the MatrixMap and PointSet holding the scale and shift terms from the
supplied WinMap. */
m1 = astAnnul( m1 );
pset1 = astAnnul( pset1 );
pset2 = astAnnul( pset2 );
/* Free the copies of the scale and shift terms from the supplied WinMap. */
b = (double *) astFree( (void *) b );
a = (double *) astFree( (void *) a );
/* Return. */
return;
}
static void WinWcs( AstMapping **maps, int *inverts, int iwm ){
/*
* Name:
* WinWcs
* Purpose:
* Swap a WinMap and a WcsMap.
* Type:
* Private function.
* Synopsis:
* #include "winmap.h"
* void WinWcs( AstMapping **maps, int *inverts, int iwm )
* Class Membership:
* WinMap member function
* Description:
* A list of two Mappings is supplied containing a WinMap and a
* WcsMap. These Mappings are swapped.
* Parameters:
* maps
* A pointer to an array of two Mapping pointers.
* inverts
* A pointer to an array of two invert flags.
* iwm
* The index within "maps" of the WinMap.
*/
/* Local Variables: */
AstMapping *m1; /* Pointer to a Mapping */
int inv; /* Invert value */
/* Check the global error status. */
if ( !astOK ) return;
/* Simply swap the values (the CanSwap function will have checked that
the WcsMap and WinMap can simply be swapped). */
m1 = maps[ 0 ];
maps[ 0 ] = maps[ 1 ];
maps[ 1 ] = m1;
inv = inverts[ 0 ];
inverts[ 0 ] = inverts[ 1 ];
inverts[ 1 ] = inv;
/* Return. */
return;
}
static void WinPerm( AstMapping **maps, int *inverts, int iwm ){
/*
* Name:
* WinPerm
* Purpose:
* Swap a WinMap and a PermMap.
* Type:
* Private function.
* Synopsis:
* #include "winmap.h"
* void WinPerm( AstMapping **maps, int *inverts, int iwm )
* Class Membership:
* WinMap member function
* Description:
* A list of two Mappings is supplied containing a WinMap and a
* PermMap. These Mappings are annulled, and replaced with
* another pair of Mappings consisting of a WinMap and a PermMap
* in the opposite order. These Mappings are chosen so that their
* combined effect is the same as the original pair of Mappings.
* Parameters:
* maps
* A pointer to an array of two Mapping pointers.
* inverts
* A pointer to an array of two invert flags.
* iwm
* The index within "maps" of the WinMap.
* Notes:
* - All links between input and output axes in the PermMap must
* be bi-directional, but there can be unconnected axes, and there
* need not be the same number of input and output axes.
*/
/* Local Variables: */
AstPermMap *pm; /* Pointer to the supplied PermMap */
AstPermMap *p1; /* Pointer to the returned PermMap */
AstPermMap *sp1; /* Pointer to the simplified returned PermMap */
AstWinMap *w1; /* Pointer to the returned WinMap */
AstWinMap *sw1; /* Pointer to the simplified returned PermMap */
AstWinMap *wm; /* Pointer to the supplied WinMap */
double *a; /* Array of shift terms from supplied WinMap */
double *aa; /* Pointer to next shift term */
double *b; /* Array of scale terms from supplied WinMap */
double *bb; /* Pointer to next scale term */
double *consts; /* Pointer to constants array */
double c; /* A constant value */
int *inperm; /* Pointer to input axis permutation array */
int *outperm; /* Pointer to output axis permutation array */
int i; /* Axis count */
int j; /* Axis index */
int nin; /* No. of axes in supplied WinMap */
int npin; /* No. of input axes in supplied PermMap */
int npout; /* No. of output axes in supplied PermMap */
int old_pinv; /* Invert value for the supplied PermMap */
int old_winv; /* Invert value for the supplied WinMap */
/* Check the global error status. */
if ( !astOK ) return;
/* Initialise variables to avoid "used of uninitialised variable"
messages from dumb compilers. */
p1 = NULL;
w1 = NULL;
/* Store pointers to the supplied WinMap and the PermMap. */
wm = (AstWinMap *) maps[ iwm ];
pm = (AstPermMap *) maps[ 1 - iwm ];
/* Temporarily set the Invert attribute of the supplied Mappings to the
supplied values. */
old_winv = astGetInvert( wm );
astSetInvert( wm, inverts[ iwm ] );
old_pinv = astGetInvert( pm );
astSetInvert( pm, inverts[ 1 - iwm ] );
/* Get copies of the shift and scale terms used by the WinMap. This
also returns the number of axes in the WinMap. */
nin = astWinTerms( wm, &a, &b );
/* Get the axis permutation and constants arrays representing the
PermMap. Note, no constants are used more than once in the returned
arrays (i.e. duplicate constants are returned in "consts" if more than
one axis uses a given constant). */
PermGet( pm, &outperm, &inperm, &consts );
if( astOK ) {
/* Get the number of input and output axes in the PermMap. */
npin = astGetNin( pm );
npout = astGetNout( pm );
/* First consider cases where the WinMap is applied first, followed by the
PermMap. */
if( iwm == 0 ) {
/* Create the new WinMap, initially with undefined corners. Its number
of axes will equal the number of output axes of the PermMap. */
w1 = astWinMap( npout, NULL, NULL, NULL, NULL, "" );
/* Get pointers to the scale and shift terms for the new WinMap. */
bb = w1->b;
aa = w1->a;
/* Thinking of the forward CmpMap first, consider each of the output axes of
the PermMap. */
for( i = 0; i < npout; i++ ){
/* If the value for this output axis is derived from an input axis, copy the
scale and shift terms from the corresponding input axis to the new
WinMap. */
j = outperm[ i ];
if( j >= 0 && j < nin ) {
aa[ i ] = a[ j ];
bb[ i ] = b[ j ];
/* If this output axis is assigned a constant value, use zero and one for
the shift and scale in order to preserve the constant value produced
by the PermMap. */
} else {
aa[ i ] = 0.0;
bb[ i ] = 1.0;
}
}
/* Now consider the inverse CmpMap. Any constants produced by the inverse
PermMap would previously have been scaled by the inverse WinMap. Since
there will be no inverse WinMap to perform this scaling in the returned
Mappings, we need to change the constant values to be the values after
the scaling which would have been applied by the WinMap. Consider each
of the input axes of the PermMap.*/
for( i = 0; i < npin; i++ ){
/* Skip axes which are not assigned a constant value. */
if( inperm[ i ] < 0 ) {
/* Scale the constant term associated with this input axis using the
inverse WinMap unless it is AST__BAD. */
c = consts[ -inperm[ i ] - 1 ];
if( c != AST__BAD ) {
if( a[ i ] != AST__BAD && b[ i ] != AST__BAD &&
b[ i ] != 0.0 ) {
consts[ -inperm[ i ] - 1 ] = ( c - a[ i ] )/b[ i ];
} else {
consts[ -inperm[ i ] - 1 ] = AST__BAD;
}
}
}
}
/* Now consider cases where the PermMap is applied first, followed by the
WinMap. */
} else {
/* Create the new WinMap, initially with undefined corners. Its number
of axes will equal the number of input axes of the PermMap. */
w1 = astWinMap( npin, NULL, NULL, NULL, NULL, "" );
/* Get pointers to the scale and shift terms for the new WinMap. */
bb = w1->b;
aa = w1->a;
/* Thinking first about the inverse WinMap, consider each of the input axes
of the PermMap. */
for( i = 0; i < npin; i++ ){
/* If the value for this input axis is derived from an output axis, copy the
scale and shift terms from the corresponding output axis to the new
WinMap. */
j = inperm[ i ];
if( j >= 0 && j < nin ) {
aa[ i ] = a[ j ];
bb[ i ] = b[ j ];
/* If this input axis is assigned a constant value, use zero and one for
the shift and scale in order to preserve the constant value produced
by the PermMap. */
} else {
aa[ i ] = 0.0;
bb[ i ] = 1.0;
}
}
/* Now consider the forward WinMap. Any constants produced by the forward
PermMap would previously have been scaled by the forward WinMap. Since
there will be no forward WinMap to perform this scaling in the returned
Mappings, we need to change the constant values to be the values after
the scaling which would have been applied by the WinMap. Consider each
of the output axes of the PermMap.*/
for( i = 0; i < npout; i++ ){
/* Skip axes which are not assigned a constant value. */
if( outperm[ i ] < 0 ) {
/* Scale the constant term associated with this input axis using the
forward WinMap unless it is AST__BAD. */
c = consts[ -outperm[ i ] - 1 ];
if( c != AST__BAD ) {
if( a[ i ] != AST__BAD && b[ i ] != AST__BAD ) {
consts[ -outperm[ i ] - 1 ] = a[ i ] + c*b[ i ];
} else {
consts[ -outperm[ i ] - 1 ] = AST__BAD;
}
}
}
}
}
/* Create a new PermMap (since the constants may have changed). */
p1 = astPermMap( npin, inperm, npout, outperm, consts, "" );
/* Free the axis permutation and constants arrays. */
outperm = (int *) astFree( (void *) outperm );
inperm = (int *) astFree( (void *) inperm );
consts = (double *) astFree( (void *) consts );
}
/* Re-instate the original value of the Invert attributes of the supplied
Mappings. */
astSetInvert( wm, old_winv );
astSetInvert( pm, old_pinv );
/* Replace the supplied Mappings with the ones created above, swapping the
order. */
if( astOK ){
(void) astAnnul( wm );
(void) astAnnul( pm );
sp1 = astSimplify( p1 );
p1 = astAnnul( p1 );
sw1 = astSimplify( w1 );
w1 = astAnnul( w1 );
maps[ iwm ] = (AstMapping *) sp1;
inverts[ iwm ] = 0;
maps[ 1 - iwm ] = (AstMapping *) sw1;
inverts[ 1 - iwm ] = astGetInvert( sw1 );
}
/* Free the copies of the scale and shift terms from the supplied WinMap. */
b = (double *) astFree( (void *) b );
a = (double *) astFree( (void *) a );
/* Return. */
return;
}
static int WinTerms( AstWinMap *this, double **shift, double **scale ){
/*
*+
* Name:
* astWinTerms
* Purpose:
* Obtain the scale and shift terms used by a WinMap.
* Type:
* Protected virtual function.
* Synopsis:
* #include "winmap.h"
* int astWinTerms( AstWinMap *this, double **shift, double **scale )
* Class Membership:
* WinMap mewthod.
* Description:
* This function returns copies of the scale and shift terms used by a
* WinMap when transforming points. Each axis of the WinMap has a scale
* term B, and a shift term A, and the transformation of a point is done
* by applying these to each input axis value X in turn, to get the
* output axis value B.X + A. The returned terms take into account the
* current setting of the Invert attribute of the WinMap.
* Parameters:
* this
* Pointer to the WinMap.
* shift
* The address of a location at which to return a pointer to the
* start of a dynamically allocated array holding the shift terms
* for each axis.
* scale
* The address of a location at which to return a pointer to the
* start of a dynamically allocated array holding the scale terms
* for each axis.
* Returned Value:
* The number of axes in the WinMap. This is the same as the number of
* elements in the returned arrays.
* Notes:
* - The returned arrays should be released using astFree when no
* longer needed.
* - NULL pointers can be supplied for "scale" or "shift" if the
* corresponding arrays are not required.
* - A value of zero will be returned, together with NULL pointers
* for "scale" and "shift" if this function is invoked with the
* global error status set, or if it should fail for any reason.
*-
*/
/* Local Variables: */
double *a; /* Pointer to a copy of the shift term array */
double *aa; /* Pointer to the next shift term */
double *b; /* Pointer to a copy of the scale term array */
double *bb; /* Pointer to the next scale term */
int i; /* Axis count */
int result; /* The returned number of axes */
size_t absize; /* Size of shift and scale arrays */
/* Initialise. */
result = 0;
if( scale ) *scale = NULL;
if( shift ) *shift = NULL;
/* Check the global status. */
if ( !astOK ) return result;
/* Get the number of axes in the WinMap. */
result = astGetNin( this );
/* Create copies of the scale and shift terms from the WinMap. */
absize = sizeof( double )*(size_t) result;
b = (double *) astStore( NULL, (void *) this->b, absize );
a = (double *) astStore( NULL, (void *) this->a, absize );
/* Check the pointers can be used. */
if( astOK ){
/* If the WinMap is inverted, replace the scale and shift terms
by the corresponding values for the inverted mapping. */
if( astGetInvert( this ) ){
bb = b;
aa = a;
for( i = 0; i < result; i++ ){
if( *aa != AST__BAD && *bb != 0.0 && *bb != AST__BAD ){
*bb = 1.0/(*bb);
*aa *= -(*bb);
} else {
*bb = AST__BAD;
*aa = AST__BAD;
}
aa++;
bb++;
}
}
/* Store the required pointers, and free arrays which are not required. */
if( scale ){
*scale = b;
} else {
b = (double *) astFree( (void *) b );
}
if( shift ){
*shift = a;
} else {
a = (double *) astFree( (void *) a );
}
}
/* If an error has occurred, free the arrays and return zero. */
if( !astOK ){
if( scale ) *scale = (double *) astFree( (void *) *scale );
if( shift ) *shift = (double *) astFree( (void *) *shift );
result = 0;
}
/* Return the answer. */
return result;
}
static AstWinMap *WinUnit( AstWinMap *wm, AstUnitMap *um, int winv,
int win1 ){
/*
* Name:
* WinUnit
* Purpose:
* Create a WinMap by merging a WinMap and a UnitMap in parallel.
* Type:
* Private function.
* Synopsis:
* #include "winmap.h"
* AstWinMap *WinUnit( AstWinMap *wm, AstUnitMap *um, int winv, int win1 )
* Class Membership:
* WinMap member function
* Description:
* This function creates a new WinMap which performs a mapping
* equivalent to applying the two supplied Mappings in parallel in
* the directions specified by the "invert" flag (the Invert
* attribute of the supplied WinMap is ignored).
* Parameters:
* wm
* A pointer to the WinMap.
* um
* A pointer to the UnitMap.
* winv
* The invert flag to use with wm. A value of zero causes the forward
* mapping to be used, and a non-zero value causes the inverse
* mapping to be used.
* win1
* Indicates the order in which the Mappings should be applied.
*
* If win1 is non-zero:
* "wm" applies to the lower axis indices and "um" to the upper
* axis indices.
*
* If win1 is zero:
* "um" applies to the lower axis indices and "wm" to the upper
* axis indices.
* Returned Value:
* Pointer to the new WinMap.
* Notes:
* - The forward direction of the returned WinMap is equivalent to the
* combined effect of the two supplied Mappings, operating in the
* directions specified by "winv".
* - A null pointer will be returned if this function is invoked with the
* global error status set, or if it should fail for any reason.
*/
/* Local Variables: */
AstWinMap *result; /* Pointer to output WinMap */
double *a; /* Pointer to shift term array */
double *aa; /* Pointer to next shift term */
double *ar; /* Pointer to next shift term in result */
double *b; /* Pointer to scale term array */
double *bb; /* Pointer to next scale term */
double *br; /* Pointer to next scale term in result */
int i; /* Axis index */
int ninw; /* No. of axes in the WinMap */
int ninu; /* No. of axes in the UnitMap */
int old_winv; /* Original setting of WinMap Invert attribute */
/* Check the global error status. */
if ( !astOK ) return NULL;
/* Initialise the returned pointer. */
result = NULL;
/* Temporarily set the Invert attribute of the WinMap to the supplied
value. */
old_winv = astGetInvert( wm );
astSetInvert( wm, winv );
/* Create copies of the scale and shift terms from the WinMap, and store the
number of axes in it. */
ninw = astWinTerms( wm, &a, &b );
/* Check the pointers can be used. */
if( astOK ){
/* Get the number of axes in the UnitMap. */
ninu = astGetNin( um );
/* Create the merged WinMap with unspecified corners. */
result = astWinMap( ninw + ninu, NULL, NULL, NULL, NULL, "" );
/* If the WinMap applies to the lower axis indices... */
if( win1 ){
/* Use the scale and shift terms from the WinMap for the lower axes of
the new WinMap. */
aa = a;
bb = b;
ar = result->a;
br = result->b;
for( i = 0; i < ninw; i++ ){
*(ar++) = *(aa++);
*(br++) = *(bb++);
}
/* Use the scale factor to 1.0 and the shift term to zero for the upper axes
of the new WinMap. */
for( i = 0; i < ninu; i++ ){
*(ar++) = 0.0;
*(br++) = 1.0;
}
/* If the WinMap applies to the upper axis indices... */
} else {
/* Use the scale factor to 1.0 and the shift term to zero for the lower axes
of the new WinMap. */
ar = result->a;
br = result->b;
for( i = 0; i < ninu; i++ ){
*(ar++) = 0.0;
*(br++) = 1.0;
}
/* Use the scale and shift terms from the WinMap for the upper axes of
the new WinMap. */
aa = a;
bb = b;
for( i = 0; i < ninw; i++ ){
*(ar++) = *(aa++);
*(br++) = *(bb++);
}
}
}
/* Free the copies of the scale and shift terms from the supplied WinMap. */
b = (double *) astFree( (void *) b );
a = (double *) astFree( (void *) a );
/* Re-instate the original setting of the Invert attribute for the
supplied WinMap. */
astSetInvert( wm, old_winv );
/* If an error has occurred, annull the returned WinMap. */
if( !astOK ) result = astAnnul( result );
/* Return a pointer to the output WinMap. */
return result;
}
static AstWinMap *WinWin( AstMapping *map1, AstMapping *map2, int inv1,
int inv2, int series ){
/*
* Name:
* WinWin
* Purpose:
* Create a merged WinMap from two supplied WinMaps.
* Type:
* Private function.
* Synopsis:
* #include "winmap.h"
* AstWinMap *WinWin( AstMapping *map1, AstMapping *map2, int inv1,
* int inv2, int series )
* Class Membership:
* WinMap member function
* Description:
* This function creates a new WinMap which performs a mapping
* equivalent to applying the two supplied WinMaps either in series
* or parallel in the directions specified by the "invert" flags
* (the Invert attributes of the supplied WinMaps are ignored).
* Parameters:
* map1
* A pointer to the WinMap to apply first (if in series), or to the
* lower axis indices (if in parallel)
* map2
* A pointer to the WinMap to apply second (if in series), or to the
* upper axis indices (if in parallel)
* inv1
* The invert flag to use with map1. A value of zero causes the forward
* mapping to be used, and a non-zero value causes the inverse
* mapping to be used.
* inv2
* The invert flag to use with map2.
* series
* If non-zero, then the supplied WinMaps are combined in series.
* Otherwise, they are combined in parallel.
* Returned Value:
* Pointer to the new WinMap.
* Notes:
* - The forward direction of the returned WinMap is equivalent to the
* combined effect of the two supplied WinMap, operating in the
* directions specified by "inv1" and "inv2".
* - A null pointer will be returned if this function is invoked with the
* global error status set, or if it should fail for any reason.
*/
/* Local Variables: */
AstWinMap *result; /* Pointer to output WinMap */
AstWinMap *wm1; /* Pointer to the first supplied WinMap */
AstWinMap *wm2; /* Pointer to the second supplied WinMap */
double *a[ 2 ]; /* Pointers to shift term arrays */
double *a0; /* Pointer to next shift term from WinMap 1 */
double *a1; /* Pointer to next shift term from WinMap 2 */
double *ar; /* Pointer to next shift term in result */
double *b[ 2 ]; /* Pointers to scale term arrays */
double *b0; /* Pointer to next scale term from WinMap 1 */
double *b1; /* Pointer to next scale term from WinMap 2 */
double *br; /* Pointer to next scale term in result */
int i; /* Axis index */
int invert[ 2 ]; /* Array of invert flags */
int nin[ 2 ]; /* No. of axes in the two WinMaps */
/* Check the global error status. */
if ( !astOK ) return NULL;
/* Initialise the returned pointer. */
result = NULL;
/* Store pointers to the WinMaps. */
wm1 = (AstWinMap *) map1;
wm2 = (AstWinMap *) map2;
/* Temporarily set their Invert attributes to the supplied values. */
invert[ 0 ] = astGetInvert( wm1 );
astSetInvert( wm1, inv1 );
invert[ 1 ] = astGetInvert( wm2 );
astSetInvert( wm2, inv2 );
/* Create copies of the scale and shift terms from the two WinMaps,
and store the number of axes in each WinMap. The scale and shift terms
returned take into account the setting of the Invert attribute. */
nin[ 0 ] = astWinTerms( wm1, a, b );
nin[ 1 ] = astWinTerms( wm2, a + 1, b + 1 );
/* Check the pointers can be used. */
if( astOK ){
/* Series */
/* ====== */
if( series ){
/* Merge the scale and shift terms for the two WinMaps, overwriting the
terms for the first WinMap. To be merged in series, both WinMaps must
have the same number of axes, so it matters not whether we use nin[ 0 ]
or nin[ 1 ] to specify the number of axes. */
a0 = a[ 0 ];
b0 = b[ 0 ];
a1 = a[ 1 ];
b1 = b[ 1 ];
for( i = 0; i < nin[ 0 ]; i++ ){
if( *a0 != AST__BAD && *b0 != AST__BAD &&
*a1 != AST__BAD && *b1 != AST__BAD ){
*a0 *= (*b1);
*a0 += (*a1);
*b0 *= (*b1);
} else {
*a0 = AST__BAD;
*b0 = AST__BAD;
*a1 = AST__BAD;
*b1 = AST__BAD;
}
/* Move on to the next axis. */
a0++;
b0++;
a1++;
b1++;
}
/* Create the merged WinMap with unspecified corners. */
result = astWinMap( nin[ 0 ], NULL, NULL, NULL, NULL, "" );
/* Store the merged scale and shift terms in the new WinMap. The forward
transformation of this WinMap then corresponds to the combination of the
two supplied WinMaps, taking into account their invert flags. */
a0 = a[ 0 ];
b0 = b[ 0 ];
ar = result->a;
br = result->b;
for( i = 0; i < nin[ 0 ]; i++ ){
*(ar++) = *(a0++);
*(br++) = *(b0++);
}
/* Parallel */
/* ======== */
} else {
/* Create the merged WinMap with unspecified corners. */
result = astWinMap( nin[ 0 ] + nin[ 1 ], NULL, NULL, NULL, NULL, "" );
/* Copy the scale and shift terms into the new WinMap. */
a0 = a[ 0 ];
b0 = b[ 0 ];
a1 = a[ 1 ];
b1 = b[ 1 ];
ar = result->a;
br = result->b;
for( i = 0; i < nin[ 0 ]; i++ ){
*(ar++) = *(a0++);
*(br++) = *(b0++);
}
for( i = 0; i < nin[ 1 ]; i++ ){
*(ar++) = *(a1++);
*(br++) = *(b1++);
}
}
}
/* Re-instate the original settings of the Invert attributes for the
supplied WinMaps. */
astSetInvert( wm1, invert[ 0 ] );
astSetInvert( wm2, invert[ 1 ] );
/* Free the memory. */
a[ 0 ] = (double *) astFree( (void *) a[ 0 ] );
b[ 0 ] = (double *) astFree( (void *) b[ 0 ] );
a[ 1 ] = (double *) astFree( (void *) a[ 1 ] );
b[ 1 ] = (double *) astFree( (void *) b[ 1 ] );
/* If an error has occurred, annull the returned WinMap. */
if( !astOK ) result = astAnnul( result );
/* Return a pointer to the output WinMap. */
return result;
}
static AstWinMap *WinZoom( AstWinMap *wm, AstZoomMap *zm, int winv,
int zinv, int win1, int series ){
/*
* Name:
* WinZoom
* Purpose:
* Create a WinMap by merging a WinMap and a ZoomMap.
* Type:
* Private function.
* Synopsis:
* #include "winmap.h"
* AstWinMap *WinZoom( AstWinMap *wm, AstZoomMap *zm, int winv,
* int zinv, int win1, int series )
* Class Membership:
* WinMap member function
* Description:
* This function creates a new WinMap which performs a mapping
* equivalent to applying the two supplied Mappings in series or
* parallel in the directions specified by the "invert" flags (the
* Invert attributes of the supplied WinMaps are ignored).
* Parameters:
* wm
* A pointer to the WinMap.
* zm
* A pointer to the ZoomMap.
* winv
* The invert flag to use with wm. A value of zero causes the forward
* mapping to be used, and a non-zero value causes the inverse
* mapping to be used.
* zinv
* The invert flag to use with zm.
* win1
* Indicates the order in which the Mappings should be applied.
*
* If win1 is non-zero:
* If in series:
* "wm" is applied first followed by "zm".
* If in parallel:
* "wm" applies to the lower axis indices and "zm" to the upper
* axis indices.
*
* If win1 is zero:
* If in series:
* "zm" is applied first followed by "wm".
* If in parallel:
* "zm" applies to the lower axis indices and "wm" to the upper
* axis indices.
* series
* Should be supplied non-zero if the Mappings are to be combined in
* series.
* Returned Value:
* Pointer to the new WinMap.
* Notes:
* - The forward direction of the returned WinMap is equivalent to the
* combined effect of the two supplied Mappings, operating in the
* directions specified by "zinv" and "winv".
* - A null pointer will be returned if this function is invoked with the
* global error status set, or if it should fail for any reason.
*/
/* Local Variables: */
AstWinMap *result; /* Pointer to output WinMap */
double *a; /* Pointer to shift term array */
double *aa; /* Pointer to next shift term */
double *ar; /* Pointer to next shift term in result */
double *b; /* Pointer to scale term array */
double *bb; /* Pointer to next scale term */
double *br; /* Pointer to next scale term in result */
double zfac; /* Zoom factor */
int i; /* Axis index */
int ninw; /* No. of axes in the WinMap */
int ninz; /* No. of axes in the ZoomMap */
int old_winv; /* Original setting of WinMap Invert attribute */
int old_zinv; /* Original setting of ZoomMap Invert attribute */
/* Check the global error status. */
if ( !astOK ) return NULL;
/* Initialise the returned pointer. */
result = NULL;
/* Temporarily set the Invert attributes of both Mappings to the supplied
values. */
old_winv = astGetInvert( wm );
astSetInvert( wm, winv );
old_zinv = astGetInvert( zm );
astSetInvert( zm, zinv );
/* Get the zoom factor implemented by the ZoomMap. */
zfac = astGetZoom( zm );
/* Create copies of the scale and shift terms from the WinMap, and store the
number of axes in it. */
ninw = astWinTerms( wm, &a, &b );
/* Check the pointers can be used. */
if( astOK ){
/* First do series mode... */
if( series ) {
/* Modify the WinMap scale and shift terms by the zoom factor. How this is
done depends on which way round the Mappings are applied. */
bb = b;
aa = a;
for( i = 0; i < ninw; i++ ){
if( *aa != AST__BAD && *bb != AST__BAD && zfac != AST__BAD ){
*bb *= zfac;
if( win1 ) *aa *= zfac;
} else {
*bb = AST__BAD;
*aa = AST__BAD;
}
aa++;
bb++;
}
/* Create the merged WinMap with unspecified corners. */
result = astWinMap( ninw, NULL, NULL, NULL, NULL, "" );
/* Store the merged scale and shift terms in the new WinMap. The forward
transformation of this WinMap then corresponds to the combination of the
two supplied Mappings, taking into account their invert flags. */
aa = a;
bb = b;
ar = result->a;
br = result->b;
for( i = 0; i < ninw; i++ ){
*(ar++) = *(aa++);
*(br++) = *(bb++);
}
/* Now do parallel mode... */
} else {
/* Get the number of axes in the ZoomMap. */
ninz = astGetNin( zm );
/* Create the merged WinMap with unspecified corners. */
result = astWinMap( ninw + ninz, NULL, NULL, NULL, NULL, "" );
/* If the WinMap applies to the lower axis indices... */
if( win1 ) {
/* Use the scale and shift terms from the WinMap for the lower axes of
the new WinMap. */
aa = a;
bb = b;
ar = result->a;
br = result->b;
for( i = 0; i < ninw; i++ ){
*(ar++) = *(aa++);
*(br++) = *(bb++);
}
/* Use the scale factor (with zero shift) from the ZoomMap for the upper axes
of the new WinMap. */
for( i = 0; i < ninz; i++ ){
*(ar++) = 0.0;
*(br++) = zfac;
}
/* If the WinMap applies to the upper axis indices... */
} else {
/* Use the scale factor (with zero shift) from the ZoomMap for the lower axes
of the new WinMap. */
ar = result->a;
br = result->b;
for( i = 0; i < ninz; i++ ){
*(ar++) = 0.0;
*(br++) = zfac;
}
/* Use the scale and shift terms from the WinMap for the upper axes of
the new WinMap. */
aa = a;
bb = b;
for( i = 0; i < ninw; i++ ){
*(ar++) = *(aa++);
*(br++) = *(bb++);
}
}
}
}
/* Free the copies of the scale and shift terms from the supplied WinMap. */
b = (double *) astFree( (void *) b );
a = (double *) astFree( (void *) a );
/* Re-instate the original settings of the Invert attribute for the
supplied Mappings. */
astSetInvert( wm, old_winv );
astSetInvert( zm, old_zinv );
/* If an error has occurred, annull the returned WinMap. */
if( !astOK ) result = astAnnul( result );
/* Return a pointer to the output WinMap. */
return result;
}
/* Functions which access class attributes. */
/* ---------------------------------------- */
/* Implement member functions to access the attributes associated with
this class using the macros defined for this purpose in the
"object.h" file. For a description of each attribute, see the class
interface (in the associated .h file). */
/* Copy constructor. */
/* ----------------- */
static void Copy( const AstObject *objin, AstObject *objout ) {
/*
* Name:
* Copy
* Purpose:
* Copy constructor for WinMap objects.
* Type:
* Private function.
* Synopsis:
* void Copy( const AstObject *objin, AstObject *objout )
* Description:
* This function implements the copy constructor for WinMap objects.
* Parameters:
* objin
* Pointer to the WinMap to be copied.
* objout
* Pointer to the WinMap being constructed.
*/
/* Local Variables: */
AstWinMap *out; /* Pointer to output WinMap */
AstWinMap *in; /* Pointer to input WinMap */
int ncoord; /* No. of axes for the mapping */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain a pointer to the input and output WinMaps. */
in= (AstWinMap *) objin;
out = (AstWinMap *) objout;
/* Get the number of coordinates mapped by the WinMap. */
ncoord = astGetNin( in );
/* Allocate memory holding copies of the scales and shifts window defining the
mapping. */
out->a = (double *) astStore( NULL, (void *) in->a,
sizeof(double)*(size_t)ncoord );
out->b = (double *) astStore( NULL, (void *) in->b,
sizeof(double)*(size_t)ncoord );
/* If an error occurred, free any allocated memory. */
if ( !astOK ) {
out->a = (double *) astFree( (void *) out->a );
out->b = (double *) astFree( (void *) out->b );
}
}
/* Destructor. */
/* ----------- */
static void Delete( AstObject *obj ) {
/*
* Name:
* Delete
* Purpose:
* Destructor for WinMap objects.
* Type:
* Private function.
* Synopsis:
* void Delete( AstObject *obj )
* Description:
* This function implements the destructor for WinMap objects.
* Parameters:
* obj
* Pointer to the WinMap to be deleted.
* Notes:
* - This destructor does nothing and exists only to maintain a
* one-to-one correspondence between destructors and copy
* constructors.
*/
/* Local Variables: */
AstWinMap *this; /* Pointer to WinMap */
/* Obtain a pointer to the WinMap structure. */
this = (AstWinMap *) obj;
/* Free the memory holding the scales and shifts. */
this->a = (double *) astFree( (void *) this->a );
this->b = (double *) astFree( (void *) this->b );
}
/* Dump function. */
/* -------------- */
static void Dump( AstObject *this_object, AstChannel *channel ) {
/*
* Name:
* Dump
* Purpose:
* Dump function for WinMap objects.
* Type:
* Private function.
* Synopsis:
* void Dump( AstObject *this, AstChannel *channel )
* Description:
* This function implements the Dump function which writes out data
* for the WinMap class to an output Channel.
* Parameters:
* this
* Pointer to the WinMap whose data are being written.
* channel
* Pointer to the Channel to which the data are being written.
*/
/* Local Constants: */
#define COMMENT_LEN 50 /* Maximum length of a comment string */
#define KEY_LEN 50 /* Maximum length of a keyword */
/* Local Variables: */
AstWinMap *this; /* Pointer to the WinMap structure */
char buff[ KEY_LEN + 1 ]; /* Buffer for keyword string */
char comment[ COMMENT_LEN + 1 ]; /* Buffer for comment string */
int axis; /* Axis index */
int ncoord; /* No. of axes for mapping */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain a pointer to the WinMap structure. */
this = (AstWinMap *) this_object;
/* Get the number of coordinates to be mapped. */
ncoord = astGetNin( this );
/* Write out values representing the instance variables for the
WinMap class. Accompany these with appropriate comment strings,
possibly depending on the values being written.*/
/* The scales and shifts. */
for( axis = 0; axis < ncoord; axis++ ){
(void) sprintf( buff, "Sft%d", axis + 1 );
(void) sprintf( comment, "Shift for axis %d", axis + 1 );
astWriteDouble( channel, buff, (this->a)[ axis ] != 0.0, 0,
(this->a)[ axis ], comment );
(void) sprintf( buff, "Scl%d", axis + 1 );
(void) sprintf( comment, "Scale factor for axis %d", axis + 1 );
astWriteDouble( channel, buff, (this->b)[ axis ] != 1.0, 0,
(this->b)[ axis ], comment );
}
/* Undefine macros local to this function. */
#undef COMMENT_LEN
#undef KEY_LEN
}
/* Standard class functions. */
/* ========================= */
/* Implement the astIsAWinMap and astCheckWinMap functions using the macros
defined for this purpose in the "object.h" header file. */
astMAKE_ISA(WinMap,Mapping,check,&class_init)
astMAKE_CHECK(WinMap)
AstWinMap *astWinMap_( int ncoord, const double c1_in[], const double c2_in[],
const double c1_out[], const double c2_out[],
const char *options, ... ) {
/*
*++
* Name:
c astWinMap
f AST_WINMAP
* Purpose:
* Create a WinMap.
* Type:
* Public function.
* Synopsis:
c #include "winmap.h"
c AstWinMap *astWinMap( int ncoord,
c const double ina[], const double inb[],
c const double outa[], const double outb[],
c const char *options, ... )
f RESULT = AST_WINMAP( NCOORD, INA, INB, OUTA, OUTB, OPTIONS, STATUS )
* Class Membership:
* WinMap constructor.
* Description:
* This function creates a new WinMap and optionally initialises its
* attributes.
*
* A Winmap is a linear Mapping which transforms a rectangular
* window in one coordinate system into a similar window in another
* coordinate system by scaling and shifting each axis (the window
* edges being parallel to the coordinate axes).
*
* A WinMap is specified by giving the coordinates of two opposite
* corners (A and B) of the window in both the input and output
* coordinate systems.
* Parameters:
c ncoord
f NCOORD = INTEGER (Given)
* The number of coordinate values for each point to be
* transformed (i.e. the number of dimensions of the space in
* which the points will reside). The same number is applicable
* to both input and output points.
c ina
f INA( NCOORD ) = DOUBLE PRECISION (Given)
c An array containing the "ncoord"
f An array containing the
* coordinates of corner A of the window in the input coordinate
* system.
c inb
f INB( NCOORD ) = DOUBLE PRECISION (Given)
c An array containing the "ncoord"
f An array containing the
* coordinates of corner B of the window in the input coordinate
* system.
c outa
f OUTA( NCOORD ) = DOUBLE PRECISION (Given)
c An array containing the "ncoord"
f An array containing the
* coordinates of corner A of the window in the output coordinate
* system.
c outb
f OUTB( NCOORD ) = DOUBLE PRECISION (Given)
c An array containing the "ncoord"
f An array containing the
* coordinates of corner B of the window in the output coordinate
* system.
c options
f OPTIONS = CHARACTER * ( * ) (Given)
c Pointer to a null-terminated string containing an optional
c comma-separated list of attribute assignments to be used for
c initialising the new WinMap. The syntax used is identical to
c that for the astSet function and may include "printf" format
c specifiers identified by "%" symbols in the normal way.
f A character string containing an optional comma-separated
f list of attribute assignments to be used for initialising the
f new WinMap. The syntax used is identical to that for the
f AST_SET routine.
c ...
c If the "options" string contains "%" format specifiers, then
c an optional list of additional arguments may follow it in
c order to supply values to be substituted for these
c specifiers. The rules for supplying these are identical to
c those for the astSet function (and for the C "printf"
c function).
f STATUS = INTEGER (Given and Returned)
f The global status.
* Returned Value:
c astWinMap()
f AST_WINMAP = INTEGER
* A pointer to the new WinMap.
* Notes:
* - A null Object pointer (AST__NULL) will be returned if this
c function is invoked with the AST error status set, or if it
f function is invoked with STATUS set to an error value, or if it
* should fail for any reason.
*--
*/
/* Local Variables: */
AstWinMap *new; /* Pointer to new WinMap */
va_list args; /* Variable argument list */
/* Check the global status. */
if ( !astOK ) return NULL;
/* Initialise the WinMap, allocating memory and initialising the
virtual function table as well if necessary. */
new = astInitWinMap( NULL, sizeof( AstWinMap ), !class_init, &class_vtab,
"WinMap", ncoord, c1_in, c2_in, c1_out, c2_out );
/* If successful, note that the virtual function table has been
initialised. */
if ( astOK ) {
class_init = 1;
/* Obtain the variable argument list and pass it along with the options string
to the astVSet method to initialise the new WinMap's attributes. */
va_start( args, options );
astVSet( new, options, args );
va_end( args );
/* If an error occurred, clean up by deleting the new object. */
if ( !astOK ) new = astDelete( new );
}
/* Return a pointer to the new WinMap. */
return new;
}
AstWinMap *astWinMapId_( int ncoord, const double c1_in[], const double c2_in[],
const double c1_out[], const double c2_out[],
const char *options, ... ) {
/*
* Name:
* astWinMapId_
* Purpose:
* Create a WinMap.
* Type:
* Private function.
* Synopsis:
* #include "winmap.h"
* AstWinMap *astWinMapId_( int ncoord, const double c1_in[],
* const double c2_in[], const double c1_out[],
* const double c2_out[],
* const char *options, ... )
* Class Membership:
* WinMap constructor.
* Description:
* This function implements the external (public) interface to the
* astWinMap constructor function. It returns an ID value (instead
* of a true C pointer) to external users, and must be provided
* because astWinMap_ has a variable argument list which cannot be
* encapsulated in a macro (where this conversion would otherwise
* occur).
*
* The variable argument list also prevents this function from
* invoking astWinMap_ directly, so it must be a re-implementation
* of it in all respects, except for the final conversion of the
* result to an ID value.
* Parameters:
* As for astWinMap_.
* Returned Value:
* The ID value associated with the new WinMap.
*/
/* Local Variables: */
AstWinMap *new; /* Pointer to new WinMap */
va_list args; /* Variable argument list */
/* Check the global status. */
if ( !astOK ) return NULL;
/* Initialise the WinMap, allocating memory and initialising the
virtual function table as well if necessary. */
new = astInitWinMap( NULL, sizeof( AstWinMap ), !class_init, &class_vtab,
"WinMap", ncoord, c1_in, c2_in, c1_out, c2_out );
/* If successful, note that the virtual function table has been
initialised. */
if ( astOK ) {
class_init = 1;
/* Obtain the variable argument list and pass it along with the options string
to the astVSet method to initialise the new WinMap's attributes. */
va_start( args, options );
astVSet( new, options, args );
va_end( args );
/* If an error occurred, clean up by deleting the new object. */
if ( !astOK ) new = astDelete( new );
}
/* Return an ID value for the new WinMap. */
return astMakeId( new );
}
AstWinMap *astInitWinMap_( void *mem, size_t size, int init,
AstWinMapVtab *vtab, const char *name,
int ncoord, const double *c1_in,
const double *c2_in, const double *c1_out,
const double *c2_out ) {
/*
*+
* Name:
* astInitWinMap
* Purpose:
* Initialise a WinMap.
* Type:
* Protected function.
* Synopsis:
* #include "winmap.h"
* AstWinMap *astInitWinMap( void *mem, size_t size, int init,
* AstWinMapVtab *vtab, const char *name,
* int ncoord, const double *c1_in,
* const double *c2_in,
* const double *c1_out, const double *c2_out )
* Class Membership:
* WinMap initialiser.
* Description:
* This function is provided for use by class implementations to initialise
* a new WinMap object. It allocates memory (if necessary) to accommodate
* the WinMap plus any additional data associated with the derived class.
* It then initialises a WinMap structure at the start of this memory. If
* the "init" flag is set, it also initialises the contents of a virtual
* function table for a WinMap at the start of the memory passed via the
* "vtab" parameter.
* Parameters:
* mem
* A pointer to the memory in which the WinMap is to be initialised.
* This must be of sufficient size to accommodate the WinMap data
* (sizeof(WinMap)) plus any data used by the derived class. If a value
* of NULL is given, this function will allocate the memory itself using
* the "size" parameter to determine its size.
* size
* The amount of memory used by the WinMap (plus derived class data).
* This will be used to allocate memory if a value of NULL is given for
* the "mem" parameter. This value is also stored in the WinMap
* structure, so a valid value must be supplied even if not required for
* allocating memory.
* init
* A logical flag indicating if the WinMap's virtual function table is
* to be initialised. If this value is non-zero, the virtual function
* table will be initialised by this function.
* vtab
* Pointer to the start of the virtual function table to be associated
* with the new WinMap.
* name
* Pointer to a constant null-terminated character string which contains
* the name of the class to which the new object belongs (it is this
* pointer value that will subsequently be returned by the astGetClass
* method).
* ncoord
* The number of coordinate values per point.
* c1_in
* The input coordinates of corner C1 of the window.
* c2_in
* The input coordinates of corner C2 of the window.
* c1_out
* The output coordinates of corner C1 of the window.
* c2_out
* The output coordinates of corner C2 of the window.
* Returned Value:
* A pointer to the new WinMap.
* Notes:
* - A null pointer will be returned if this function is invoked with the
* global error status set, or if it should fail for any reason.
*-
*/
/* Local Variables: */
AstWinMap *new; /* Pointer to new WinMap */
double denom; /* Denominotor */
int axis; /* Axis index */
/* Check the global status. */
if ( !astOK ) return NULL;
/* If necessary, initialise the virtual function table. */
if ( init ) astInitWinMapVtab( vtab, name );
/* Initialise. */
new = NULL;
/* Initialise a Mapping structure (the parent class) as the first component
within the WinMap structure, allocating memory if necessary. Specify that
the Mapping should be defined in both the forward and inverse directions. */
new = (AstWinMap *) astInitMapping( mem, size, 0,
(AstMappingVtab *) vtab, name,
ncoord, ncoord, 1, 1 );
if ( astOK ) {
/* Initialise the WinMap data. */
/* ---------------------------- */
/* Allocate memory to hold the shift and scale for each axis. */
new->a = (double *) astMalloc( sizeof(double)*(size_t)ncoord );
new->b = (double *) astMalloc( sizeof(double)*(size_t)ncoord );
/* Check the pointers can be used */
if( astOK ){
/* Calculater and store the shift and scale for each axis. */
for( axis = 0; axis < ncoord; axis++ ){
/* If any of the corners have not been provided, store bad values. */
if( !c1_in || !c1_out || !c2_in || !c2_out ) {
(new->b)[ axis ] = AST__BAD;
(new->a)[ axis ] = AST__BAD;
/* Otherwise, check the corners are good (not AST__BAD or NaN)... */
} else if( astISGOOD(c2_in[ axis ]) && astISGOOD(c1_in[ axis ]) &&
astISGOOD(c2_out[ axis ]) && astISGOOD(c1_out[ axis ]) ){
denom = c2_in[ axis ] - c1_in[ axis ];
if( denom != 0.0 ){
(new->b)[ axis ] = ( c2_out[ axis ] - c1_out[ axis ] )/denom;
(new->a)[ axis ] = c1_out[ axis ] - (new->b)[ axis ]*c1_in[ axis ];
} else {
(new->b)[ axis ] = AST__BAD;
(new->a)[ axis ] = AST__BAD;
}
} else {
(new->b)[ axis ] = AST__BAD;
(new->a)[ axis ] = AST__BAD;
}
}
}
/* If an error occurred, clean up by deleting the new WinMap. */
if ( !astOK ) new = astDelete( new );
}
/* Return a pointer to the new WinMap. */
return new;
}
AstWinMap *astLoadWinMap_( void *mem, size_t size,
AstWinMapVtab *vtab, const char *name,
AstChannel *channel ) {
/*
*+
* Name:
* astLoadWinMap
* Purpose:
* Load a WinMap.
* Type:
* Protected function.
* Synopsis:
* #include "winmap.h"
* AstWinMap *astLoadWinMap( void *mem, size_t size,
* AstWinMapVtab *vtab, const char *name,
* AstChannel *channel )
* Class Membership:
* WinMap loader.
* Description:
* This function is provided to load a new WinMap using data read
* from a Channel. It first loads the data used by the parent class
* (which allocates memory if necessary) and then initialises a
* WinMap structure in this memory, using data read from the input
* Channel.
*
* If the "init" flag is set, it also initialises the contents of a
* virtual function table for a WinMap at the start of the memory
* passed via the "vtab" parameter.
* Parameters:
* mem
* A pointer to the memory into which the WinMap is to be
* loaded. This must be of sufficient size to accommodate the
* WinMap data (sizeof(WinMap)) plus any data used by derived
* classes. If a value of NULL is given, this function will
* allocate the memory itself using the "size" parameter to
* determine its size.
* size
* The amount of memory used by the WinMap (plus derived class
* data). This will be used to allocate memory if a value of
* NULL is given for the "mem" parameter. This value is also
* stored in the WinMap structure, so a valid value must be
* supplied even if not required for allocating memory.
*
* If the "vtab" parameter is NULL, the "size" value is ignored
* and sizeof(AstWinMap) is used instead.
* vtab
* Pointer to the start of the virtual function table to be
* associated with the new WinMap. If this is NULL, a pointer
* to the (static) virtual function table for the WinMap class
* is used instead.
* name
* Pointer to a constant null-terminated character string which
* contains the name of the class to which the new object
* belongs (it is this pointer value that will subsequently be
* returned by the astGetClass method).
*
* If the "vtab" parameter is NULL, the "name" value is ignored
* and a pointer to the string "WinMap" is used instead.
* Returned Value:
* A pointer to the new WinMap.
* Notes:
* - A null pointer will be returned if this function is invoked
* with the global error status set, or if it should fail for any
* reason.
*-
*/
/* Local Constants. */
#define KEY_LEN 50 /* Maximum length of a keyword */
/* Local Variables: */
AstWinMap *new; /* Pointer to the new WinMap */
char buff[ KEY_LEN + 1 ]; /* Buffer for keyword string */
int axis; /* Axis index */
int ncoord; /* The number of coordinate axes */
/* Initialise. */
new = NULL;
/* Check the global error status. */
if ( !astOK ) return new;
/* If a NULL virtual function table has been supplied, then this is
the first loader to be invoked for this WinMap. In this case the
WinMap belongs to this class, so supply appropriate values to be
passed to the parent class loader (and its parent, etc.). */
if ( !vtab ) {
size = sizeof( AstWinMap );
vtab = &class_vtab;
name = "WinMap";
/* If required, initialise the virtual function table for this class. */
if ( !class_init ) {
astInitWinMapVtab( vtab, name );
class_init = 1;
}
}
/* Invoke the parent class loader to load data for all the ancestral
classes of the current one, returning a pointer to the resulting
partly-built WinMap. */
new = astLoadMapping( mem, size, (AstMappingVtab *) vtab, name,
channel );
if ( astOK ) {
/* Get the number of axis for the mapping. */
ncoord = astGetNin( (AstMapping *) new );
/* Allocate memory to hold the scales and shifts. */
new->a = (double *) astMalloc( sizeof(double)*(size_t)ncoord );
new->b = (double *) astMalloc( sizeof(double)*(size_t)ncoord );
/* Read input data. */
/* ================ */
/* Request the input Channel to read all the input data appropriate to
this class into the internal "values list". */
astReadClassData( channel, "WinMap" );
/* Now read each individual data item from this list and use it to
initialise the appropriate instance variable(s) for this class. */
/* The scales and shifts. */
for( axis = 0; axis < ncoord; axis++ ){
(void) sprintf( buff, "sft%d", axis + 1 );
(new->a)[ axis ] = astReadDouble( channel, buff, 0.0 );
(void) sprintf( buff, "scl%d", axis + 1 );
(new->b)[ axis ] = astReadDouble( channel, buff, 1.0 );
}
}
/* If an error occurred, clean up by deleting the new WinMap. */
if ( !astOK ) new = astDelete( new );
/* Return the new WinMap pointer. */
return new;
/* Undefine macros local to this function. */
#undef KEY_LEN
}
/* Virtual function interfaces. */
/* ============================ */
/* These provide the external interface to the virtual functions defined by
this class. Each simply checks the global error status and then locates and
executes the appropriate member function, using the function pointer stored
in the object's virtual function table (this pointer is located using the
astMEMBER macro defined in "object.h").
Note that the member function may not be the one defined here, as it may
have been over-ridden by a derived class. However, it should still have the
same interface. */
int astWinTerms_( AstWinMap *this, double **scale, double **shift ){
if( !astOK ) return 0;
return (**astMEMBER(this,WinMap,WinTerms))( this, scale, shift );
}
|