1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
// Copyright (C) 1999-2014
// Smithsonian Astrophysical Observatory, Cambridge, MA, USA
// For conditions of distribution and use, see copyright notice in "copyright"
#include <tk.h>
#include "vector.h"
#include "vector3d.h"
#include "fuzzy.h"
// Vector
Vector::Vector(const Vector3d& a)
{
v[0]=a.v[0];
v[1]=a.v[1];
v[2]=1;
}
Vector& Vector::operator=(const Vector3d& a)
{
v[0]=a.v[0];
v[1]=a.v[1];
v[2]=1;
return *this;
}
Vector& Vector::clip(const BBox& bb)
{
Vector ll=bb.ll;
Vector ur=bb.ur;
if (v[0]<ll[0])
v[0]=ll[0];
if (v[0]>ur[0])
v[0]=ur[0];
if (v[1]<ll[1])
v[1]=ll[1];
if (v[1]>ur[1])
v[1]=ur[1];
return *this;
}
Vector Vector::TkCanvasPs(void* canvas)
{
return Vector(v[0], Tk_CanvasPsY((Tk_Canvas)canvas, v[1]));
}
ostream& operator<<(ostream& s, const Vector& v)
{
s << ' ' << v.v[0] << ' ' << v.v[1] << ' ';
return s;
}
istream& operator>>(istream& s, Vector& v)
{
s >> v.v[0] >> v.v[1];
return s;
}
// Vertex
ostream& operator<<(ostream& s, const Vertex& v)
{
s << v.vector;
return s;
}
// Matrix
Matrix& Matrix::operator*=(const Matrix& a)
{
Matrix r;
for (int i=0; i<3; i++)
for (int j=0; j<3; j++)
r.m[i][j] =
m[i][0]*a.m[0][j] +
m[i][1]*a.m[1][j] +
m[i][2]*a.m[2][j];
return *this=r;
}
Matrix Matrix::invert()
{
Matrix cc = this->cofactor();
Matrix aa = cc.adjoint();
double dd = m[0][0]*aa.m[0][0] + m[0][1]*aa.m[1][0] + m[0][2]*aa.m[2][0];
Matrix rr;
for (int ii=0; ii<3; ii++ )
for (int jj=0; jj<3; jj++)
rr.m[ii][jj] = aa.m[ii][jj]/dd;
return rr;
}
Matrix Matrix::cofactor()
{
Matrix rr;
rr.m[0][0] = +(m[1][1]*m[2][2]-m[1][2]*m[2][1]);
rr.m[0][1] = -(m[1][0]*m[2][2]-m[1][2]*m[2][0]);
rr.m[0][2] = +(m[1][0]*m[2][1]-m[1][1]*m[2][0]);
rr.m[1][0] = -(m[0][1]*m[2][2]-m[0][2]*m[2][1]);
rr.m[1][1] = +(m[0][0]*m[2][2]-m[0][2]*m[2][0]);
rr.m[1][2] = -(m[0][0]*m[2][1]-m[0][1]*m[2][0]);
rr.m[2][0] = +(m[0][1]*m[1][2]-m[0][2]*m[1][1]);
rr.m[2][1] = -(m[0][0]*m[1][2]-m[0][2]*m[1][0]);
rr.m[2][2] = +(m[0][0]*m[1][1]-m[0][1]*m[1][0]);
return rr;
}
double Matrix::det()
{
return
+ m[0][0]*(m[1][1]*m[2][2]-m[1][2]*m[2][1])
- m[0][1]*(m[1][0]*m[2][2]-m[1][2]*m[2][0])
+ m[0][2]*(m[1][0]*m[2][1]-m[1][1]*m[2][0]);
}
Matrix Matrix::adjoint()
{
Matrix rr;
for (int ii=0; ii<3; ii++)
for (int jj=0; jj<3; jj++)
rr.m[jj][ii] = m[ii][jj];
return rr;
}
ostream& operator<<(ostream& s, const Matrix& m)
{
s << ' ';
for (int i=0; i<3; i++)
for (int j=0; j<2; j++)
s << m.m[i][j] << ' ';
return s;
}
istream& operator>>(istream& s, Matrix& m)
{
for (int i=0; i<3; i++ )
for (int j=0; j<2; j++)
s >> m.m[i][j];
return s;
}
// Translate
ostream& operator<<(ostream& s, const Translate& m)
{
s << ' ' << m.m[2][0] << ' ' << m.m[2][1] << ' ';
return s;
}
istream& operator>>(istream& s, Translate& m)
{
s >> m.m[2][0] >> m.m[2][1];
return s;
}
// Scale
ostream& operator<<(ostream& s, const Scale& m)
{
s << ' ' << m.m[0][0] << ' ' << m.m[1][1] << ' ';
return s;
}
istream& operator>>(istream& s, Scale& m)
{
s >> m.m[0][0] >> m.m[1][1];
return s;
}
// Rotate
Rotate::Rotate(double a) : Matrix()
{
// note: signs reverse for X-Windows (origin is upper left)
m[0][0] = cos(a);
m[0][1] = -sin(a);
m[1][0] = sin(a);
m[1][1] = cos(a);
// this fixes a problem with numbers too small and tring to invert the matrix
tzero(&m[0][0]);
tzero(&m[0][1]);
tzero(&m[1][0]);
tzero(&m[1][1]);
}
ostream& operator<<(ostream& s, const Rotate& m)
{
s << ' ' << m.m[0][0] << ' ' << m.m[0][1]
<< ' ' << m.m[1][0] << ' ' << m.m[1][1] << ' ';
return s;
}
istream& operator>>(istream& s, Rotate& m)
{
s >> m.m[0][0] >> m.m[0][1] >> m.m[1][0] >> m.m[1][1];
return s;
}
// BBox
BBox::BBox(double a, double b, double c, double d)
{
// we want a 'positive' box
ll.v[0] = a < c ? a : c;
ll.v[1] = b < d ? b : d;
ur.v[0] = a < c ? c : a;
ur.v[1] = b < d ? d : b;
}
BBox::BBox(const Vector& l, const Vector& h)
{
// we want a 'positive' box
ll.v[0] = l.v[0] < h.v[0] ? l.v[0] : h.v[0];
ll.v[1] = l.v[1] < h.v[1] ? l.v[1] : h.v[1];
ur.v[0] = l.v[0] < h.v[0] ? h.v[0] : l.v[0];
ur.v[1] = l.v[1] < h.v[1] ? h.v[1] : l.v[1];
}
int BBox::isIn(const Vector& v) const
{
return !(v.v[0] < ll.v[0] || v.v[1] < ll.v[1] ||
v.v[0] > ur.v[0] || v.v[1] > ur.v[1]);
}
int BBox::isIn(const BBox& bb) const
{
// return 0 if outside, > 0 if intersection
// = 4 if inside
BBox b = bb;
return isIn(b.ll) + isIn(b.ur) + isIn(b.ul()) + isIn(b.lr());
}
BBox& BBox::bound(const Vector& v)
{
if (v.v[0] < ll[0])
ll[0] = v.v[0];
if (v.v[1] < ll[1])
ll[1] = v.v[1];
if (v.v[0] > ur[0])
ur[0] = v.v[0];
if (v.v[1] > ur[1])
ur[1] = v.v[1];
return *this;
}
BBox& BBox::bound(BBox b)
{
this->bound(b.ll);
this->bound(b.lr());
this->bound(b.ur);
this->bound(b.ul());
return *this;
}
BBox intersect(const BBox& a, const BBox& b)
{
// test for obvious
int ab = a.isIn(b);
int ba = b.isIn(a);
// no intersection?
if (ab==0 && ba == 0) {
// maybe they are just crossed, check the centers
int abc = a.isIn(((BBox&)b).center());
int bac = b.isIn(((BBox&)a).center());
if (abc==0 && bac==0)
return BBox();
}
if (ab == 4) // b is inside a
return b;
if (ba == 4) // a is inside b
return a;
// else, there seems to be some overlap
BBox r;
r.ll.v[0] = (a.ll.v[0] > b.ll.v[0]) ? a.ll.v[0] : b.ll.v[0];
r.ll.v[1] = (a.ll.v[1] > b.ll.v[1]) ? a.ll.v[1] : b.ll.v[1];
r.ur.v[0] = (a.ur.v[0] < b.ur.v[0]) ? a.ur.v[0] : b.ur.v[0];
r.ur.v[1] = (a.ur.v[1] < b.ur.v[1]) ? a.ur.v[1] : b.ur.v[1];
return r;
}
ostream& operator<<(ostream& s, const BBox& b)
{
s << b.ll << b.ur;
return s;
}
|