File: crdsynth.c

package info (click to toggle)
saoimage 1.29.3-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 3,952 kB
  • ctags: 4,265
  • sloc: ansic: 50,317; makefile: 243; sh: 35
file content (257 lines) | stat: -rw-r--r-- 8,523 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#ifndef lint
static char SccsId[] = "%W%  %G%";
#endif

/* Module:	crdsynth.c (Coordinate Synthesis)
 * Purpose:	Support the computing of transform matrices and shortcuts
 * Subroutine:	invert_transform()		returns: void
 * Subroutine:	compute_iadd()			returns: void
 * Subroutine:	combine_transform()		returns: void
 * Subroutine:	set_trans_speed()		returns: void
 * Xlib calls:	none
 * Copyright:	1988 Smithsonian Astrophysical Observatory
 *		You may do anything you like with this file except remove
 *		this copyright.  The Smithsonian Astrophysical Observatory
 *		makes no representations about the suitability of this
 *		software for any purpose.  It is provided "as is" without
 *		express or implied warranty.
 * Modified:	{0} Michael VanHilst	initial version	        16 March 1988
 *		{n} <who> -- <does what> -- <when>
 */

#include <stdio.h>		/* stderr, NULL, etc */
#include <math.h>		/* get trig functions, sqrt, and fabs */
#include "hfiles/coord.h"	/* coord structs */

/*
 * Subroutine:	invert_transform
 * Purpose:	Create matrix to perform opposite transformation
 *		Given AtoB (old) and Bsys ioff, compute BtoA (new)
 */
void invert_transform ( new, old, ioff )
     Transform *new, *old;	/* pointers for new and original transforms */
     float ioff;		/* integer coord to real translation factor */
{
  void invert_matrix(), compute_iadd_invert(), set_trans_speed();  

#ifdef DEBUG
  void exit_errmsg();
  /* check for undifined coordinate transforms */
  if( ((old->inx_outx ==0) && (old->iny_outx ==0)) ||
      ((old->inx_outy ==0) && (old->iny_outy ==0)) ) {
    exit_errmsg("indeterminate coordinate transform!");
  }
#endif
  /* check for simplified cases of orthogonal transform */
  if( (old->iny_outx ==0) && (old->inx_outy ==0) ) {
    new->iny_outx = 0.0;
    new->inx_outy = 0.0;
    new->inx_outx = 1.0 / old->inx_outx;
    new->iny_outy = 1.0 / old->iny_outy;
    new->add_outx = -old->add_outx * new->inx_outx;
    new->add_outy = -old->add_outy * new->iny_outy;
    new->iadd_outx = (-old->add_outx + ioff) * new->inx_outx;
    new->iadd_outy = (-old->add_outy + ioff) * new->iny_outy;
  } else if( (old->inx_outx ==0) && (old->iny_outy ==0) ) {
    new->inx_outx = 0.0;
    new->iny_outy = 0.0;
    new->iny_outx = 1.0 / old->inx_outy;
    new->inx_outy = 1.0 / old->iny_outx;
    new->add_outx = -old->add_outy * new->iny_outx;
    new->add_outy = -old->add_outx * new->inx_outy;
    new->iadd_outx = (-old->add_outy + ioff) * new->iny_outx;
    new->iadd_outy = (-old->add_outx + ioff) * new->inx_outy;
  } else {
    /* compute parameters by matrix inversion */
    invert_matrix(old, new);
    compute_iadd_invert(old, new, ioff);
  }
  /* set rotation flag */
  new->no_rot = old->no_rot;
  /* set parameters for speedy integer calculations */
  set_trans_speed(new);
}

#ifdef NOTNEEDED /* %% not currently needed */
/*
 * Subroutine:	compute_iadd
 * Purpose:	Compute the offsets used for integer transforms
 */
void compute_iadd ( old, new, ioff )
     Transform *old, *new;
     float ioff;
{
  void compute_iadd_invert();

  /* check for simplified cases of orthogonal transform */
  if( (new->iny_outx ==0) && (new->inx_outy ==0) ) {
    new->iadd_outx = new->add_outx + (ioff * new->inx_outx);
    new->iadd_outy = new->add_outy + (ioff * new->iny_outy);
  } else if( (new->inx_outx ==0) && (new->iny_outy ==0) ) {
    new->iadd_outx = new->add_outx + (ioff * new->iny_outx);
    new->iadd_outy = new->add_outy + (ioff * new->inx_outy);
  } else {
  /* if no simple solution, carry offset through from inverse transform */
    compute_iadd_invert(old, new, ioff);
  }
}
#endif

/*
 * Subroutine:	combine_transform
 * combine two sets of transform parameters into a single set
 * first and second apply to sequence starting with the input values
 * algorithm is 3x3 matrix multiplication (3rd row is 0 0 1)
 * combination[i][j] is sum of products of column j of 1st and row i of 2nd
 */
void combine_transform ( new, first, second )
     Transform *new, *first, *second;
{
  void set_trans_speed();

  new->inx_outx = ((second->inx_outx * first->inx_outx) +
		   (second->iny_outx * first->inx_outy));
  new->iny_outx = ((second->inx_outx * first->iny_outx) +
		   (second->iny_outx * first->iny_outy));
  new->add_outx = ((second->inx_outx * first->add_outx) +
		   (second->iny_outx * first->add_outy) +
		   second->add_outx);
  new->inx_outy = ((second->inx_outy * first->inx_outx) +
		   (second->iny_outy * first->inx_outy));
  new->iny_outy = ((second->inx_outy * first->iny_outx) +
		   (second->iny_outy * first->iny_outy));
  new->add_outy = ((second->inx_outy * first->add_outx) +
		   (second->iny_outy * first->add_outy) +
		   second->add_outy);
  /* compute offset factor for transform starting with an integer value */
  /* use integer input offset of first and float offset of second */
  new->iadd_outx = ((second->inx_outx * first->iadd_outx) +
		    (second->iny_outx * first->iadd_outy) +
		    second->add_outx);
  new->iadd_outy = ((second->inx_outy * first->iadd_outx) +
		    (second->iny_outy * first->iadd_outy) +
		    second->add_outy);

  /* set rotation flag, most cases don't have cross x-y relationships */
  new->no_rot = first->no_rot && second->no_rot;
  /* set up parameters needed for speedy calculation of transform */
  /* uses integer multiply or divide on orthogonal rotations */
  set_trans_speed(new);
  return;
}

#define EPSILON 0.0001
#define NEGONE -0.9999
#define CLOSE(a,b) (fabs((double)((a)-((float)(b))))<EPSILON)
/*
 * Subroutine:	set_trans_speed
 * Purpose:	Set parameters for fast integer computation
 */
void set_trans_speed ( trans )
     Transform *trans;
{
  int xzm, yzm;
  static int integer_test();

  trans->ixzoom = 0;
  trans->iyzoom = 0;
  /* is it an unflipped transform? */
  if( CLOSE(trans->iny_outx, 0) && CLOSE(trans->inx_outy, 0) ) {
    /* straight forward x->x, y->y transform */
    trans->no_rot = 1;
    trans->flip = 0;
    xzm = integer_test(trans->inx_outx, &trans->ixzoom);
    yzm = integer_test(trans->iny_outy, &trans->iyzoom);
  } else {
    trans->no_rot = 0;
    if( CLOSE(trans->inx_outx, 0) && CLOSE(trans->iny_outy, 0) ) {
      trans->flip = 1;
      xzm = integer_test(trans->iny_outx, &trans->ixzoom);
      yzm = integer_test(trans->inx_outy, &trans->iyzoom);
    } else {
      trans->int_math = 0;
      return;
    }
  }
  /* if both zooms can be handled by integer operations ... */
  /* ... when given integer inputs, use faster operations */
  if( trans->ixzoom && trans->iyzoom ) {
    if( (trans->ixzoom == 1) && (trans->iyzoom == 1) ) {
      /* if both are zoom 1 */
      trans->int_math = 1;
      trans->zoom = 0;
    } else if( (xzm >= 0) && (yzm >= 0) ) {
      /* if both zooms can be integer multiplies, use integer multiply */
      trans->int_math = 1;
      trans->multiply = 1;
      trans->zoom = 1;
    } else if( (xzm <= 0) && (yzm <= 0) ) {
      /* if both zooms can be integer divides, use float divide */
      trans->int_math = 1;
      trans->multiply = 0;
      trans->zoom = 1;
    } else {
      /* if its not so simple (mixed operations) don't bother using shortcut */
      trans->int_math = 0;
    }
  } else {
    trans->int_math = 0;
  }
}

/*
 * Subroutine:	integer_test
 * Returns:	0 if not possible, 1 for zoom up, -1 for zoom down
 * Purpose:	Test zoom to determine whether it could be computed
 *		with integer math
 */
static int integer_test ( fzoom, izoom )
     double fzoom;	/* i: zoom factor (>1, ==1, or <1) */
     int *izoom;	/* o: integer zoom factor (>1 or ==1) */
{
  int ival;

  /* test for unity scaling */
  if( CLOSE(fzoom, 1) ) {
    *izoom = 1;
    return( 0 );
  }
  /* test for even integer multiplies */
  if( fzoom > 1.0 ) {
    /* round and test for close match */
    ival = fzoom + 0.5;
    if( CLOSE(fzoom, ival) ) {
      *izoom = ival;
      return( 1 );
    }
  } else if( fzoom < NEGONE ) {
    ival = fzoom - 0.5;
    if( CLOSE(fzoom, ival) ) {
      *izoom = ival;
      return( 1 );
    }
  } else if( fzoom != 0.0 ) {
    /* test for even integer divides */
    fzoom = 1.0 / fzoom;
    if( fzoom > 0 ) {
      /* round and test for close match */
      ival = fzoom + 0.5;
      if( CLOSE(fzoom, ival) ) {
	*izoom = ival;
	return( -1 );
      }
    } else {
      ival = fzoom - 0.5;
      if( CLOSE(fzoom, ival) ) {
	*izoom = ival;
	return( -1 );
      }
    }
  }
#ifdef DEBUG
  else
    (void)fprintf(stderr, "Warning: Zero zoom factor (CoordSynth.c)\n");
#endif
  *izoom = 0;
  return( 0 );
}