1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
#!/usr/bin/env python
"""
Generate code for orientation transforms using symbolic algebra.
To make it easier to generate correct transforms for oriented shapes, we
use the sympy symbolic alegbra package to do the matrix multiplication.
The transforms are displayed both using an ascii math notation, and as
C or python code which can be pasted directly into the kernel driver.
If ever we decide to change conventions, we simply need to adjust the
order and parameters to the rotation matrices. For display we want to
use forward transforms for the mesh describing the shape, first applying
jitter, then adjusting the view. For calculation we know the effective q
so we instead need to first unwind the view, using the inverse rotation,
then undo the jitter to get the q to calculate for the shape in its
canonical orientation.
Set *OUTPUT* to the type of code you want to see: ccode, python, math
or any combination.
"""
from __future__ import print_function
import codecs
import sys
import re
import sympy as sp
from sympy import pi, sqrt, sin, cos, Matrix, Eq
# Select output
OUTPUT = ""
OUTPUT = OUTPUT + "ccode"
#OUTPUT = OUTPUT + "python "
OUTPUT = OUTPUT + "math "
REUSE_SINCOS = True
QC_ONLY = True # show only what is needed for dqc in the symmetric case
# include unicode symbols in output, even if piping to a pager
if sys.version_info[0] < 3:
sys.stdout = codecs.getwriter('utf8')(sys.stdout)
sp.init_printing(use_unicode=True)
def subs(s):
"""
Transform sympy generated code to follow sasmodels naming conventions.
"""
if REUSE_SINCOS:
s = re.sub(r'(phi|psi|theta)\^\+', r'\1', s) # jitter rep: V^+ => V
s = re.sub(r'([a-z]*)\^\+', r'd\1', s) # jitter rep: V^+ => dV
s = re.sub(r'(cos|sin)\(([a-z]*)\)', r'\1_\2', s) # cos(V) => cos_V
s = re.sub(r'pow\(([a-z]*), 2\)', r'\1*\1', s) # pow(V, 2) => V*V
return s
def comment(s):
r"""
Add a comment to the generated code. Use '\n' to separate lines.
"""
if 'ccode' in OUTPUT:
for line in s.split("\n"):
print("// " + line if line else "")
if 'python' in OUTPUT:
for line in s.split("\n"):
print(" ## " + line if line else "")
def vprint(var, vec, comment=None, post=None):
"""
Generate assignment statements.
*var* could be a single sympy symbol or a 1xN vector of symbols.
*vec* could be a single sympy expression or a 1xN vector of expressions
such as results from a matrix-vector multiplication.
*comment* if present is added to the start of the block as documentation.
"""
#for v, row in zip(var, vec): sp.pprint(Eq(v, row))
desc = sp.pretty(Eq(var, vec), wrap_line=False)
if not isinstance(var, Matrix):
var, vec = [var], [vec]
if 'ccode' in OUTPUT:
if 'math' in OUTPUT:
print("\n// " + comment if comment else "")
print("/*")
for line in desc.split("\n"):
print(" * "+line)
print(" *\n */")
else:
print("\n // " + comment if comment else "")
if post:
print(" // " + post)
for v, row in zip(var, vec):
print(subs(" const double " + sp.ccode(row, assign_to=v)))
if 'python' in OUTPUT:
if comment:
print("\n ## " + comment)
if 'math' in OUTPUT:
for line in desc.split("\n"):
print(" # " + line)
if post:
print(" ## " + post)
for v, row in zip(var, vec):
print(subs(" " + sp.ccode(row, assign_to=v)[:-1]))
if OUTPUT == 'math ':
print("\n// " + comment if comment else "")
if post: print("// " + post)
print(desc)
def mprint(var, mat, comment=None, post=None):
"""
Generate assignment statements for matrix elements.
"""
n = sp.prod(var.shape)
vprint(var.reshape(n, 1), mat.reshape(n, 1), comment=comment, post=post)
# From wikipedia:
# https://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations
def Rx(a):
"""Rotate y and z about x"""
R = [[1, 0, 0],
[0, +cos(a), -sin(a)],
[0, +sin(a), +cos(a)]]
return Matrix(R)
def Ry(a):
"""Rotate x and z about y"""
R = [[+cos(a), 0, +sin(a)],
[0, 1, 0],
[-sin(a), 0, +cos(a)]]
return Matrix(R)
def Rz(a):
"""Rotate x and y about z"""
R = [[+cos(a), -sin(a), 0],
[+sin(a), +cos(a), 0],
[0, 0, 1]]
return Matrix(R)
## =============== Describe the transforms ====================
# Define symbols used. Note that if you change the symbols for the jitter
# angles, you will need to update the subs() function accordingly.
dphi, dpsi, dtheta = sp.var("phi^+ psi^+ theta^+")
phi, psi, theta = sp.var("phi psi theta")
#dphi, dpsi, dtheta = sp.var("beta^+ gamma^+ alpha^+")
#phi, psi, theta = sp.var("beta gamma alpha")
x, y, z = sp.var("x y z")
q = sp.var("q")
qx, qy, qz = sp.var("qx qy qz")
dqx, dqy, dqz = sp.var("qx^+ qy^+ qz^+")
qa, qb, qc = sp.var("qa qb qc")
dqa, dqb, dqc = sp.var("qa^+ qb^+ qc^+")
qab = sp.var("qab")
# 3x3 matrix M
J = Matrix([sp.var("J(1:4)(1:4)")]).reshape(3,3)
V = Matrix([sp.var("V(1:4)(1:4)")]).reshape(3,3)
R = Matrix([sp.var("R(1:4)(1:4)")]).reshape(3,3)
# various vectors
xyz = Matrix([[x], [y], [z]])
x_hat = Matrix([[x], [0], [0]])
y_hat = Matrix([[0], [y], [0]])
z_hat = Matrix([[0], [0], [z]])
q_xy = Matrix([[qx], [qy], [0]])
q_abc = Matrix([[qa], [qb], [qc]])
q_xyz = Matrix([[qx], [qy], [qz]])
dq_abc = Matrix([[dqa], [dqb], [dqc]])
dq_xyz = Matrix([[dqx], [dqy], [dqz]])
def print_steps(jitter, jitter_inv, view, view_inv, qc_only):
"""
Show the forward/reverse transform code for view and jitter.
"""
if 0: # forward calculations
vprint(q_xyz, jitter*q_abc, "apply jitter")
#vprint(xyz, jitter*z_hat, "r")
#mprint(J, jitter, "forward jitter")
vprint(dq_xyz, view*q_xyz, "apply view after jitter")
#mprint(V, view, "forward view")
#vprint(dq_xyz, view*jitter*q_abc, "combine view and jitter")
mprint(R, view*jitter, "forward matrix")
if 1: # reverse calculations
pre_view = "set angles from view" if REUSE_SINCOS else None
pre_jitter = "set angles from jitter" if REUSE_SINCOS else None
index = slice(2,3) if qc_only else slice(None,None)
comment("\n**** direct ****")
vprint(q_abc, view_inv*q_xy, "reverse view", post=pre_view)
vprint(dq_abc[index,:], (jitter_inv*q_abc)[index,:],
"reverse jitter after view", post=pre_jitter)
comment("\n\n**** precalc ****")
#vprint(q_abc, jitter_inv*view_inv*q_xy, "combine jitter and view reverse")
mprint(V[:,:2], view_inv[:,:2], "reverse view matrix", post=pre_view)
mprint(J[index,:], jitter_inv[index,:], "reverse jitter matrix", post=pre_jitter)
mprint(R[index,:2], (J*V)[index,:2], "reverse matrix")
comment("\n**** per point ****")
mprint(q_abc[index,:], (R*q_xy)[index,:], "applied reverse matrix")
#mprint(q_abc, J*V*q_xy, "applied reverse matrix")
#mprint(R[index,:2], jitter_inv*view_inv, "reverse matrix direct")
#vprint(q_abc, M*q_xy, "matrix application")
if 1:
comment("==== asymmetric ====")
print_steps(
jitter=Rx(dphi)*Ry(dtheta)*Rz(dpsi),
jitter_inv=Rz(-dpsi)*Ry(-dtheta)*Rx(-dphi),
view=Rz(phi)*Ry(theta)*Rz(psi),
view_inv=Rz(-psi)*Ry(-theta)*Rz(-phi),
qc_only=False,
)
if 1:
comment("\n\n==== symmetric ====")
print_steps(
jitter=Rx(dphi)*Ry(dtheta),
jitter_inv=Ry(-dtheta)*Rx(-dphi),
view=Rz(phi)*Ry(theta),
view_inv=Ry(-theta)*Rz(-phi),
qc_only=QC_ONLY,
)
comment("\n**** qab from qc ****")
# The indirect calculation of qab is better than directly c
# alculating qab^2 = qa^2 + qb^2 since qc can be computed
# as qc = M31*qx + M32*qy, thus requiring only two elements
# of the rotation matrix.
#vprint(qab, sqrt(qa**2 + qb**2), "Direct calculation of qab")
vprint(dqa, sqrt((qx**2+qy**2) - dqc**2),
"Indirect calculation of qab, from qab^2 = |q|^2 - qc^2")
if 0:
comment("==== asymmetric (3.x) ====")
view_inv = Rz(-psi)*Rx(theta)*Ry(-(pi/2 - phi))
vprint(q_abc, view_inv*q_xy, "reverse view")
print(""" existing code
cos_alpha = cos_theta*cos_phi*qxhat + sin_theta*qyhat;
cos_mu = (-sin_theta*cos_psi*cos_phi - sin_psi*sin_phi)*qxhat + cos_theta*cos_psi*qyhat;
cos_nu = (-cos_phi*sin_psi*sin_theta + sin_phi*cos_psi)*qxhat + sin_psi*cos_theta*qyhat;
""")
|