File: convert.py

package info (click to toggle)
sasmodels 1.0.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 15,888 kB
  • sloc: python: 25,392; ansic: 7,377; makefile: 149; sh: 61
file content (661 lines) | stat: -rw-r--r-- 25,424 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
"""
Convert models to and from sasview.
"""
from __future__ import print_function, division

import math
import warnings

import numpy as np

from .conversion_table import CONVERSION_TABLE
from .core import load_model_info

# List of models which SasView versions don't contain the explicit 'scale' argument.
# When converting such a model, please update this list.
MODELS_WITHOUT_SCALE = [
    'teubner_strey',
    'broad_peak',
    'two_lorentzian',
    "two_power_law",
    'gauss_lorentz_gel',
    'be_polyelectrolyte',
    'correlation_length',
    'fractal_core_shell',
    'binary_hard_sphere',
    'raspberry'
]

# List of models which SasView versions don't contain the explicit 'background' argument.
# When converting such a model, please update this list.
MODELS_WITHOUT_BACKGROUND = [
    'guinier',
]

MODELS_WITHOUT_VOLFRACTION = [
    'fractal',
    'vesicle',
    'multilayer_vesicle',
]

MAGNETIC_SASVIEW_MODELS = [
    'core_shell',
    'core_multi_shell',
    'cylinder',
    'parallelepiped',
    'sphere',
]


# Convert new style names for polydispersity info to old style names
PD_DOT = [
    ("_pd", ".width"),
    ("_pd_n", ".npts"),
    ("_pd_nsigma", ".nsigmas"),
    ("_pd_type", ".type"),
    (".lower", ".lower"),
    (".upper", ".upper"),
    (".fittable", ".fittable"),
    (".std", ".std"),
    (".units", ".units"),
    ("", "")
    ]

def _rescale(par, scale):
    return [pk*scale for pk in par] if isinstance(par, list) else par*scale

def _is_sld(model_info, par):
    """
    Return True if parameter is a magnetic magnitude or SLD parameter.
    """
    if par.startswith('M0:'):
        return True
    if '_pd' in par or '.' in par:
        return False
    for p in model_info.parameters.call_parameters:
        if p.id == par:
            return p.type == 'sld'
    # check through kernel parameters in case it is a named as a vector
    for p in model_info.parameters.kernel_parameters:
        if p.id == par:
            return p.type == 'sld'
    return False

def _rescale_sld(model_info, pars, scale):
    """
    rescale all sld parameters in the new model definition by *scale* so the
    numbers are nicer.  Relies on the fact that all sld parameters in the
    new model definition end with sld.  For backward conversion use
    *scale=1e-6*.  For forward conversion use *scale=1e6*.
    """
    return dict((par, (_rescale(v, scale) if _is_sld(model_info, par) else v))
                for par, v in pars.items())


def _get_translation_table(model_info, version=(3, 1, 2)):
    conv_param = CONVERSION_TABLE.get(version, {}).get(model_info.id, [None, {}])
    translation = conv_param[1].copy()
    for p in model_info.parameters.kernel_parameters:
        if p.length > 1:
            newid = p.id
            oldid = translation.get(p.id, p.id)
            translation.pop(newid, None)
            for k in range(1, p.length+1):
                if newid+str(k) not in translation:
                    translation[newid+str(k)] = oldid+str(k)
    # Remove control parameter from the result
    control_pars = [p.id for p in model_info.parameters.kernel_parameters
                    if p.is_control]
    if control_pars:
        control_id = control_pars[0]
        translation[control_id] = "CONTROL"
    return translation

# ========= FORWARD CONVERSION sasview 3.x => sasmodels ===========
def _dot_pd_to_underscore_pd(par):
    if par.endswith(".width"):
        return par[:-6]+"_pd"
    elif par.endswith(".type"):
        return par[:-5]+"_pd_type"
    elif par.endswith(".nsigmas"):
        return par[:-8]+"_pd_nsigma"
    elif par.endswith(".npts"):
        return par[:-5]+"_pd_n"
    else:
        return par

def _pd_to_underscores(pars):
    return dict((_dot_pd_to_underscore_pd(k), v) for k, v in pars.items())

def _convert_pars(pars, mapping):
    """
    Rename the parameters and any associated polydispersity attributes.
    """
    newpars = pars.copy()
    for new, old in mapping.items():
        if old == new:
            continue
        if old is None:
            continue
        for _, dot in PD_DOT:
            source = old+dot
            if source in newpars:
                if new is not None:
                    target = new+dot
                else:
                    target = None
                if source != target:
                    if target:
                        newpars[target] = pars[old+dot]
                    del newpars[source]
    return newpars

def _conversion_target(model_name, version=(3, 1, 2)):
    """
    Find the sasmodel name which translates into the sasview name.

    Note: *CoreShellEllipsoidModel* translates into *core_shell_ellipsoid:1*.
    This is necessary since there is only one variant in sasmodels for the
    two variants in sasview.
    """
    for sasmodels_name, sasview_dict in \
            CONVERSION_TABLE.get(version, {}).items():
        if sasview_dict[0] == model_name:
            return sasmodels_name
    return None

def _hand_convert(name, oldpars, version=(3, 1, 2)):
    if version == (3, 1, 2):
        oldpars = _hand_convert_3_1_2_to_4_1(name, oldpars)
    if version < (4, 2, 0):
        oldpars = _rename_magnetic_pars(oldpars)
    return oldpars

def _rename_magnetic_pars(pars):
    """
    Change from M0:par to par_M0, etc.
    """
    keys = list(pars.items())
    for k in keys:
        if k.startswith('M0:'):
            pars[k[3:]+'_M0'] = pars.pop(k)
        elif k.startswith('mtheta:'):
            pars[k[7:]+'_mtheta'] = pars.pop(k)
        elif k.startswith('mphi:'):
            pars[k[5:]+'_mphi'] = pars.pop(k)
        elif k.startswith('up:'):
            pars['up_'+k[3:]] = pars.pop(k)
    return pars

def _hand_convert_3_1_2_to_4_1(name, oldpars):
    if name == 'core_shell_parallelepiped':
        # Make sure pd on rim parameters defaults to zero
        # ... probably not necessary.
        oldpars['rimA.width'] = 0.0
        oldpars['rimB.width'] = 0.0
        oldpars['rimC.width'] = 0.0
    elif name == 'core_shell_ellipsoid:1':
        # Reverse translation (from new to old), from core_shell_ellipsoid.c
        #    equat_shell = equat_core + thick_shell
        #    polar_core = equat_core * x_core
        #    polar_shell = equat_core * x_core + thick_shell*x_polar_shell
        # Forward translation (from old to new), inverting reverse translation:
        #    thick_shell = equat_shell - equat_core
        #    x_core = polar_core / equat_core
        #    x_polar_shell = (polar_shell - polar_core)/(equat_shell - equat_core)
        # Auto translation (old <=> new) happens after hand_convert
        #    equat_shell <=> thick_shell
        #    polar_core <=> x_core
        #    polar_shell <=> x_polar_shell
        # So...
        equat_core, equat_shell = oldpars['equat_core'], oldpars['equat_shell']
        polar_core, polar_shell = oldpars['polar_core'], oldpars['polar_shell']
        oldpars['equat_shell'] = equat_shell - equat_core
        oldpars['polar_core'] = polar_core / equat_core
        oldpars['polar_shell'] = (polar_shell-polar_core)/(equat_shell-equat_core)
    elif name == 'hollow_cylinder':
        # now uses radius and thickness
        thickness = oldpars['radius'] - oldpars['core_radius']
        oldpars['radius'] = thickness
        if 'radius.width' in oldpars:
            pd = oldpars['radius.width']*oldpars['radius']/thickness
            oldpars['radius.width'] = pd
    elif name == 'multilayer_vesicle':
        if 'scale' in oldpars:
            oldpars['volfraction'] = oldpars['scale']
            oldpars['scale'] = 1.0
        if 'scale.lower' in oldpars:
            oldpars['volfraction.lower'] = oldpars['scale.lower']
        if 'scale.upper' in oldpars:
            oldpars['volfraction.upper'] = oldpars['scale.upper']
        if 'scale.fittable' in oldpars:
            oldpars['volfraction.fittable'] = oldpars['scale.fittable']
        if 'scale.std' in oldpars:
            oldpars['volfraction.std'] = oldpars['scale.std']
        if 'scale.units' in oldpars:
            oldpars['volfraction.units'] = oldpars['scale.units']
    elif name == 'pearl_necklace':
        pass
        #_remove_pd(oldpars, 'num_pearls', name)
        #_remove_pd(oldpars, 'thick_string', name)
    elif name == 'polymer_micelle':
        if 'ndensity' in oldpars:
            oldpars['ndensity'] /= 1e15
        if 'ndensity.lower' in oldpars:
            oldpars['ndensity.lower'] /= 1e15
        if 'ndensity.upper' in oldpars:
            oldpars['ndensity.upper'] /= 1e15
    elif name == 'rpa':
        # convert scattering lengths from femtometers to centimeters
        for p in "L1", "L2", "L3", "L4":
            if p in oldpars:
                oldpars[p] /= 1e-13
            if p + ".lower" in oldpars:
                oldpars[p + ".lower"] /= 1e-13
            if p + ".upper" in oldpars:
                oldpars[p + ".upper"] /= 1e-13
    elif name == 'spherical_sld':
        j = 0
        while "func_inter" + str(j) in oldpars:
            name = "func_inter" + str(j)
            new_name = "shape" + str(j + 1)
            if oldpars[name] == 'Erf(|nu|*z)':
                oldpars[new_name] = int(0)
            elif oldpars[name] == 'RPower(z^|nu|)':
                oldpars[new_name] = int(1)
            elif oldpars[name] == 'LPower(z^|nu|)':
                oldpars[new_name] = int(2)
            elif oldpars[name] == 'RExp(-|nu|*z)':
                oldpars[new_name] = int(3)
            elif oldpars[name] == 'LExp(-|nu|*z)':
                oldpars[new_name] = int(4)
            else:
                oldpars[new_name] = int(0)
            oldpars.pop(name)
            oldpars['n_shells'] = str(j + 1)
            j += 1
    elif name == 'teubner_strey':
        # basically undoing the entire Teubner-Strey calculations here.
        #    drho = (sld_a - sld_b)
        #    k = 2.0*math.pi*xi/d
        #    a2 = (1.0 + k**2)**2
        #    c1 = 2.0 * xi**2 * (1.0 - k**2)
        #    c2 = xi**4
        #    prefactor = 8.0*math.pi*phi*(1.0-phi)*drho**2*c2/xi
        #    scale = 1e-4*prefactor
        #    oldpars['scale'] = a2/scale
        #    oldpars['c1'] = c1/scale
        #    oldpars['c2'] = c2/scale

        # need xi, d, sld_a, sld_b, phi=volfraction_a
        # assume contrast is 1.0e-6, scale=1, background=0
        sld_a, sld_b = 1.0, 0.
        drho = sld_a - sld_b

        # find xi
        p_scale = oldpars['scale']
        p_c1 = oldpars['c1']
        p_c2 = oldpars['c2']
        i_1 = 0.5*p_c1/p_c2
        i_2 = math.sqrt(math.fabs(p_scale/p_c2))
        i_3 = 2/(i_1 + i_2)
        xi = math.sqrt(math.fabs(i_3))

        # find d from xi
        k = math.sqrt(math.fabs(1 - 0.5*p_c1/p_c2*xi**2))
        d = 2*math.pi*xi/k

        # solve quadratic phi (1-phi) = xi/(1e-4 8 pi drho^2 c2)
        # favour volume fraction in [0, 0.5]
        c = xi / (1e-4 * 8.0 * math.pi * drho**2 * p_c2)
        phi = 0.5 - math.sqrt(0.25 - c)

        # scale sld_a by 1e-6 because the translator will scale it back
        oldpars.update(volfraction_a=phi, xi=xi, d=d, sld_a=sld_a*1e-6,
                       sld_b=sld_b, scale=1.0)
        oldpars.pop('c1')
        oldpars.pop('c2')

    return oldpars

def convert_model(name, pars, use_underscore=False, model_version=(3, 1, 2)):
    """
    Convert model from old style parameter names to new style.
    """
    newpars = pars
    keys = sorted(CONVERSION_TABLE.keys())
    for i, version in enumerate(keys):
        # Don't allow indices outside list
        next_i = i + 1
        if next_i == len(keys):
            next_i = i
        # If the save state is from a later version, skip the check
        if model_version <= keys[next_i]:
            newname = _conversion_target(name, version)
        else:
            newname = None
        # If no conversion is found, move on
        if newname is None:
            newname = name
            continue
        if ':' in newname:   # core_shell_ellipsoid:1
            model_info = load_model_info(newname[:-2])
            # Know the table exists and isn't multiplicity so grab it directly
            # Can't use _get_translation_table since that will return the 'bare'
            # version.
            translation = CONVERSION_TABLE.get(version, {})[newname][1]
        else:
            model_info = load_model_info(newname)
            translation = _get_translation_table(model_info, version)
        newpars = _hand_convert(newname, newpars, version)
        newpars = _convert_pars(newpars, translation)
        # TODO: Still not convinced this is the best check
        if not model_info.structure_factor and version == (3, 1, 2):
            newpars = _rescale_sld(model_info, newpars, 1e6)
        newpars.setdefault('scale', 1.0)
        newpars.setdefault('background', 0.0)
        if use_underscore:
            newpars = _pd_to_underscores(newpars)
        name = newname
    return newname, newpars

# ========= BACKWARD CONVERSION sasmodels => sasview 3.x ===========

def _revert_pars(pars, mapping):
    """
    Rename the parameters and any associated polydispersity attributes.
    """
    newpars = pars.copy()

    for new, old in mapping.items():
        for underscore, dot in PD_DOT:
            if old and old+underscore == new+dot:
                continue
            if new+underscore in newpars:
                if old is not None:
                    newpars[old+dot] = pars[new+underscore]
                del newpars[new+underscore]
    for k in list(newpars.keys()):
        for underscore, dot in PD_DOT[1:]:  # skip "" => ""
            if k.endswith(underscore):
                newpars[k[:-len(underscore)]+dot] = newpars[k]
                del newpars[k]
    return newpars

def revert_name(model_info):
    """Translate model name back to the name used in SasView 3.x"""
    oldname, _ = CONVERSION_TABLE.get(model_info.id, [None, {}])
    return oldname

def _remove_pd(pars, key, name):
    """
    Remove polydispersity from the parameter list.

    Note: operates in place
    """
    # Bumps style parameter names
    width = pars.pop(key+".width", 0.0)
    n_points = pars.pop(key+".npts", 0)
    if width != 0.0 and n_points != 0:
        warnings.warn("parameter %s not polydisperse in sasview %s"%(key, name))
    pars.pop(key+".nsigmas", None)
    pars.pop(key+".type", None)
    return pars

def _trim_vectors(model_info, pars, oldpars):
    _, translation = CONVERSION_TABLE.get(model_info.id, [None, {}])
    for p in model_info.parameters.kernel_parameters:
        if p.length_control is not None:
            n = int(pars[p.length_control])
            oldname = translation.get(p.id, p.id)
            for k in range(n+1, p.length+1):
                for _, old in PD_DOT:
                    oldpars.pop(oldname+str(k)+old, None)
    return oldpars

def revert_pars(model_info, pars):
    """
    Convert model from new style parameter names to old style.
    """
    if model_info.composition is not None:
        composition_type, parts = model_info.composition
        if composition_type == 'product':
            translation = _get_translation_table(parts[0])
            # structure factor models include scale:scale_factor mapping
            translation.update(_get_translation_table(parts[1]))
        else:
            raise NotImplementedError("cannot convert to sasview sum")
    else:
        translation = _get_translation_table(model_info)
    oldpars = _revert_pars(_rescale_sld(model_info, pars, 1e-6), translation)
    oldpars = _trim_vectors(model_info, pars, oldpars)

    # Make sure the control parameter is an integer
    if "CONTROL" in oldpars:
        oldpars["CONTROL"] = int(oldpars["CONTROL"])

    # Note: update compare.constrain_pars to match
    name = model_info.id
    if name in MODELS_WITHOUT_SCALE or model_info.structure_factor:
        if oldpars.pop('scale', 1.0) != 1.0:
            warnings.warn("parameter scale not used in sasview %s"%name)
    if name in MODELS_WITHOUT_BACKGROUND or model_info.structure_factor:
        if oldpars.pop('background', 0.0) != 0.0:
            warnings.warn("parameter background not used in sasview %s"%name)

    # Remove magnetic parameters from non-magnetic sasview models
    if name not in MAGNETIC_SASVIEW_MODELS:
        oldpars = dict((k, v) for k, v in oldpars.items() if ':' not in k)

    # If it is a product model P*S, then check the individual forms for special
    # cases.  Note: despite the structure factor alone not having scale or
    # background, the product model does, so this is below the test for
    # models without scale or background.
    namelist = name.split('*') if '*' in name else [name]
    for name in namelist:
        if name in MODELS_WITHOUT_VOLFRACTION:
            del oldpars['volfraction']
        elif name == 'core_multi_shell':
            # kill extra shells
            for k in range(5, 11):
                oldpars.pop('sld_shell'+str(k), 0)
                oldpars.pop('thick_shell'+str(k), 0)
                oldpars.pop('mtheta:sld'+str(k), 0)
                oldpars.pop('mphi:sld'+str(k), 0)
                oldpars.pop('M0:sld'+str(k), 0)
                _remove_pd(oldpars, 'sld_shell'+str(k), 'sld')
                _remove_pd(oldpars, 'thick_shell'+str(k), 'thickness')
        elif name == 'core_shell_parallelepiped':
            _remove_pd(oldpars, 'rimA', name)
            _remove_pd(oldpars, 'rimB', name)
            _remove_pd(oldpars, 'rimC', name)
        elif name == 'hollow_cylinder':
            # now uses radius and thickness
            thickness = oldpars['core_radius']
            oldpars['radius'] += thickness
            oldpars['radius.width'] *= thickness/oldpars['radius']
        #elif name in ['mono_gauss_coil', 'poly_gauss_coil']:
        #    del oldpars['i_zero']
        elif name == 'onion':
            oldpars.pop('n_shells', None)
        elif name == 'pearl_necklace':
            _remove_pd(oldpars, 'num_pearls', name)
            _remove_pd(oldpars, 'thick_string', name)
        elif name == 'polymer_micelle':
            if 'ndensity' in oldpars:
                oldpars['ndensity'] *= 1e15
        elif name == 'rpa':
            # convert scattering lengths from femtometers to centimeters
            for p in "L1", "L2", "L3", "L4":
                if p in oldpars: oldpars[p] *= 1e-13
            if pars['case_num'] < 2:
                for k in ("a", "b"):
                    for p in ("L", "N", "Phi", "b", "v"):
                        oldpars.pop(p+k, None)
                for k in "Kab,Kac,Kad,Kbc,Kbd".split(','):
                    oldpars.pop(k, None)
            elif pars['case_num'] < 5:
                for k in ("a",):
                    for p in ("L", "N", "Phi", "b", "v"):
                        oldpars.pop(p+k, None)
                for k in "Kab,Kac,Kad".split(','):
                    oldpars.pop(k, None)
        elif name == 'spherical_sld':
            oldpars["CONTROL"] -= 1
            # remove polydispersity from shells
            for k in range(1, 11):
                _remove_pd(oldpars, 'thick_flat'+str(k), 'thickness')
                _remove_pd(oldpars, 'thick_inter'+str(k), 'interface')
            # remove extra shells
            for k in range(int(pars['n_shells']), 11):
                oldpars.pop('sld_flat'+str(k), 0)
                oldpars.pop('thick_flat'+str(k), 0)
                oldpars.pop('thick_inter'+str(k), 0)
                oldpars.pop('func_inter'+str(k), 0)
                oldpars.pop('nu_inter'+str(k), 0)
        elif name == 'stacked_disks':
            _remove_pd(oldpars, 'n_stacking', name)
        elif name == 'teubner_strey':
            # basically redoing the entire Teubner-Strey calculations here.
            volfraction = oldpars.pop('volfraction_a')
            xi = oldpars.pop('xi')
            d = oldpars.pop('d')
            sld_a = oldpars.pop('sld_a')
            sld_b = oldpars.pop('sld_b')
            drho = 1e6*(sld_a - sld_b)  # conversion autoscaled these
            k = 2.0*math.pi*xi/d
            a2 = (1.0 + k**2)**2
            c1 = 2.0 * xi**2 * (1.0 - k**2)
            c2 = xi**4
            prefactor = 8.0*math.pi*volfraction*(1.0-volfraction)*drho**2*c2/xi
            scale = 1e-4*prefactor
            oldpars['scale'] = a2/scale
            oldpars['c1'] = c1/scale
            oldpars['c2'] = c2/scale

    #print("convert from",list(sorted(pars)))
    #print("convert to",list(sorted(oldpars.items())))
    return oldpars

def constrain_new_to_old(model_info, pars):
    """
    Restrict parameter values to those that will match sasview.
    """
    name = model_info.id
    # Note: update convert.revert_model to match
    if name in MODELS_WITHOUT_SCALE or model_info.structure_factor:
        pars['scale'] = 1
    if name in MODELS_WITHOUT_BACKGROUND or model_info.structure_factor:
        pars['background'] = 0
    # sasview multiplies background by structure factor
    if '*' in name:
        pars['background'] = 0

    # Shut off magnetism when comparing non-magnetic sasview models
    if name not in MAGNETIC_SASVIEW_MODELS:
        suppress_magnetism = False
        for key in pars.keys():
            if key.startswith("M0:"):
                suppress_magnetism = suppress_magnetism or (pars[key] != 0)
                pars[key] = 0
        if suppress_magnetism:
            warnings.warn("suppressing magnetism for comparison with sasview")

    # Shut off theta polydispersity since algorithm has changed
    if 'theta_pd_n' in pars:
        if pars['theta_pd_n'] != 0:
            warnings.warn("suppressing theta polydispersity for comparison with sasview")
        pars['theta_pd_n'] = 0

    # If it is a product model P*S, then check the individual forms for special
    # cases.  Note: despite the structure factor alone not having scale or
    # background, the product model does, so this is below the test for
    # models without scale or background.
    namelist = name.split('*') if '*' in name else [name]
    for name in namelist:
        if name in MODELS_WITHOUT_VOLFRACTION:
            pars['volfraction'] = 1
        if name == 'core_multi_shell':
            pars['n'] = min(math.ceil(pars['n']), 4)
        elif name == 'gel_fit':
            pars['scale'] = 1
        elif name == 'line':
            pars['scale'] = 1
            pars['background'] = 0
        elif name == 'mono_gauss_coil':
            pars['scale'] = 1
        elif name == 'onion':
            pars['n_shells'] = math.ceil(pars['n_shells'])
        elif name == 'pearl_necklace':
            pars['string_thickness_pd_n'] = 0
            pars['number_of_pearls_pd_n'] = 0
        elif name == 'poly_gauss_coil':
            pars['scale'] = 1
        elif name == 'rpa':
            pars['case_num'] = int(pars['case_num'])
        elif name == 'spherical_sld':
            pars['n_shells'] = math.ceil(pars['n_shells'])
            pars['n_steps'] = math.ceil(pars['n_steps'])
            for k in range(1, 11):
                pars['shape%d'%k] = math.trunc(pars['shape%d'%k]+0.5)
            for k in range(2, 11):
                pars['thickness%d_pd_n'%k] = 0
                pars['interface%d_pd_n'%k] = 0
        elif name == 'teubner_strey':
            pars['scale'] = 1
            if pars['volfraction_a'] > 0.5:
                pars['volfraction_a'] = 1.0 - pars['volfraction_a']
        elif name == 'unified_power_Rg':
            pars['level'] = int(pars['level'])

def _check_one(name, seed=None):
    """
    Generate a random set of parameters for *name*, and check that they can
    be converted back to SasView 3.x and forward again to sasmodels.  Raises
    an error if the parameters are changed.
    """
    from . import compare

    model_info = load_model_info(name)

    old_name = revert_name(model_info)
    if old_name is None:
        return

    pars = compare.get_pars(model_info, use_demo=False)
    if seed is not None:
        np.random.seed(seed)
    pars = compare.randomize_pars(model_info, pars)
    if name == "teubner_strey":
        # T-S model is underconstrained, so fix the assumptions.
        pars['sld_a'], pars['sld_b'] = 1.0, 0.0
    compare.constrain_pars(model_info, pars)
    constrain_new_to_old(model_info, pars)
    old_pars = revert_pars(model_info, pars)
    new_name, new_pars = convert_model(old_name, old_pars, use_underscore=True)
    if 1:
        print("==== %s in ====="%name)
        print(str(compare.parlist(model_info, pars, True)))
        print("==== %s ====="%old_name)
        for k, v in sorted(old_pars.items()):
            print(k, v)
        print("==== %s out ====="%new_name)
        print(str(compare.parlist(model_info, new_pars, True)))
    assert name == new_name, "%r != %r"%(name, new_name)
    for k, v in new_pars.items():
        assert k in pars, "%s: %r appeared from conversion"%(name, k)
        if isinstance(v, float):
            assert abs(v-pars[k]) <= abs(1e-12*v), \
                "%s: %r  %s != %s"%(name, k, v, pars[k])
        else:
            assert v == pars[k], "%s: %r  %s != %s"%(name, k, v, pars[k])
    for k, v in pars.items():
        assert k in pars, "%s: %r not converted"%(name, k)

def test_backward_forward():
    """
    Test conversion of model parameters from 4.x to 3.x and back.
    """
    from .core import list_models
    for name in list_models('all'):
        _check_one(name, seed=1)