File: resolution.py

package info (click to toggle)
sasmodels 1.0.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, sid
  • size: 15,888 kB
  • sloc: python: 25,392; ansic: 7,377; makefile: 149; sh: 61
file content (1181 lines) | stat: -rw-r--r-- 43,078 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
"""
Define the resolution functions for the data.

This defines classes for 1D and 2D resolution calculations.
"""
from __future__ import division

import unittest

from scipy.special import erf  # type: ignore
from numpy import sqrt, log, log10, exp, pi  # type: ignore
import numpy as np  # type: ignore

__all__ = ["Resolution", "Perfect1D", "Pinhole1D", "Slit1D",
           "apply_resolution_matrix", "pinhole_resolution", "slit_resolution",
           "pinhole_extend_q", "slit_extend_q", "bin_edges",
           "interpolate", "linear_extrapolation", "geometric_extrapolation",
          ]

MINIMUM_RESOLUTION = 1e-8
MINIMUM_ABSOLUTE_Q = 0.02  # relative to the minimum q in the data
# According to (Barker & Pedersen 1995 JAC), 2.5 sigma is a good limit.
# According to simulations with github.com:scattering/sansresolution.git
# it is better to use asymmetric bounds (2.5, 3.0)
PINHOLE_N_SIGMA = (2.5, 3.0)

class Resolution(object):
    """
    Abstract base class defining a 1D resolution function.

    *q* is the set of q values at which the data is measured.

    *q_calc* is the set of q values at which the theory needs to be evaluated.
    This may extend and interpolate the q values.

    *apply* is the method to call with I(q_calc) to compute the resolution
    smeared theory I(q).
    """
    q = None  # type: np.ndarray
    q_calc = None  # type: np.ndarray
    def apply(self, theory):
        """
        Smear *theory* by the resolution function, returning *Iq*.
        """
        raise NotImplementedError("Subclass does not define the apply function")


class Perfect1D(Resolution):
    """
    Resolution function to use when there is no actual resolution smearing
    to be applied.  It has the same interface as the other resolution
    functions, but returns the identity function.
    """
    def __init__(self, q):
        self.q_calc = self.q = q

    def apply(self, theory):
        return theory


class Pinhole1D(Resolution):
    r"""
    Pinhole aperture with q-dependent gaussian resolution.

    *q* points at which the data is measured.

    *q_width* gaussian 1-sigma resolution at each data point.

    *q_calc* is the list of points to calculate, or None if this should
    be estimated from the *q* and *q_width*.

    *nsigma* is the width of the resolution function.  Should be 2.5.
    See :func:`pinhole_resolution` for details.
    """
    def __init__(self, q, q_width, q_calc=None, nsigma=PINHOLE_N_SIGMA):
        #*min_step* is the minimum point spacing to use when computing the
        #underlying model.  It should be on the order of
        #$\tfrac{1}{10}\tfrac{2\pi}{d_\text{max}}$ to make sure that fringes
        #are computed with sufficient density to avoid aliasing effects.

        # Protect against calls with q_width=0.  The extend_q function will
        # not extend the q if q_width is 0, but q_width must be non-zero when
        # constructing the weight matrix to avoid division by zero errors.
        # In practice this should never be needed, since resolution should
        # default to Perfect1D if the pinhole geometry is not defined.
        self.q, self.q_width = q, q_width
        self.q_calc = (pinhole_extend_q(q, q_width, nsigma=nsigma)
                       if q_calc is None else np.sort(q_calc))

        # Protect against models which are not defined for very low q.  Limit
        # the smallest q value evaluated to 0.02*min.  Note that negative q
        # values are trimmed even for broad resolution.  Although not possible
        # from the geometry, they may appear since we are using a truncated
        # gaussian to represent resolution rather than a skew distribution.
        #cutoff = MINIMUM_ABSOLUTE_Q*np.min(self.q)
        #self.q_calc = self.q_calc[self.q_calc >= cutoff]

        # Build weight matrix from calculated q values
        self.weight_matrix = pinhole_resolution(
            self.q_calc, self.q, np.maximum(q_width, MINIMUM_RESOLUTION),
            nsigma=nsigma)

    def apply(self, theory):
        return apply_resolution_matrix(self.weight_matrix, theory)


class Slit1D(Resolution):
    """
    Slit aperture with resolution function.

    *q* points at which the data is measured.

    *qx_width* slit width in qx

    *qy_width* slit height in qy

    *q_calc* is the list of points to calculate, or None if this should
    be estimated from the *q* and *q_width*.

    The *weight_matrix* is computed by :func:`slit1d_resolution`
    """
    def __init__(self, q, qx_width, qy_width=0., q_calc=None):
        # Remember what width/dqy was used even though we won't need them
        # after the weight matrix is constructed
        self.qx_width, self.qy_width = qx_width, qy_width

        # Allow independent resolution on each point even though it is not
        # needed in practice.
        if np.isscalar(qx_width):
            qx_width = np.ones(len(q))*qx_width
        else:
            qx_width = np.asarray(qx_width)
        if np.isscalar(qy_width):
            qy_width = np.ones(len(q))*qy_width
        else:
            qy_width = np.asarray(qy_width)

        self.q = q.flatten()
        self.q_calc = slit_extend_q(q, qx_width, qy_width) \
            if q_calc is None else np.sort(q_calc)

        # Protect against models which are not defined for very low q.  Limit
        # the smallest q value evaluated (in absolute) to 0.02*min
        cutoff = MINIMUM_ABSOLUTE_Q*np.min(self.q)
        self.q_calc = self.q_calc[abs(self.q_calc) >= cutoff]

        # Build weight matrix from calculated q values
        self.weight_matrix = \
            slit_resolution(self.q_calc, self.q, qx_width, qy_width)
        self.q_calc = abs(self.q_calc)

    def apply(self, theory):
        return apply_resolution_matrix(self.weight_matrix, theory)


def apply_resolution_matrix(weight_matrix, theory):
    """
    Apply the resolution weight matrix to the computed theory function.
    """
    #print("apply shapes", theory.shape, weight_matrix.shape)
    Iq = np.dot(theory[None, :], weight_matrix)
    #print("result shape",Iq.shape)
    return Iq.flatten()


def pinhole_resolution(q_calc, q, q_width, nsigma=PINHOLE_N_SIGMA):
    r"""
    Compute the convolution matrix *W* for pinhole resolution 1-D data.

    Each row *W[i]* determines the normalized weight that the corresponding
    points *q_calc* contribute to the resolution smeared point *q[i]*.  Given
    *W*, the resolution smearing can be computed using *dot(W,q)*.

    Note that resolution is limited to $\pm 2.5 \sigma$.[1]  The true resolution
    function is a broadened triangle, and does not extend over the entire
    range $(-\infty, +\infty)$.  It is important to impose this limitation
    since some models fall so steeply that the weighted value in gaussian
    tails would otherwise dominate the integral.

    *q_calc* must be increasing.  *q_width* must be greater than zero.

    [1] Barker, J. G., and J. S. Pedersen. 1995. Instrumental Smearing Effects
    in Radially Symmetric Small-Angle Neutron Scattering by Numerical and
    Analytical Methods. Journal of Applied Crystallography 28 (2): 105--14.
    https://doi.org/10.1107/S0021889894010095.
    """
    # The current algorithm is a midpoint rectangle rule.  In the test case,
    # neither trapezoid nor Simpson's rule improved the accuracy.
    edges = bin_edges(q_calc)
    #edges[edges < 0.0] = 0.0 # clip edges below zero
    cdf = erf((edges[:, None] - q[None, :]) / (sqrt(2.0)*q_width)[None, :])
    weights = cdf[1:] - cdf[:-1]
    # Limit q range to (-2.5,+3) sigma
    try:
        nsigma_low, nsigma_high = nsigma
    except TypeError:
        nsigma_low = nsigma_high = nsigma
    qhigh = q + nsigma_high*q_width
    qlow = q - nsigma_low*q_width  # linear limits
    ##qlow = q*q/qhigh  # log limits
    weights[q_calc[:, None] < qlow[None, :]] = 0.
    weights[q_calc[:, None] > qhigh[None, :]] = 0.
    weights /= np.sum(weights, axis=0)[None, :]
    return weights


def slit_resolution(q_calc, q, width, height, n_height=30):
    r"""
    Build a weight matrix to compute *I_s(q)* from *I(q_calc)*, given
    $q_\perp$ = *width* and $q_\parallel$ = *height*.  *n_height* is
    is the number of steps to use in the integration over $q_\parallel$
    when both $q_\perp$ and $q_\parallel$ are non-zero.

    Each $q$ can have an independent width and height value even though
    current instruments use the same slit setting for all measured points.

    If slit height is large relative to width, use:

    .. math::

        I_s(q_i) = \frac{1}{\Delta q_\perp}
            \int_0^{\Delta q_\perp}
                I\left(\sqrt{q_i^2 + q_\perp^2}\right) \,dq_\perp

    If slit width is large relative to height, use:

    .. math::

        I_s(q_i) = \frac{1}{2 \Delta q_\parallel}
            \int_{-\Delta q_\parallel}^{\Delta q_\parallel}
                I\left(|q_i + q_\parallel|\right) \,dq_\parallel

    For a mixture of slit width and height use:

    .. math::

        I_s(q_i) = \frac{1}{2 \Delta q_\parallel \Delta q_\perp}
            \int_{-\Delta q_\parallel}^{\Delta q_\parallel}
            \int_0^{\Delta q_\perp}
                I\left(\sqrt{(q_i + q_\parallel)^2 + q_\perp^2}\right)
                \,dq_\perp dq_\parallel

    **Definition**

    We are using the mid-point integration rule to assign weights to each
    element of a weight matrix $W$ so that

    .. math::

        I_s(q) = W\,I(q_\text{calc})

    If *q_calc* is at the mid-point, we can infer the bin edges from the
    pairwise averages of *q_calc*, adding the missing edges before
    *q_calc[0]* and after *q_calc[-1]*.

    For $q_\parallel = 0$, the smeared value can be computed numerically
    using the $u$ substitution

    .. math::

        u_j = \sqrt{q_j^2 - q^2}

    This gives

    .. math::

        I_s(q) \approx \sum_j I(u_j) \Delta u_j

    where $I(u_j)$ is the value at the mid-point, and $\Delta u_j$ is the
    difference between consecutive edges which have been first converted
    to $u$.  Only $u_j \in [0, \Delta q_\perp]$ are used, which corresponds
    to $q_j \in \left[q, \sqrt{q^2 + \Delta q_\perp}\right]$, so

    .. math::

        W_{ij} = \frac{1}{\Delta q_\perp} \Delta u_j
               = \frac{1}{\Delta q_\perp} \left(
                    \sqrt{q_{j+1}^2 - q_i^2} - \sqrt{q_j^2 - q_i^2} \right)
            \ \text{if}\  q_j \in \left[q_i, \sqrt{q_i^2 + q_\perp^2}\right]

    where $I_s(q_i)$ is the theory function being computed and $q_j$ are the
    mid-points between the calculated values in *q_calc*.  We tweak the
    edges of the initial and final intervals so that they lie on integration
    limits.

    (To be precise, the transformed midpoint $u(q_j)$ is not necessarily the
    midpoint of the edges $u((q_{j-1}+q_j)/2)$ and $u((q_j + q_{j+1})/2)$,
    but it is at least in the interval, so the approximation is going to be
    a little better than the left or right Riemann sum, and should be
    good enough for our purposes.)

    For $q_\perp = 0$, the $u$ substitution is simpler:

    .. math::

        u_j = \left|q_j - q\right|

    so

    .. math::

        W_{ij} = \frac{1}{2 \Delta q_\parallel} \Delta u_j
            = \frac{1}{2 \Delta q_\parallel} (q_{j+1} - q_j)
            \ \text{if}\ q_j \in
                \left[q-\Delta q_\parallel, q+\Delta q_\parallel\right]

    However, we need to support cases were $u_j < 0$, which means using
    $2 (q_{j+1} - q_j)$ when $q_j \in \left[0, q_\parallel-q_i\right]$.
    This is not an issue for $q_i > q_\parallel$.

    For both $q_\perp > 0$ and $q_\parallel > 0$ we perform a 2 dimensional
    integration with

    .. math::

        u_{jk} = \sqrt{q_j^2 - (q + (k\Delta q_\parallel/L))^2}
            \ \text{for}\ k = -L \ldots L

    for $L$ = *n_height*.  This gives

    .. math::

        W_{ij} = \frac{1}{2 \Delta q_\perp q_\parallel}
            \sum_{k=-L}^L \Delta u_{jk}
                \left(\frac{\Delta q_\parallel}{2 L + 1}\right)


    """
    #np.set_printoptions(precision=6, linewidth=10000)

    # The current algorithm is a midpoint rectangle rule.
    q_edges = bin_edges(q_calc) # Note: requires q > 0
    #q_edges[q_edges < 0.0] = 0.0 # clip edges below zero
    weights = np.zeros((len(q), len(q_calc)), 'd')

    #print(q_calc)
    for i, (qi, w, h) in enumerate(zip(q, width, height)):
        if w == 0. and h == 0.:
            # Perfect resolution, so return the theory value directly.
            # Note: assumes that q is a subset of q_calc.  If qi need not be
            # in q_calc, then we can do a weighted interpolation by looking
            # up qi in q_calc, then weighting the result by the relative
            # distance to the neighbouring points.
            weights[i, :] = (q_calc == qi)
        elif h == 0:
            weights[i, :] = _q_perp_weights(q_edges, qi, w)
        elif w == 0:
            in_x = 1.0 * ((q_calc >= qi-h) & (q_calc <= qi+h))
            abs_x = 1.0*(q_calc < abs(qi - h)) if qi < h else 0.
            #print(qi - h, qi + h)
            #print(in_x + abs_x)
            weights[i, :] = (in_x + abs_x) * np.diff(q_edges) / (2*h)
        else:
            for k in range(-n_height, n_height+1):
                weights[i, :] += _q_perp_weights(q_edges, qi+k*h/n_height, w)
            weights[i, :] /= 2*n_height + 1

    return weights.T


def _q_perp_weights(q_edges, qi, w):
    # Convert bin edges from q to u
    u_limit = np.sqrt(qi**2 + w**2)
    u_edges = q_edges**2 - qi**2
    u_edges[q_edges < abs(qi)] = 0.
    u_edges[q_edges > u_limit] = u_limit**2 - qi**2
    weights = np.diff(np.sqrt(u_edges))/w
    #print("i, qi",i,qi,qi+width)
    #print(q_calc)
    #print(weights)
    return weights


def pinhole_extend_q(q, q_width, nsigma=PINHOLE_N_SIGMA):
    """
    Given *q* and *q_width*, find a set of sampling points *q_calc* so
    that each point $I(q)$ has sufficient support from the underlying
    function.
    """
    try:
        nsigma_low, nsigma_high = nsigma
    except TypeError:
        nsigma_low = nsigma_high = nsigma
    q_min, q_max = np.min(q - nsigma_low*q_width), np.max(q + nsigma_high*q_width)
    return linear_extrapolation(q, q_min, q_max)


def slit_extend_q(q, width, height):
    """
    Given *q*, *width* and *height*, find a set of sampling points *q_calc* so
    that each point I(q) has sufficient support from the underlying
    function.
    """
    q_min, q_max = np.min(q-height), np.max(np.sqrt((q+height)**2 + width**2))

    return geometric_extrapolation(q, q_min, q_max)


def bin_edges(x):
    """
    Determine bin edges from bin centers, assuming that edges are centered
    between the bins.

    Note: this uses the arithmetic mean, which may not be appropriate for
    log-scaled data.
    """
    if len(x) < 2 or (np.diff(x) < 0).any():
        raise ValueError("Expected bins to be an increasing set")
    edges = np.hstack([
        x[0]  - 0.5*(x[1]  - x[0]),  # first point minus half first interval
        0.5*(x[1:] + x[:-1]),        # mid points of all central intervals
        x[-1] + 0.5*(x[-1] - x[-2]), # last point plus half last interval
        ])
    return edges


def interpolate(q, max_step):
    """
    Returns *q_calc* with points spaced at most max_step apart.
    """
    step = np.diff(q)
    index = step > max_step
    if np.any(index):
        inserts = []
        for q_i, step_i in zip(q[:-1][index], step[index]):
            n = np.ceil(step_i/max_step)
            inserts.extend(q_i + np.arange(1, n)*(step_i/n))
        # Extend a couple of fringes beyond the end of the data
        inserts.extend(q[-1] + np.arange(1, 8)*max_step)
        q_calc = np.sort(np.hstack((q, inserts)))
    else:
        q_calc = q
    return q_calc


def linear_extrapolation(q, q_min, q_max):
    """
    Extrapolate *q* out to [*q_min*, *q_max*] using the step size in *q* as
    a guide.  Extrapolation below uses about the same size as the first
    interval.  Extrapolation above uses about the same size as the final
    interval.

    Note that extrapolated values may be negative.
    """
    q = np.sort(q)
    if q_min + 2*MINIMUM_RESOLUTION < q[0]:
        n_low = int(np.ceil((q[0]-q_min) / (q[1]-q[0]))) if q[1] > q[0] else 15
        q_low = np.linspace(q_min, q[0], n_low+1)[:-1]
    else:
        q_low = []
    if q_max - 2*MINIMUM_RESOLUTION > q[-1]:
        n_high = int(np.ceil((q_max-q[-1]) / (q[-1]-q[-2]))) if q[-1] > q[-2] else 15
        q_high = np.linspace(q[-1], q_max, n_high+1)[1:]
    else:
        q_high = []
    return np.concatenate([q_low, q, q_high])


def geometric_extrapolation(q, q_min, q_max, points_per_decade=None):
    r"""
    Extrapolate *q* to [*q_min*, *q_max*] using geometric steps, with the
    average geometric step size in *q* as the step size.

    if *q_min* is zero or less then *q[0]/10* is used instead.

    *points_per_decade* sets the ratio between consecutive steps such
    that there will be $n$ points used for every factor of 10 increase
    in *q*.

    If *points_per_decade* is not given, it will be estimated as follows.
    Starting at $q_1$ and stepping geometrically by $\Delta q$ to $q_n$
    in $n$ points gives a geometric average of:

    .. math::

         \log \Delta q = (\log q_n - \log q_1) / (n - 1)

    From this we can compute the number of steps required to extend $q$
    from $q_n$ to $q_\text{max}$ by $\Delta q$ as:

    .. math::

         n_\text{extend} = (\log q_\text{max} - \log q_n) / \log \Delta q

    Substituting:

    .. math::

         n_\text{extend} = (n-1) (\log q_\text{max} - \log q_n)
            / (\log q_n - \log q_1)
    """
    q = np.sort(q)
    if points_per_decade is None:
        log_delta_q = (len(q) - 1) / (log(q[-1]) - log(q[0]))
    else:
        log_delta_q = log(10.) / points_per_decade
    if q_min < q[0]:
        if q_min < 0:
            q_min = q[0]*MINIMUM_ABSOLUTE_Q
        n_low = int(np.ceil(log_delta_q * (log(q[0])-log(q_min))))
        q_low = np.logspace(log10(q_min), log10(q[0]), n_low+1)[:-1]
    else:
        q_low = []
    if q_max > q[-1]:
        n_high = int(np.ceil(log_delta_q * (log(q_max)-log(q[-1]))))
        q_high = np.logspace(log10(q[-1]), log10(q_max), n_high+1)[1:]
    else:
        q_high = []
    return np.concatenate([q_low, q, q_high])


############################################################################
# unit tests
############################################################################

def eval_form(q, form, pars):
    """
    Return the SAS model evaluated at *q*.

    *form* is the SAS model returned from :fun:`core.load_model`.

    *pars* are the parameter values to use when evaluating.
    """
    from sasmodels import direct_model
    kernel = form.make_kernel([q])
    theory = direct_model.call_kernel(kernel, pars)
    kernel.release()
    return theory


def gaussian(q, q0, dq, nsigma=2.5):
    """
    Return the truncated Gaussian resolution function.

    *q0* is the center, *dq* is the width and *q* are the points to evaluate.
    """
    # Calculate the density of the tails; the resulting gaussian needs to be
    # scaled by this amount in ordere to integrate to 1.0
    two_tail_density = 2 * (1 + erf(-nsigma/sqrt(2)))/2
    return exp(-0.5*((q-q0)/dq)**2)/(sqrt(2*pi)*dq)/(1-two_tail_density)


def romberg_slit_1d(q, width, height, form, pars):
    """
    Romberg integration for slit resolution.

    This is an adaptive integration technique.  It is called with settings
    that make it slow to evaluate but give it good accuracy.
    """
    from scipy.integrate import romberg  # type: ignore

    par_set = set([p.name for p in form.info.parameters.call_parameters])
    if any(k not in par_set for k in pars.keys()):
        extra = set(pars.keys()) - par_set
        raise ValueError("bad parameters: [%s] not in [%s]"
                         % (", ".join(sorted(extra)),
                            ", ".join(sorted(pars.keys()))))

    if np.isscalar(width):
        width = [width]*len(q)
    if np.isscalar(height):
        height = [height]*len(q)
    _int_w = lambda w, qi: eval_form(sqrt(qi**2 + w**2), form, pars)
    _int_h = lambda h, qi: eval_form(abs(qi+h), form, pars)
    # If both width and height are defined, then it is too slow to use dblquad.
    # Instead use trapz on a fixed grid, interpolated into the I(Q) for
    # the extended Q range.
    #_int_wh = lambda w, h, qi: eval_form(sqrt((qi+h)**2 + w**2), form, pars)
    q_calc = slit_extend_q(q, np.asarray(width), np.asarray(height))
    Iq = eval_form(q_calc, form, pars)
    result = np.empty(len(q))
    for i, (qi, w, h) in enumerate(zip(q, width, height)):
        if h == 0.:
            total = romberg(_int_w, 0, w, args=(qi,),
                            divmax=100, vec_func=True, tol=0, rtol=1e-8)
            result[i] = total/w
        elif w == 0.:
            total = romberg(_int_h, -h, h, args=(qi,),
                            divmax=100, vec_func=True, tol=0, rtol=1e-8)
            result[i] = total/(2*h)
        else:
            w_grid = np.linspace(0, w, 21)[None, :]
            h_grid = np.linspace(-h, h, 23)[:, None]
            u_sub = sqrt((qi+h_grid)**2 + w_grid**2)
            f_at_u = np.interp(u_sub, q_calc, Iq)
            #print(np.trapz(Iu, w_grid, axis=1))
            total = np.trapz(np.trapz(f_at_u, w_grid, axis=1), h_grid[:, 0])
            result[i] = total / (2*h*w)
            # from scipy.integrate import dblquad
            # r, err = dblquad(_int_wh, -h, h, lambda h: 0., lambda h: w,
            #                  args=(qi,))
            # result[i] = r/(w*2*h)

    # r should be [float, ...], but it is [array([float]), array([float]),...]
    return result


def romberg_pinhole_1d(q, q_width, form, pars, nsigma=2.5):
    """
    Romberg integration for pinhole resolution.

    This is an adaptive integration technique.  It is called with settings
    that make it slow to evaluate but give it good accuracy.
    """
    from scipy.integrate import romberg  # type: ignore

    par_set = set([p.name for p in form.info.parameters.call_parameters])
    if any(k not in par_set for k in pars.keys()):
        extra = set(pars.keys()) - par_set
        raise ValueError("bad parameters: [%s] not in [%s]"
                         % (", ".join(sorted(extra)),
                            ", ".join(sorted(pars.keys()))))

    func = lambda q, q0, dq: eval_form(q, form, pars)*gaussian(q, q0, dq)
    total = [romberg(func, max(qi-nsigma*dqi, 1e-10*q[0]), qi+nsigma*dqi,
                     args=(qi, dqi), divmax=100, vec_func=True,
                     tol=0, rtol=1e-8)
             for qi, dqi in zip(q, q_width)]
    return np.asarray(total).flatten()


class ResolutionTest(unittest.TestCase):
    """
    Test the resolution calculations.
    """

    def setUp(self):
        self.x = 0.001*np.arange(1, 11)
        self.y = self.Iq(self.x)

    def Iq(self, q):
        "Linear function for resolution unit test"
        return 12.0 - 1000.0*q

    def test_perfect(self):
        """
        Perfect resolution and no smearing.
        """
        resolution = Perfect1D(self.x)
        theory = self.Iq(resolution.q_calc)
        output = resolution.apply(theory)
        np.testing.assert_equal(output, self.y)

    def test_slit_zero(self):
        """
        Slit smearing with perfect resolution.
        """
        resolution = Slit1D(self.x, qx_width=0, qy_width=0, q_calc=self.x)
        theory = self.Iq(resolution.q_calc)
        output = resolution.apply(theory)
        np.testing.assert_equal(output, self.y)

    @unittest.skip("not yet supported")
    def test_slit_high(self):
        """
        Slit smearing with height 0.005
        """
        resolution = Slit1D(self.x, qx_width=0, qy_width=0.005, q_calc=self.x)
        theory = self.Iq(resolution.q_calc)
        output = resolution.apply(theory)
        answer = [
            9.0618, 8.6402, 8.1187, 7.1392, 6.1528,
            5.5555, 4.5584, 3.5606, 2.5623, 2.0000,
            ]
        np.testing.assert_allclose(output, answer, atol=1e-4)

    @unittest.skip("not yet supported")
    def test_slit_both_high(self):
        """
        Slit smearing with width < 100*height.
        """
        q = np.logspace(-4, -1, 10)
        resolution = Slit1D(q, qx_width=0.2, qy_width=np.inf)
        theory = 1000*self.Iq(resolution.q_calc**4)
        output = resolution.apply(theory)
        answer = [
            8.85785, 8.43012, 7.92687, 6.94566, 6.03660,
            5.40363, 4.40655, 3.40880, 2.41058, 2.00000,
            ]
        np.testing.assert_allclose(output, answer, atol=1e-4)

    @unittest.skip("not yet supported")
    def test_slit_wide(self):
        """
        Slit smearing with width 0.0002
        """
        resolution = Slit1D(self.x, qx_width=0.0002, qy_width=0, q_calc=self.x)
        theory = self.Iq(resolution.q_calc)
        output = resolution.apply(theory)
        answer = [
            11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0,
            ]
        np.testing.assert_allclose(output, answer, atol=1e-4)

    @unittest.skip("not yet supported")
    def test_slit_both_wide(self):
        """
        Slit smearing with width > 100*height.
        """
        resolution = Slit1D(self.x, qx_width=0.0002, qy_width=0.000001,
                            q_calc=self.x)
        theory = self.Iq(resolution.q_calc)
        output = resolution.apply(theory)
        answer = [
            11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0,
            ]
        np.testing.assert_allclose(output, answer, atol=1e-4)

    def test_pinhole_zero(self):
        """
        Pinhole smearing with perfect resolution
        """
        resolution = Pinhole1D(self.x, 0.0*self.x)
        theory = self.Iq(resolution.q_calc)
        output = resolution.apply(theory)
        np.testing.assert_equal(output, self.y)

    # TODO: turn pinhole/slit demos into tests

    @unittest.skip("suppress comparison with old version; pinhole calc changed")
    def test_pinhole(self):
        """
        Pinhole smearing with dQ = 0.001 [Note: not dQ/Q = 0.001]
        """
        resolution = Pinhole1D(self.x, 0.001*np.ones_like(self.x),
                               q_calc=self.x)
        theory = 12.0-1000.0*resolution.q_calc
        output = resolution.apply(theory)
        # Note: answer came from output of previous run.  Non-integer
        # values at ends come from the fact that q_calc does not
        # extend beyond q, and so the weights don't balance.
        answer = [
            10.47037734, 9.86925860,
            9., 8., 7., 6., 5., 4.,
            3.13074140, 2.52962266,
            ]
        np.testing.assert_allclose(output, answer, atol=1e-8)


class IgorComparisonTest(unittest.TestCase):
    """
    Test resolution calculations against those returned by Igor.
    """

    def setUp(self):
        self.pars = TEST_PARS_PINHOLE_SPHERE
        from sasmodels import core
        self.model = core.load_model("sphere", dtype='double')

    def _eval_sphere(self, pars, resolution):
        from sasmodels import direct_model
        kernel = self.model.make_kernel([resolution.q_calc])
        theory = direct_model.call_kernel(kernel, pars)
        result = resolution.apply(theory)
        kernel.release()
        return result

    def _compare(self, q, output, answer, tolerance):
        #err = (output - answer)/answer
        #idx = abs(err) >= tolerance
        #problem = zip(q[idx], output[idx], answer[idx], err[idx])
        #print("\n".join(str(v) for v in problem))
        np.testing.assert_allclose(output, answer, rtol=tolerance)

    def test_perfect(self):
        """
        Compare sphere model with NIST Igor SANS, no resolution smearing.
        """
        pars = TEST_PARS_SLIT_SPHERE
        data_string = TEST_DATA_SLIT_SPHERE

        data = np.loadtxt(data_string.split('\n')).T
        q, _, answer, _ = data
        resolution = Perfect1D(q)
        output = self._eval_sphere(pars, resolution)
        self._compare(q, output, answer, 1e-6)

    @unittest.skip("suppress comparison with old version; pinhole calc changed")
    def test_pinhole(self):
        """
        Compare pinhole resolution smearing with NIST Igor SANS
        """
        pars = TEST_PARS_PINHOLE_SPHERE
        data_string = TEST_DATA_PINHOLE_SPHERE

        data = np.loadtxt(data_string.split('\n')).T
        q, q_width, answer = data
        resolution = Pinhole1D(q, q_width)
        output = self._eval_sphere(pars, resolution)
        # TODO: relative error should be lower
        self._compare(q, output, answer, 3e-4)

    @unittest.skip("suppress comparison with old version; pinhole calc changed")
    def test_pinhole_romberg(self):
        """
        Compare pinhole resolution smearing with romberg integration result.
        """
        pars = TEST_PARS_PINHOLE_SPHERE
        data_string = TEST_DATA_PINHOLE_SPHERE
        pars['radius'] *= 5

        data = np.loadtxt(data_string.split('\n')).T
        q, q_width, answer = data
        answer = romberg_pinhole_1d(q, q_width, self.model, pars)
        ## Getting 0.1% requires 5 sigma and 200 points per fringe
        #q_calc = interpolate(pinhole_extend_q(q, q_width, nsigma=5),
        #                     2*np.pi/pars['radius']/200)
        #tol = 0.001
        ## The default 2.5 sigma and no extra points gets 1%
        q_calc = None  # type: np.ndarray
        tol = 0.01
        resolution = Pinhole1D(q, q_width, q_calc=q_calc)
        output = self._eval_sphere(pars, resolution)
        if 0: # debug plot
            import matplotlib.pyplot as plt  # type: ignore
            resolution = Perfect1D(q)
            source = self._eval_sphere(pars, resolution)
            plt.loglog(q, source, '.')
            plt.loglog(q, answer, '-', hold=True)
            plt.loglog(q, output, '-', hold=True)
            plt.show()
        self._compare(q, output, answer, tol)

    def test_slit(self):
        """
        Compare slit resolution smearing with NIST Igor SANS
        """
        pars = TEST_PARS_SLIT_SPHERE
        data_string = TEST_DATA_SLIT_SPHERE

        data = np.loadtxt(data_string.split('\n')).T
        q, delta_qv, _, answer = data
        resolution = Slit1D(q, qx_width=delta_qv, qy_width=0)
        output = self._eval_sphere(pars, resolution)
        # TODO: eliminate Igor test since it is too inaccurate to be useful.
        # This means we can eliminate the test data as well, and instead
        # use a generated q vector.
        self._compare(q, output, answer, 0.5)

    def test_slit_romberg(self):
        """
        Compare slit resolution smearing with romberg integration result.
        """
        pars = TEST_PARS_SLIT_SPHERE
        data_string = TEST_DATA_SLIT_SPHERE

        data = np.loadtxt(data_string.split('\n')).T
        q, delta_qv, _, answer = data
        answer = romberg_slit_1d(q, delta_qv, 0., self.model, pars)
        q_calc = slit_extend_q(interpolate(q, 2*np.pi/pars['radius']/20),
                               delta_qv[0], 0.)
        resolution = Slit1D(q, qx_width=delta_qv, qy_width=0, q_calc=q_calc)
        output = self._eval_sphere(pars, resolution)
        # TODO: relative error should be lower
        self._compare(q, output, answer, 0.025)

    def test_ellipsoid(self):
        """
        Compare romberg integration for ellipsoid model.
        """
        from .core import load_model
        pars = {
            'scale':0.05,
            'radius_polar':500, 'radius_equatorial':15000,
            'sld':6, 'sld_solvent': 1,
            }
        form = load_model('ellipsoid', dtype='double')
        q = np.logspace(log10(4e-5), log10(2.5e-2), 68)
        width, height = 0.117, 0.
        resolution = Slit1D(q, qx_width=width, qy_width=height)
        answer = romberg_slit_1d(q, width, height, form, pars)
        output = resolution.apply(eval_form(resolution.q_calc, form, pars))
        # TODO: 10% is too much error; use better algorithm
        #print(np.max(abs(answer-output)/answer))
        self._compare(q, output, answer, 0.1)

    #TODO: can sas q spacing be too sparse for the resolution calculation?
    @unittest.skip("suppress sparse data test; not supported by current code")
    def test_pinhole_sparse(self):
        """
        Compare pinhole resolution smearing with NIST Igor SANS on sparse data
        """
        pars = TEST_PARS_PINHOLE_SPHERE
        data_string = TEST_DATA_PINHOLE_SPHERE

        data = np.loadtxt(data_string.split('\n')).T
        q, q_width, answer = data[:, ::20] # Take every nth point
        resolution = Pinhole1D(q, q_width)
        output = self._eval_sphere(pars, resolution)
        self._compare(q, output, answer, 1e-6)


# pinhole sphere parameters
TEST_PARS_PINHOLE_SPHERE = {
    'scale': 1.0, 'background': 0.01,
    'radius': 60.0, 'sld': 1, 'sld_solvent': 6.3,
    }
# Q, dQ, I(Q) calculated by NIST Igor SANS package
TEST_DATA_PINHOLE_SPHERE = """\
0.001278 0.0002847 2538.41176383
0.001562 0.0002905 2536.91820405
0.001846 0.0002956 2535.13182479
0.002130 0.0003017 2533.06217813
0.002414 0.0003087 2530.70378586
0.002698 0.0003165 2528.05024192
0.002982 0.0003249 2525.10408349
0.003266 0.0003340 2521.86667499
0.003550 0.0003437 2518.33907750
0.003834 0.0003539 2514.52246995
0.004118 0.0003646 2510.41798319
0.004402 0.0003757 2506.02690988
0.004686 0.0003872 2501.35067884
0.004970 0.0003990 2496.38678318
0.005253 0.0004112 2491.16237596
0.005537 0.0004237 2485.63911673
0.005821 0.0004365 2479.83657083
0.006105 0.0004495 2473.75676948
0.006389 0.0004628 2467.40145990
0.006673 0.0004762 2460.77293372
0.006957 0.0004899 2453.86724627
0.007241 0.0005037 2446.69623838
0.007525 0.0005177 2439.25775219
0.007809 0.0005318 2431.55421398
0.008093 0.0005461 2423.58785521
0.008377 0.0005605 2415.36158137
0.008661 0.0005750 2406.87009473
0.008945 0.0005896 2398.12841186
0.009229 0.0006044 2389.13360806
0.009513 0.0006192 2379.88958042
0.009797 0.0006341 2370.39776774
0.010080 0.0006491 2360.69528793
0.010360 0.0006641 2350.85169027
0.010650 0.0006793 2340.42023633
0.010930 0.0006945 2330.11206013
0.011220 0.0007097 2319.20109972
0.011500 0.0007251 2308.43503981
0.011780 0.0007404 2297.44820179
0.012070 0.0007558 2285.83853677
0.012350 0.0007713 2274.41290746
0.012640 0.0007868 2262.36219581
0.012920 0.0008024 2250.51169731
0.013200 0.0008180 2238.45596231
0.013490 0.0008336 2225.76495666
0.013770 0.0008493 2213.29618391
0.014060 0.0008650 2200.19110751
0.014340 0.0008807 2187.34050325
0.014620 0.0008965 2174.30529864
0.014910 0.0009123 2160.61632548
0.015190 0.0009281 2147.21038112
0.015470 0.0009440 2133.62023580
0.015760 0.0009598 2119.37907426
0.016040 0.0009757 2105.45234903
0.016330 0.0009916 2090.86319102
0.016610 0.0010080 2076.60576032
0.016890 0.0010240 2062.19214565
0.017180 0.0010390 2047.10550219
0.017460 0.0010550 2032.38715621
0.017740 0.0010710 2017.52560123
0.018030 0.0010880 2001.99124318
0.018310 0.0011040 1986.84662060
0.018600 0.0011200 1971.03389745
0.018880 0.0011360 1955.61395119
0.019160 0.0011520 1940.08291563
0.019450 0.0011680 1923.87672225
0.019730 0.0011840 1908.10656374
0.020020 0.0012000 1891.66297192
0.020300 0.0012160 1875.66789021
0.020580 0.0012320 1859.56357196
0.020870 0.0012490 1842.79468290
0.021150 0.0012650 1826.50064489
0.021430 0.0012810 1810.11533702
0.021720 0.0012970 1793.06840882
0.022000 0.0013130 1776.51153580
0.022280 0.0013290 1759.87201249
0.022570 0.0013460 1742.57354412
0.022850 0.0013620 1725.79397319
0.023140 0.0013780 1708.35831550
0.023420 0.0013940 1691.45256069
0.023700 0.0014110 1674.48561783
0.023990 0.0014270 1656.86525366
0.024270 0.0014430 1639.79847285
0.024550 0.0014590 1622.68887088
0.024840 0.0014760 1604.96421100
0.025120 0.0014920 1587.85768129
0.025410 0.0015080 1569.99297335
0.025690 0.0015240 1552.84580279
0.025970 0.0015410 1535.54074115
0.026260 0.0015570 1517.75249337
0.026540 0.0015730 1500.40115023
0.026820 0.0015900 1483.03632237
0.027110 0.0016060 1465.05942429
0.027390 0.0016220 1447.67682181
0.027670 0.0016390 1430.46495191
0.027960 0.0016550 1412.49232282
0.028240 0.0016710 1395.13182318
0.028520 0.0016880 1377.93439837
0.028810 0.0017040 1359.99528971
0.029090 0.0017200 1342.67274512
0.029370 0.0017370 1325.55375609
"""

# Slit sphere parameters
TEST_PARS_SLIT_SPHERE = {
    'scale': 0.01, 'background': 0.01,
    'radius': 60000, 'sld': 1, 'sld_solvent': 4,
    }
# Q dQ I(Q) I_smeared(Q)
TEST_DATA_SLIT_SPHERE = """\
2.26097e-05 0.117 5.5781372896e+09 1.4626077708e+06
2.53847e-05 0.117 5.0363141458e+09 1.3117318023e+06
2.81597e-05 0.117 4.4850108103e+09 1.1594863713e+06
3.09347e-05 0.117 3.9364658459e+09 1.0094881630e+06
3.37097e-05 0.117 3.4019975074e+09 8.6518941303e+05
3.92597e-05 0.117 2.4139519814e+09 6.0232158311e+05
4.48097e-05 0.117 1.5816877820e+09 3.8739994090e+05
5.03597e-05 0.117 9.3715407224e+08 2.2745304775e+05
5.59097e-05 0.117 4.8387917428e+08 1.2101295768e+05
6.14597e-05 0.117 2.0193586928e+08 6.0055107771e+04
6.70097e-05 0.117 5.5886110911e+07 3.2749521065e+04
7.25597e-05 0.117 3.7782348010e+06 2.6350963616e+04
7.81097e-05 0.117 5.3407817904e+06 2.9624963314e+04
8.36597e-05 0.117 2.7975485523e+07 3.4403962254e+04
8.92097e-05 0.117 4.9845448282e+07 3.6130017903e+04
9.47597e-05 0.117 6.0092588905e+07 3.3495107849e+04
1.00310e-04 0.117 5.6823430831e+07 2.7475726279e+04
1.05860e-04 0.117 4.3857024036e+07 2.0144282226e+04
1.11410e-04 0.117 2.7277144760e+07 1.3647403260e+04
1.22510e-04 0.117 3.3119334113e+06 6.6519711526e+03
1.33610e-04 0.117 1.4412859402e+06 6.9726212813e+03
1.44710e-04 0.117 8.5620162463e+06 8.1441335775e+03
1.55810e-04 0.117 9.6957429033e+06 6.4559996521e+03
1.66910e-04 0.117 4.3818341914e+06 3.6252154156e+03
1.78010e-04 0.117 2.7448997387e+05 2.4006505342e+03
1.89110e-04 0.117 8.0472009936e+05 2.8187789089e+03
2.00210e-04 0.117 2.8149552834e+06 3.0915662855e+03
2.11310e-04 0.117 2.7510907861e+06 2.3722530293e+03
2.22410e-04 0.117 1.0053133293e+06 1.4473468311e+03
2.33510e-04 0.117 5.8428305052e+03 1.2048540556e+03
2.44610e-04 0.117 5.1699305004e+05 1.4625670042e+03
2.55710e-04 0.117 1.2120227268e+06 1.5010705973e+03
2.66810e-04 0.117 9.7896842846e+05 1.1336343426e+03
2.77910e-04 0.117 2.5507264791e+05 8.1848818080e+02
3.05660e-04 0.117 5.2403101181e+05 7.4913374357e+02
3.33410e-04 0.117 5.8699343809e+04 4.4669964560e+02
3.61160e-04 0.117 3.0844327150e+05 4.6774007542e+02
3.88910e-04 0.117 8.3360142970e+03 2.7169550220e+02
4.16660e-04 0.117 1.8630080583e+05 3.0710983679e+02
4.44410e-04 0.117 3.1616804732e-01 1.7959006831e+02
4.72160e-04 0.117 1.1299016314e+05 2.0763952339e+02
4.99910e-04 0.117 2.9952522747e+03 1.2536542765e+02
5.27660e-04 0.117 6.7625695649e+04 1.4013969777e+02
5.55410e-04 0.117 7.6927460089e+03 8.2145593180e+01
6.10910e-04 0.117 1.1229057779e+04 8.4519745643e+01
6.66410e-04 0.117 1.3035567943e+04 8.1554625609e+01
7.21910e-04 0.117 1.3309931343e+04 7.4437319172e+01
7.77410e-04 0.117 1.2462626212e+04 6.4697088261e+01
8.32910e-04 0.117 1.0912927143e+04 5.3773301044e+01
8.88410e-04 0.117 9.0172597469e+03 4.2843375753e+01
9.43910e-04 0.117 7.0496495917e+03 3.2771032724e+01
9.99410e-04 0.117 5.2030483682e+03 2.4113557144e+01
1.05491e-03 0.117 3.5988976711e+03 1.7160773658e+01
1.11041e-03 0.117 2.2996060652e+03 1.2016626459e+01
1.22141e-03 0.117 6.4766590598e+02 6.0373017740e+00
1.33241e-03 0.117 4.1963483264e+01 4.5215452974e+00
1.44341e-03 0.117 6.3370708246e+01 5.1054681903e+00
1.55441e-03 0.117 3.0736750577e+02 5.9176165298e+00
1.66541e-03 0.117 5.0327682399e+02 5.9815000189e+00
1.77641e-03 0.117 5.4084331454e+02 5.1634639625e+00
1.88741e-03 0.117 4.3488671756e+02 3.8535158148e+00
1.99841e-03 0.117 2.6322287860e+02 2.5824997753e+00
2.10941e-03 0.117 1.0793633150e+02 1.7315517194e+00
2.22041e-03 0.117 1.8474448850e+01 1.4077213604e+00
2.33141e-03 0.117 1.5864062279e+00 1.4771560682e+00
2.44241e-03 0.117 3.2267213848e+01 1.6916253448e+00
2.55341e-03 0.117 7.4289116207e+01 1.8274751193e+00
2.66441e-03 0.117 9.9000521929e+01 1.7706812289e+00
"""

def main():
    """
    Run tests given is sys.argv.

    Returns 0 if success or 1 if any tests fail.
    """
    import sys
    import xmlrunner  # type: ignore

    suite = unittest.TestSuite()
    suite.addTest(unittest.defaultTestLoader.loadTestsFromModule(sys.modules[__name__]))

    runner = xmlrunner.XMLTestRunner(output='logs')
    result = runner.run(suite)
    return 1 if result.failures or result.errors else 0


############################################################################
# usage demo
############################################################################

def _eval_demo_1d(resolution, title):
    import sys
    from sasmodels import core
    from sasmodels import direct_model
    name = sys.argv[1] if len(sys.argv) > 1 else 'cylinder'

    if name == 'cylinder':
        pars = {'length':210, 'radius':500, 'background': 0}
    elif name == 'teubner_strey':
        pars = {'a2':0.003, 'c1':-1e4, 'c2':1e10, 'background':0.312643}
    elif name == 'sphere' or name == 'spherepy':
        pars = TEST_PARS_SLIT_SPHERE
    elif name == 'ellipsoid':
        pars = {
            'scale':0.05, 'background': 0,
            'r_polar':500, 'r_equatorial':15000,
            'sld':6, 'sld_solvent': 1,
            }
    else:
        pars = {}
    model_info = core.load_model_info(name)
    model = core.build_model(model_info)

    kernel = model.make_kernel([resolution.q_calc])
    theory = direct_model.call_kernel(kernel, pars)
    Iq = resolution.apply(theory)

    if isinstance(resolution, Slit1D):
        width, height = resolution.qx_width, resolution.qy_width
        Iq_romb = romberg_slit_1d(resolution.q, width, height, model, pars)
    else:
        dq = resolution.q_width
        Iq_romb = romberg_pinhole_1d(resolution.q, dq, model, pars)

    import matplotlib.pyplot as plt  # type: ignore
    plt.loglog(resolution.q_calc, theory, label='unsmeared')
    plt.loglog(resolution.q, Iq, label='smeared', hold=True)
    plt.loglog(resolution.q, Iq_romb, label='romberg smeared', hold=True)
    plt.legend()
    plt.title(title)
    plt.xlabel("Q (1/Ang)")
    plt.ylabel("I(Q) (1/cm)")

def demo_pinhole_1d():
    """
    Show example of pinhole smearing.
    """
    q = np.logspace(-4, np.log10(0.2), 400)
    q_width = 0.1*q
    resolution = Pinhole1D(q, q_width)
    _eval_demo_1d(resolution, title="10% dQ/Q Pinhole Resolution")

def demo_slit_1d():
    """
    Show example of slit smearing.
    """
    q = np.logspace(-4, np.log10(0.2), 100)
    w = h = 0.
    #w = 0.000000277790
    w = 0.0277790
    #h = 0.00277790
    #h = 0.0277790
    resolution = Slit1D(q, w, h)
    _eval_demo_1d(resolution, title="(%g,%g) Slit Resolution"%(w, h))

def demo():
    """
    Run the resolution demos.
    """
    import matplotlib.pyplot as plt  # type: ignore
    plt.subplot(121)
    demo_pinhole_1d()
    #plt.yscale('linear')
    plt.subplot(122)
    demo_slit_1d()
    #plt.yscale('linear')
    plt.show()


if __name__ == "__main__":
    #demo()
    main()