1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
.. fitting_sq.rst
.. Much of the following text was scraped from product.py
.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
.. _Interaction_Models:
Fitting Models with Structure Factors
=====================================
**Interaction models** (previously called product models), or $P@S$ models
for short, multiply the form factor $P(Q)$ by the structure factor $S(Q)$,
modulated by the **effective radius** of the form factor. For the theory
behind this, see :ref:`PStheory` .
Parameters
^^^^^^^^^^
**Except for volfraction, when writing your own** $P$ **and** $S$ **models,**
**DO NOT give your model parameters these names!**
Many parameters are common amongst $P@S$ models, but take on specific meanings:
* *scale*:
Overall model scale factor.
To compute number density $n$ the volume fraction $V_f$ (parameterised as
**volfraction**) is needed. In most $P(Q)$ models $V_f$ is not defined and
**scale** is used instead. Some $P(Q)$ models, such as the *vesicle*, do
define **volfraction** and so can leave **scale** at 1.0.
Structure factor models $S(Q)$ contain **volfraction**. In $P@S$ models
this is *also* used as the volume fraction for the form factor model
$P(Q)$, so these models can also leave **scale** at 1.0. If $P(Q)$ already
has a **volfraction** parameter, it is tied to the **volfraction** for
$S(Q)$.
If the volume fraction required for $S(Q)$ is *not* the volume fraction
needed to compute the $n$ for $P(Q)$, then leave **volfraction** as the
$V_f$ for $S(Q)$ and use **scale** to define the $V_f$ for $P(Q)$ as
$V_f$ = **scale** $\cdot$ **volfraction**. This situation may occur in
a mixed phase system where the effective volume fraction needed to compute
the structure is much higher than the true volume fraction.
* *volfraction*:
The volume fraction of material, $V_f$.
For hollow shapes, **volfraction** still represents the volume fraction of
material but the $S(Q)$ calculation needs the volume fraction *enclosed by*
*the shape.* To remedy this the user-specified **volfraction** is scaled
by the ratio form:shell computed from the average form volume and average
shell volume returned from the $P(Q)$ calculation when calculating $S(Q)$.
The original **volfraction** is divided by the shell volume to compute the
number density $n$ used in the $P@S$ model to get the absolute scaling on
the final $I(Q)$.
* *radius_effective*:
The radial distance determining the range of the $S(Q)$ interaction.
This may be estimated from the "size" parameters $\mathbf \xi$ describing
the form of the shape. For example, in a system containing freely-rotating
cylinders, the volume of space each cylinder requires to tumble will be
much larger than the volume of the cylinder itself. Thus the *effective*
radius of a cylinder will be larger than either its actual radius or half-
length.
If **radius_effective_mode = 0** (see below) it may be sensible to tie or
constrain **radius_effective** to one or other of the "size" parameters
describing the form of the shape (although the parameter cannot then be
polydisperse). But **radius_effective** may also be specified directly,
independent of the estimate from $P(Q)$.
If **radius_effective** is calculated by $P(Q)$, it will be the
weighted average of the effective radii computed for the polydisperse
shape parameters, and that average is used to compute $S(Q)$. When
specified directly, the value of **radius_effective** may be
polydisperse, and $S(Q)$ will be averaged over a range of effective
radii. Whether this makes any physical sense will depend on the system.
.. note::
The following additional parameters are only available in SasView 4.3 and
later.
*radius_effective_mode*:
Defines how the effective radius (parameter **radius_effective**) should
be computed from the parameters of the shape.
When **radius_effective_mode = 0** then the unconstrained
**radius_effective** parameter in the $S(Q)$ model is used. *This is the*
*default in SasView versions 4.2 and earlier*. Otherwise, in SasView 4.3
and later, **radius_effective_mode = k** represents an index in a list of
alternative **radius_effective** calculations.
In SasView 4.3 and later **k** must be entered as an integer (and it will
be necessary to read the source code file to discover what calculations the
modes represent), but in SasView 5.0 and later the options appear in a
drop-down box.
For example, the *ellipsoid* model defines the following
**radius_effective_modes**::
1 => average curvature
2 => equivalent volume sphere
3 => min radius
4 => max radius
Note: **radius_effective_mode** will only appear in the parameter table if
the model defines the list of modes, otherwise it will be set permanently
to 0 for the user-defined effective radius.
**WARNING! If** $P(Q)$ **is multiplied by** $S(Q)$ **in the FitPage,**
**instead of being generated in the Sum|Multi dialog, the**
**radius_effective used is constrained (equivalent to**
**radius_effective_mode = 1)**.
* *structure_factor_mode*:
The type of structure factor calculation to use.
If the $P@S$ model supports the $\beta(Q)$ *decoupling correction*
[#kotlarchyk]_ then **structure_factor_mode** will appear in the
parameter table after the $S(Q)$ parameters.
If **structure_factor_mode = 0** then the
*local monodisperse approximation* will be used, i.e.:
.. math::
I(Q) = \text{scale} \frac{V_f}{V} P(Q) S(Q) + \text{background}
where $P(Q) = \langle F(Q)^2 \rangle$. *This is the default in SasView*
*versions 4.x and earlier*.
If **structure_factor_mode = 1** then the $\beta(Q)$ correction will be
used, i.e.:
.. math::
I(Q) = \text{scale} \frac{V_f}{V} P(Q) [ 1 + \beta(Q) (S(Q) - 1) ]
+ \text{background}
The $\beta(Q)$ decoupling approximation has the effect of damping the
oscillations in the normal (local monodisperse) $S(Q)$. When $\beta(Q) = 1$
the local monodisperse approximation is recovered. *This mode is only*
*available in SasView 4.3 and later*.
More mode options may appear in future as more complicated operations are
added.
.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
Related sections
^^^^^^^^^^^^^^^^
See also:
:ref:`PStheory`
:ref:`polydispersityhelp`
:ref:`Resolution_Smearing`
:ref:`orientation`
References
^^^^^^^^^^
.. [#kotlarchyk] Kotlarchyk, M.; Chen, S.-H. *J. Chem. Phys.*, 1983, 79, 2461
.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
*Document History*
| 2019-03-31 Paul Kienzle, Steve King & Richard Heenan
| 2021-11-03 Steve King
| 2022-10-30 Steve King
|