1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import sys
from bumps.names import *
from sasmodels.core import load_model
from sasmodels.bumps_model import Model, Experiment
from sasmodels.data import load_data, set_beam_stop, set_top
""" IMPORT THE DATA USED """
radial_data = load_data('DEC07267.DAT')
set_beam_stop(radial_data, 0.00669, outer=0.025)
set_top(radial_data, -.0185)
tan_data = load_data('DEC07266.DAT')
set_beam_stop(tan_data, 0.00669, outer=0.025)
set_top(tan_data, -.0185)
#sas.set_half(tan_data, 'right')
name = "ellipsoid" if len(sys.argv) < 2 else sys.argv[1]
section = "radial" if len(sys.argv) < 3 else sys.argv[2]
if section not in ("radial","tangential","both"):
raise ValueError("section %r should be 'radial', 'tangential' or 'both'"
% section)
data = radial_data if section != "tangential" else tan_data
theta = 89.9 if section != "tangential" else 0
phi = 90
kernel = load_model(name, dtype="single")
cutoff = 1e-3
if name == "ellipsoid":
pars = dict(
scale=0.08, background=35,
radius_polar=15, radius_equatorial=800,
sld=.291, sld_solvent=7.105,
theta=theta, phi=phi,
theta_pd=0, theta_pd_n=0, theta_pd_nsigma=3,
phi_pd=0, phi_pd_n=20, phi_pd_nsigma=3,
radius_polar_pd=0.222296, radius_polar_pd_n=1, radius_polar_pd_nsigma=0,
radius_equatorial_pd=.000128, radius_equatorial_pd_n=1,
radius_equatorial_pd_nsigma=0,
)
model = Model(kernel, **pars)
# SET THE FITTING PARAMETERS
model.radius_polar.range(15, 1000)
model.radius_equatorial.range(15, 1000)
#model.theta.range(0, 90)
#model.theta_pd.range(0,10)
model.phi_pd.range(0,20)
model.phi.range(0, 180)
model.background.range(0,1000)
model.scale.range(0, 10)
elif name == "lamellar":
pars = dict(
scale=0.08, background=0.003,
thickness=19.2946,
sld=5.38,sld_sol=7.105,
thickness_pd= 0.37765, thickness_pd_n=10, thickness_pd_nsigma=3,
)
model = Model(kernel, **pars)
# SET THE FITTING PARAMETERS
#model.thickness.range(0, 1000)
#model.scale.range(0, 1)
#model.thickness_pd.range(0, 1000)
#model.background.range(0, 1000)
model.sld.range(0, 1)
elif name == "cylinder":
pars = dict(
scale=.01, background=35,
sld=.291, sld_solvent=5.77,
radius=250, length=178,
radius_pd=0.1, radius_pd_n=5, radius_pd_nsigma=3,
length_pd=0.1,length_pd_n=5, length_pd_nsigma=3,
theta=theta, phi=phi,
theta_pd=0, theta_pd_n=0, theta_pd_nsigma=3,
phi_pd=10, phi_pd_n=20, phi_pd_nsigma=3)
model = Model(kernel, **pars)
# SET THE FITTING PARAMETERS
model.radius.range(1, 500)
model.length.range(1, 5000)
#model.theta.range(0, 90)
model.phi.range(0, 180)
model.phi_pd.range(0, 30)
model.radius_pd.range(0, 1)
model.length_pd.range(0, 1)
model.scale.range(0, 10)
model.background.range(0, 100)
elif name == "core_shell_cylinder":
model = Model(kernel,
scale= .031, background=0,
radius=19.5, thickness=30, length=22,
sld_core=7.105, sld_shell=.291, sld_solvent=7.105,
radius_pd=0.26, radius_pd_n=10, radius_pd_nsigma=3,
length_pd=0.26, length_pd_n=10, length_pd_nsigma=3,
thickness_pd=1, thickness_pd_n=1, thickness_pd_nsigma=1,
theta=theta, phi=phi,
theta_pd=1, theta_pd_n=1, theta_pd_nsigma=3,
phi_pd=0, phi_pd_n=20, phi_pd_nsigma=3,
)
# SET THE FITTING PARAMETERS
model.radius.range(115, 1000)
model.length.range(0, 2500)
#model.thickness.range(18, 38)
#model.thickness_pd.range(0, 1)
#model.phi.range(0, 90)
model.phi_pd.range(0,20)
#model.radius_pd.range(0, 1)
#model.length_pd.range(0, 1)
#model.theta_pd.range(0, 360)
#model.background.range(0,5)
model.scale.range(0, 1)
elif name == "capped_cylinder":
model = Model(kernel,
scale=.08, background=35,
radius=20, cap_radius=40, length=400,
sld=1, sld_solvent=6.3,
radius_pd=.1, radius_pd_n=5, radius_pd_nsigma=3,
cap_radius_pd=.1, cap_radius_pd_n=5, cap_radius_pd_nsigma=3,
length_pd=.1, length_pd_n=1, length_pd_nsigma=0,
theta=theta, phi=phi,
theta_pd=0, theta_pd_n=1, theta_pd_nsigma=0,
phi_pd=10, phi_pd_n=20, phi_pd_nsigma=0,
)
model.radius.range(115, 1000)
model.length.range(0, 2500)
#model.thickness.range(18, 38)
#model.thickness_pd.range(0, 1)
#model.phi.range(0, 90)
model.phi_pd.range(0,20)
#model.radius_pd.range(0, 1)
#model.length_pd.range(0, 1)
#model.theta_pd.range(0, 360)
#model.background.range(0,5)
model.scale.range(0, 1)
elif name == "triaxial_ellipsoid":
pars = dict(
scale=0.08, background=35,
radius_equat_minor=15, radius_equat_major=20, radius_polar=500,
sld=7.105, solvent_sld=.291,
radius_equat_minor_pd=.1, radius_equat_minor_pd_n=1, radius_equat_minor_pd_nsigma=0,
radius_equat_major_pd=.1, radius_equat_major_pd_n=1, radius_equat_major_pd_nsigma=0,
radius_polar_pd=.1, radius_polar_pd_n=1, radius_polar_pd_nsigma=0,
theta=theta, phi=phi, psi=0,
theta_pd=20, theta_pd_n=40, theta_pd_nsigma=3,
phi_pd=.1, phi_pd_n=1, phi_pd_nsigma=0,
psi_pd=30, psi_pd_n=1, psi_pd_nsigma=0,
)
model = Model(kernel, **pars)
# SET THE FITTING PARAMETERS
model.radius_equat_minor.range(15, 1000)
model.radius_equat_major.range(15, 1000)
#model.radius_polar.range(15, 1000)
#model.background.range(0,1000)
#model.theta_pd.range(0, 360)
#model.phi_pd.range(0, 360)
#model.psi_pd.range(0, 360)
else:
print("No parameters for %s"%name)
sys.exit(1)
model.cutoff = cutoff
M = Experiment(data=data, model=model)
if section == "both":
tan_model = Model(model.sasmodel, **model.parameters())
tan_model.phi = model.phi - 90
tan_model.cutoff = cutoff
tan_M = Experiment(data=tan_data, model=tan_model)
problem = FitProblem([M, tan_M])
else:
problem = FitProblem(M)
if __name__ == "__main__":
problem.plot()
import pylab; pylab.show()
|