File: gaussian_eq.py

package info (click to toggle)
sasmodels 1.0.10-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 16,488 kB
  • sloc: python: 26,277; ansic: 8,036; makefile: 150; sh: 63
file content (42 lines) | stat: -rw-r--r-- 1,200 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import numpy as np
import scipy.stats

from sasmodels.weights import Dispersion as BaseDispersion

class Dispersion(BaseDispersion):
    r"""
    Gaussian dispersion, with 1-$\sigma$ width.

    .. math::

        w = \exp\left(-\tfrac12 (x - c)^2/\sigma^2\right)

    $x$ points are chosen such that each interval has equal weight.

    This works surprisingly poorly.  Try::

        $ sascomp cylinder -2d theta=45 phi=20 phi_pd_type=gaussian_eq \
          phi_pd_n=100,1000 radius=50 length=2*radius -midq phi_pd=5

    Leaving it here for others to improve.
    """
    type = "gaussian_eq"
    default = dict(npts=35, width=0, nsigmas=3)

    def _weights(self, center, sigma, lb, ub):
        # Use the gaussian distribution from scipy.stats
        dist = scipy.stats.norm(center, sigma)

        # Find the mid-points of the cdf intervals
        cdf = np.linspace(0, 1, self.npts+2)[1:-1]
        x = dist.ppf(cdf)

        # Since we are equally spaced in cdf, all weights are the same
        wx = np.ones_like(x)

        # Truncate the distribution in case the parameter value is limited
        index = (x >= lb) & (x <= ub)
        x, wx = x[index], wx[index]

        return x, wx