File: angular_pd.py

package info (click to toggle)
sasmodels 1.0.11-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 16,444 kB
  • sloc: python: 26,150; ansic: 8,036; makefile: 150; sh: 50
file content (152 lines) | stat: -rw-r--r-- 5,102 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
"""
Application to explore the difference between sasview 3.x orientation
dispersity and possible replacement algorithms.
"""
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.widgets import CheckButtons, Slider
from numpy import cos, exp, radians, sin


def draw_sphere(ax, radius=10., steps=100):
    u = np.linspace(0, 2 * np.pi, steps)
    v = np.linspace(0, np.pi, steps)

    x = radius * np.outer(np.cos(u), np.sin(v))
    y = radius * np.outer(np.sin(u), np.sin(v))
    z = radius * np.outer(np.ones(np.size(u)), np.cos(v))
    ax.plot_surface(x, y, z, rstride=4, cstride=4, color='w')

def draw_mesh_current(ax, theta, dtheta, phi, dphi, radius=10., dist='gauss'):
    theta = radians(theta)
    phi = radians(phi)
    dtheta = radians(dtheta)
    dphi = radians(dphi)

    # 10 point 3-sigma gaussian weights
    t = np.linspace(-3., 3., 11)
    if dist == 'gauss':
        weights = exp(-0.5*t**2)
    elif dist == 'rect':
        weights = np.ones_like(t)
    else:
        raise ValueError("expected dist to be 'gauss' or 'rect'")
    theta = theta + dtheta*t
    phi = phi + dphi*t

    x = radius * np.outer(cos(phi), cos(theta))
    y = radius * np.outer(sin(phi), cos(theta))
    z = radius * np.outer(np.ones_like(phi), sin(theta))
    w = np.outer(weights, weights*abs(cos(theta)))

    x,y,z,w = [v.flatten() for v in (x,y,z,w)]

    ax.scatter(x, y, z, c=w, marker='o', vmin=0., vmax=1.0)

def draw_mesh_new(ax, theta, dtheta, phi, dphi, flow, radius=10., dist='gauss'):
    theta_center = radians(90-theta)
    phi_center = radians(phi)
    flow_center = radians(flow)
    dtheta = radians(dtheta)
    dphi = radians(dphi)

    # 10 point 3-sigma gaussian weights
    t = np.linspace(-3., 3., 11)
    if dist == 'gauss':
        weights = exp(-0.5*t**2)
    elif dist == 'rect':
        weights = np.ones_like(t)
    else:
        raise ValueError("expected dist to be 'gauss' or 'rect'")
    theta = dtheta*t
    phi = dphi*t

    x = radius * np.outer(cos(phi), cos(theta))
    y = radius * np.outer(sin(phi), cos(theta))
    z = radius * np.outer(np.ones_like(phi), sin(theta))
    #w = np.outer(weights, weights*abs(cos(dtheta*t)))
    w = np.outer(weights, weights*abs(cos(theta)))

    x, y, z, w = [v.flatten() for v in (x,y,z,w)]
    x, y, z = rotate(x, y, z, phi_center, theta_center, flow_center)

    ax.scatter(x, y, z, c=w, marker='o', vmin=0., vmax=1.)

def rotate(x, y, z, phi, theta, psi):
    R = rotation_matrix(psi, theta, phi)
    p = np.vstack([x,y,z])
    q = np.dot(R,p)
    return q

def rotation_matrix(xa,ya,za):
    Rz = [[cos(za), -sin(za), 0.],
          [sin(za),  cos(za), 0.],
          [0., 0., 1.]]
    Ry = [[cos(ya), 0., -sin(ya)],
          [0., 1., 0.],
          [sin(ya), 0.,  cos(ya)]]
    Rx = [[1., 0., 0.],
          [0.,  cos(xa), sin(xa)],
          [0., -sin(xa), cos(xa)]]
    R = np.dot(np.dot(Rz, Ry), Rx)
    return R

def main():
    plt.hold(True)
    plt.set_cmap('gist_earth')
    plt.clf()
    #gs = gridspec.GridSpec(2,1,height_ratios=[4,1])
    #ax = plt.subplot(gs[0], projection='3d')
    ax = plt.axes([0.0, 0.2, 1.0, 0.8], projection='3d')

    phi, dphi = -45., 3.
    theta, dtheta = 70., 10.
    flow = 0.
    #dist = 'rect'
    dist = 'gauss'

    axcolor = 'lightgoldenrodyellow'
    axphi = plt.axes([0.1, 0.1, 0.45, 0.04], axisbg=axcolor)
    axtheta  = plt.axes([0.1, 0.15, 0.45, 0.04], axisbg=axcolor)
    sphi = Slider(axphi, 'Phi', -180, 180, valinit=phi)
    stheta = Slider(axtheta, 'Theta', -180, 180, valinit=theta)
    axdphi = plt.axes([0.75, 0.1, 0.15, 0.04], axisbg=axcolor)
    axdtheta  = plt.axes([0.75, 0.15, 0.15, 0.04], axisbg=axcolor)
    sdphi = Slider(axdphi, 'dPhi', 0, 30, valinit=dphi)
    sdtheta = Slider(axdtheta, 'dTheta', 0, 30, valinit=dtheta)

    axflow = plt.axes([0.1, 0.05, 0.45, 0.04], axisbg=axcolor)
    sflow = Slider(axflow, 'Flow', -180, 180, valinit=flow)
    axusenew= plt.axes([0.75, 0.05, 0.15, 0.04], axisbg=axcolor)
    susenew = CheckButtons(axusenew, ['New'], [True])

    def update(val, axis=None):
        phi, theta = sphi.val, stheta.val
        dphi, dtheta = sdphi.val, sdtheta.val
        flow = sflow.val
        use_new = susenew.lines[0][0].get_visible()
        ax.cla()
        draw_sphere(ax)
        if use_new:
            draw_mesh_new(ax, theta=theta, dtheta=dtheta, phi=phi, dphi=dphi,
                          flow=flow, radius=11., dist=dist)
        else:
            draw_mesh_current(ax, theta=theta, dtheta=dtheta, phi=phi, dphi=dphi,
                              radius=11., dist=dist)
        if not axis.startswith('d'):
            ax.view_init(elev=90-theta if use_new else theta, azim=phi)
        plt.gcf().canvas.draw()

    stheta.on_changed(lambda v: update(v,'theta'))
    sphi.on_changed(lambda v: update(v, 'phi'))
    sdtheta.on_changed(lambda v: update(v, 'dtheta'))
    sdphi.on_changed(lambda v: update(v, 'dphi'))
    sflow.on_changed(lambda v: update(v, 'dflow'))
    susenew.on_clicked(lambda v: update(v, 'use_new'))

    update(None, 'phi')

    plt.show()

if __name__ == "__main__":
    main()