1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
|
#!/usr/bin/env python
"""
Asymmetric shape integration
Usage:
explore/asymint.py [MODEL] [q-value]
Computes the numerical integral over theta and phi of the given model at a
single point q using different algorithms or the same algorithm with different
precision. It also displays a 2-D image of the theta-phi surface that is
being integrated.
The available models are:
triaxial_ellipsoid, parallelpiped, paracrystal, cylinder, sphere
Cylinder and sphere are included as simple checks on the integration
algorithms. Cylinder is better investigated using 1-D integration methods in
explore/symint.py. Sphere has an easily computed analytic value which is
identical for all theta-phi for a given q, so it is useful for checking
that the normalization constants are correct for the different algorithms.
"""
import os
import sys
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.realpath(__file__))))
import warnings
import mpmath as mp
import numpy as np
import pylab
from numpy import arccos, cos, degrees, log10, pi, sin
from numpy.polynomial.legendre import leggauss
from scipy.integrate import dblquad, romb, romberg, simps
import sasmodels.special as sp
DTYPE = 'd'
class MPenv:
sqrt = staticmethod(mp.sqrt)
exp = staticmethod(mp.exp)
expm1 = staticmethod(mp.expm1)
cos = staticmethod(mp.cos)
sin = staticmethod(mp.sin)
tan = staticmethod(mp.tan)
@staticmethod
def sas_3j1x_x(x):
return 3*(mp.sin(x)/x - mp.cos(x))/(x*x)
@staticmethod
def sas_2J1x_x(x):
return 2*mp.j1(x)/x
@staticmethod
def sas_sinx_x(x):
return mp.sin(x)/x
pi = mp.pi
mpf = staticmethod(mp.mpf)
class NPenv:
sqrt = staticmethod(np.sqrt)
exp = staticmethod(np.exp)
expm1 = staticmethod(np.expm1)
cos = staticmethod(np.cos)
sin = staticmethod(np.sin)
tan = staticmethod(np.tan)
sas_3j1x_x = staticmethod(sp.sas_3j1x_x)
sas_2J1x_x = staticmethod(sp.sas_2J1x_x)
sas_sinx_x = staticmethod(sp.sas_sinx_x)
pi = np.pi
#mpf = staticmethod(float)
mpf = staticmethod(lambda x: np.array(x, DTYPE))
SLD = 3
SLD_SOLVENT = 6
CONTRAST = SLD - SLD_SOLVENT
# Carefully code models so that mpmath will use full precision. That means:
# * wrap inputs in env.mpf
# * don't use floating point constants, only integers
# * for division, make sure the numerator or denominator is env.mpf
# * use env.pi, env.sas_sinx_x, etc. for functions
def make_parallelepiped(a, b, c, env=NPenv):
a, b, c = env.mpf(a), env.mpf(b), env.mpf(c)
def Fq(qa, qb, qc):
siA = env.sas_sinx_x(a*qa/2)
siB = env.sas_sinx_x(b*qb/2)
siC = env.sas_sinx_x(c*qc/2)
return siA * siB * siC
Fq.__doc__ = "parallelepiped a=%g, b=%g c=%g"%(a, b, c)
volume = a*b*c
norm = CONTRAST**2*volume/10000
return norm, Fq
def make_core_shell_parallelepiped(a, b, c, da, db, dc, slda, sldb, sldc, env=NPenv):
overlapping = False
a, b, c = env.mpf(a), env.mpf(b), env.mpf(c)
da, db, dc = env.mpf(da), env.mpf(db), env.mpf(dc)
slda, sldb, sldc = env.mpf(slda), env.mpf(sldb), env.mpf(sldc)
dr0 = CONTRAST
drA, drB, drC = slda-SLD_SOLVENT, sldb-SLD_SOLVENT, sldc-SLD_SOLVENT
tA, tB, tC = a + 2*da, b + 2*db, c + 2*dc
def Fq(qa, qb, qc):
siA = a*env.sas_sinx_x(a*qa/2)
siB = b*env.sas_sinx_x(b*qb/2)
siC = c*env.sas_sinx_x(c*qc/2)
siAt = tA*env.sas_sinx_x(tA*qa/2)
siBt = tB*env.sas_sinx_x(tB*qb/2)
siCt = tC*env.sas_sinx_x(tC*qc/2)
if overlapping:
return (dr0*siA*siB*siC
+ drA*(siAt-siA)*siB*siC
+ drB*siAt*(siBt-siB)*siC
+ drC*siAt*siBt*(siCt-siC))
else:
return (dr0*siA*siB*siC
+ drA*(siAt-siA)*siB*siC
+ drB*siA*(siBt-siB)*siC
+ drC*siA*siB*(siCt-siC))
Fq.__doc__ = "core-shell parallelepiped a=%g, b=%g c=%g"%(a, b, c)
if overlapping:
volume = a*b*c + 2*da*b*c + 2*tA*db*c + 2*tA*tB*dc
else:
volume = a*b*c + 2*da*b*c + 2*a*db*c + 2*a*b*dc
norm = 1/(volume*10000)
return norm, Fq
def make_triaxial_ellipsoid(a, b, c, env=NPenv):
a, b, c = env.mpf(a), env.mpf(b), env.mpf(c)
def Fq(qa, qb, qc):
qr = env.sqrt((a*qa)**2 + (b*qb)**2 + (c*qc)**2)
return env.sas_3j1x_x(qr)
Fq.__doc__ = "triaxial ellipsoid minor=%g, major=%g polar=%g"%(a, b, c)
volume = 4*env.pi*a*b*c/3
norm = CONTRAST**2*volume/10000
return norm, Fq
def make_cylinder(radius, length, env=NPenv):
radius, length = env.mpf(radius), env.mpf(length)
def Fq(qa, qb, qc):
qab = env.sqrt(qa**2 + qb**2)
return env.sas_2J1x_x(qab*radius) * env.sas_sinx_x((qc*length)/2)
Fq.__doc__ = "cylinder radius=%g, length=%g"%(radius, length)
volume = env.pi*radius**2*length
norm = CONTRAST**2*volume/10000
return norm, Fq
def make_sphere(radius, env=NPenv):
radius = env.mpf(radius)
def Fq(qa, qb, qc):
q = env.sqrt(qa**2 + qb**2 + qc**2)
return env.sas_3j1x_x(q*radius)
Fq.__doc__ = "sphere radius=%g"%(radius, )
volume = 4*pi*radius**3
norm = CONTRAST**2*volume/10000
return norm, Fq
def make_paracrystal(radius, dnn, d_factor, lattice='bcc', env=NPenv):
radius, dnn, d_factor = env.mpf(radius), env.mpf(dnn), env.mpf(d_factor)
def sc(qa, qb, qc):
return qa, qb, qc
def bcc(qa, qb, qc):
a1 = (+qa + qb + qc)/2
a2 = (-qa - qb + qc)/2
a3 = (-qa + qb - qc)/2
return a1, a2, a3
def fcc(qa, qb, qc):
a1 = ( 0 + qb + qc)/2
a2 = (-qa + 0 + qc)/2
a3 = (-qa + qb + 0)/2
return a1, a2, a3
lattice_fn = {'sc': sc, 'bcc': bcc, 'fcc': fcc}[lattice]
radius, dnn, d_factor = env.mpf(radius), env.mpf(dnn), env.mpf(d_factor)
def Fq(qa, qb, qc):
a1, a2, a3 = lattice_fn(qa, qb, qc)
# Note: paper says that different directions can have different
# distoration factors. Easy enough to add to the code.
arg = -(dnn*d_factor)**2*(a1**2 + a2**2 + a3**2)/2
exp_arg = env.exp(arg)
den = [((exp_arg - 2*env.cos(dnn*a))*exp_arg + 1) for a in (a1, a2, a3)]
Sq = -env.expm1(2*arg)**3/(den[0]*den[1]*den[2])
q = env.sqrt(qa**2 + qb**2 + qc**2)
Fq = env.sas_3j1x_x(q*radius)
# the caller computes F(q)**2, but we need it to compute S(q)*F(q)**2
return env.sqrt(Sq)*Fq
Fq.__doc__ = "%s paracrystal a=%g da=%g r=%g"%(lattice, dnn, d_factor, radius)
def sphere_volume(r): return 4*env.pi*r**3/3
Vf = {
'sc': sphere_volume(radius/dnn),
'bcc': 2*sphere_volume(env.sqrt(3)/2*radius/dnn),
'fcc': 4*sphere_volume(1/env.sqrt(2)*radius/dnn),
}[lattice]
volume = sphere_volume(radius)
norm = CONTRAST**2*volume/10000*Vf
return norm, Fq
NORM = 1.0 # type: float
KERNEL = None # type: CALLABLE[[ndarray, ndarray, ndarray], ndarray]
NORM_MP = 1 # type: mpf
KERNEL = None # type: CALLABLE[[mpf, mpf, mpf], mpf]
SHAPES = [
'sphere',
'cylinder',
'triaxial_ellipsoid',
'parallelepiped',
'core_shell_parallelepiped',
'fcc_paracrystal',
'bcc_paracrystal',
'sc_paracrystal',
]
def build_shape(shape, **pars):
global NORM, KERNEL
global NORM_MP, KERNEL_MP
# Note: using integer or string defaults for the sake of mpf
if shape == 'sphere':
RADIUS = pars.get('radius', 50)
NORM, KERNEL = make_sphere(radius=RADIUS)
NORM_MP, KERNEL_MP = make_sphere(radius=RADIUS, env=MPenv)
elif shape == 'cylinder':
#RADIUS, LENGTH = 10, 100000
RADIUS = pars.get('radius', 10)
LENGTH = pars.get('radius', 300)
NORM, KERNEL = make_cylinder(radius=RADIUS, length=LENGTH)
NORM_MP, KERNEL_MP = make_cylinder(radius=RADIUS, length=LENGTH, env=MPenv)
elif shape == 'triaxial_ellipsoid':
#A, B, C = 4450, 14000, 47
A = pars.get('a', 445)
B = pars.get('b', 140)
C = pars.get('c', 47)
NORM, KERNEL = make_triaxial_ellipsoid(A, B, C)
NORM_MP, KERNEL_MP = make_triaxial_ellipsoid(A, B, C, env=MPenv)
elif shape == 'parallelepiped':
#A, B, C = 4450, 14000, 47
A = pars.get('a', 445)
B = pars.get('b', 140)
C = pars.get('c', 47)
NORM, KERNEL = make_parallelepiped(A, B, C)
NORM_MP, KERNEL_MP = make_parallelepiped(A, B, C, env=MPenv)
elif shape == 'core_shell_parallelepiped':
#A, B, C = 4450, 14000, 47
#A, B, C = 445, 140, 47 # integer for the sake of mpf
A = pars.get('a', 114)
B = pars.get('b', 1380)
C = pars.get('c', 6800)
DA = pars.get('da', 21)
DB = pars.get('db', 58)
DC = pars.get('dc', 2300)
SLDA = pars.get('slda', "5")
SLDB = pars.get('sldb', "-0.3")
SLDC = pars.get('sldc', "11.5")
## default parameters from sasmodels
#A,B,C,DA,DB,DC,SLDA,SLDB,SLDC = 400,75,35,10,10,10,2,4,2
## swap A-B-C to C-B-A
#A, B, C, DA, DB, DC, SLDA, SLDB, SLDC = C, B, A, DC, DB, DA, SLDC, SLDB, SLDA
#A,B,C,DA,DB,DC,SLDA,SLDB,SLDC = 10,20,30,100,200,300,1,2,3
#SLD_SOLVENT,CONTRAST = 0, 4
if 1: # C shortest
B, C = C, B
DB, DC = DC, DB
SLDB, SLDC = SLDC, SLDB
elif 0: # C longest
A, C = C, A
DA, DC = DC, DA
SLDA, SLDC = SLDC, SLDA
#NORM, KERNEL = make_core_shell_parallelepiped(A, B, C, DA, DB, DC, SLDA, SLDB, SLDC)
NORM, KERNEL = make_core_shell_parallelepiped(A, B, C, DA, DB, DC, SLDA, SLDB, SLDC)
NORM_MP, KERNEL_MP = make_core_shell_parallelepiped(A, B, C, DA, DB, DC, SLDA, SLDB, SLDC, env=MPenv)
elif shape.endswith('paracrystal'):
LATTICE, _ = shape.split('_')
DNN = pars.get('dnn', 220)
D_FACTOR = pars.get('d_factor', '0.06')
RADIUS = pars.get('radius', 40)
NORM, KERNEL = make_paracrystal(
radius=RADIUS, dnn=DNN, d_factor=D_FACTOR, lattice=LATTICE)
NORM_MP, KERNEL_MP = make_paracrystal(
radius=RADIUS, dnn=DNN, d_factor=D_FACTOR, lattice=LATTICE, env=MPenv)
else:
raise ValueError("Unknown shape %r"%shape)
# Note: hardcoded in mp_quad
THETA_LOW, THETA_HIGH = 0, pi
PHI_LOW, PHI_HIGH = 0, 2*pi
SCALE = 1
# mathematica code for triaxial_ellipsoid (untested)
_ = """
R[theta_, phi_, a_, b_, c_] := Sqrt[(a Sin[theta]Cos[phi])^2 + (b Sin[theta]Sin[phi])^2 + (c Cos[theta])^2]
Sphere[q_, r_] := 3 SphericalBesselJ[q r]/(q r)
V[a_, b_, c_] := 4/3 pi a b c
Norm[sld_, solvent_, a_, b_, c_] := V[a, b, c] (solvent - sld)^2
F[q_, theta_, phi_, a_, b_, c_] := Sphere[q, R[theta, phi, a, b, c]]
I[q_, sld_, solvent_, a_, b_, c_] := Norm[sld, solvent, a, b, c]/(4 pi) Integrate[F[q, theta, phi, a, b, c]^2 Sin[theta], {phi, 0, 2 pi}, {theta, 0, pi}]
I[6/10^3, 63/10, 3, 445, 140, 47]
"""
# 2D integration functions
def mp_quad_2d(q):
evals = [0]
def integrand(theta, phi):
evals[0] += 1
qab = q*mp.sin(theta)
qa = qab*mp.cos(phi)
qb = qab*mp.sin(phi)
qc = q*mp.cos(theta)
Zq = KERNEL_MP(qa, qb, qc)**2
return Zq*mp.sin(theta)
ans = mp.quad(integrand, (0, mp.pi), (0, 2*mp.pi))
Iq = NORM_MP*ans/(4*mp.pi)
return evals[0], Iq
def kernel_2d(q, theta, phi):
"""
S(q) kernel for paracrystal forms.
"""
qab = q*sin(theta)
qa = qab*cos(phi)
qb = qab*sin(phi)
qc = q*cos(theta)
return NORM*KERNEL(qa, qb, qc)**2
def scipy_dblquad_2d(q):
"""
Compute the integral using scipy dblquad. This gets the correct answer
eventually, but it is slow.
"""
evals = [0]
def integrand(phi, theta):
evals[0] += 1
Zq = kernel_2d(q, theta=theta, phi=phi)
return Zq*sin(theta)
ans = dblquad(integrand, THETA_LOW, THETA_HIGH, lambda x: PHI_LOW, lambda x: PHI_HIGH)[0]
return evals[0], ans*SCALE/(4*pi)
def scipy_romberg_2d(q):
"""
Compute the integral using romberg integration. This function does not
complete in a reasonable time. No idea if it is accurate.
"""
evals = [0]
def inner(phi, theta):
evals[0] += 1
return kernel_2d(q, theta=theta, phi=phi)
def outer(theta):
Zq = romberg(inner, PHI_LOW, PHI_HIGH, divmax=100, args=(theta,))
return Zq*sin(theta)
ans = romberg(outer, THETA_LOW, THETA_HIGH, divmax=100)
return evals[0], ans*SCALE/(4*pi)
def semi_romberg_2d(q, n=100):
"""
Use 1D romberg integration in phi and regular simpsons rule in theta.
"""
evals = [0]
def inner(phi, theta):
evals[0] += 1
return kernel_2d(q, theta=theta, phi=phi)
theta = np.linspace(THETA_LOW, THETA_HIGH, n)
Zq = [romberg(inner, PHI_LOW, PHI_HIGH, divmax=100, args=(t,)) for t in theta]
ans = simps(np.array(Zq)*sin(theta), dx=theta[1]-theta[0])
return evals[0], ans*SCALE/(4*pi)
def gauss_quad_2d(q, n=150):
"""
Compute the integral using gaussian quadrature for n = 20, 76 or 150.
"""
z, w = leggauss(n)
theta = (THETA_HIGH-THETA_LOW)*(z + 1)/2 + THETA_LOW
phi = (PHI_HIGH-PHI_LOW)*(z + 1)/2 + PHI_LOW
Atheta, Aphi = np.meshgrid(theta, phi)
Aw = w[None, :] * w[:, None]
sin_theta = abs(sin(Atheta))
Zq = kernel_2d(q=q, theta=Atheta, phi=Aphi)
# change from [-1,1] x [-1,1] range to [0, pi] x [0, 2 pi] range
dxdy_stretch = (THETA_HIGH-THETA_LOW)/2 * (PHI_HIGH-PHI_LOW)/2
Iq = np.sum(Zq*Aw*sin_theta)*SCALE/(4*pi) * dxdy_stretch
return n**2, Iq
def gauss_quad_usub(q, n=150, dtype=DTYPE):
"""
Compute the integral using gaussian quadrature for n = 20, 76 or 150.
Use *u = sin theta* substitution, and restrict integration over a single
quadrant for shapes that are mirror symmetric about AB, AC and BC planes.
Note that this doesn't work for fcc/bcc paracrystals, which instead step
over the entire 4 pi surface uniformly in theta-phi.
"""
z, w = leggauss(n)
cos_theta = 0.5 * (z + 1)
theta = arccos(cos_theta)
phi = pi/2*(0.5 * (z + 1))
Atheta, Aphi = np.meshgrid(theta, phi)
Aw = w[None, :] * w[:, None]
q, Atheta, Aphi, Aw = [np.asarray(v, dtype=dtype) for v in (q, Atheta, Aphi, Aw)]
Zq = kernel_2d(q=q, theta=Atheta, phi=Aphi)
Iq = np.sum(Zq*Aw)*0.25
return n**2, Iq
def gridded_2d(q, n=300):
"""
Compute the integral on a regular grid using rectangular, trapezoidal,
simpsons, and romberg integration. Romberg integration requires that
the grid be of size n = 2**k + 1.
"""
theta = np.linspace(THETA_LOW, THETA_HIGH, n)
phi = np.linspace(PHI_LOW, PHI_HIGH, n)
Atheta, Aphi = np.meshgrid(theta, phi)
Zq = kernel_2d(q=q, theta=Atheta, phi=Aphi)
Zq *= abs(sin(Atheta))
dx, dy = theta[1]-theta[0], phi[1]-phi[0]
print("rect-%d"%n, n**2, np.sum(Zq)*dx*dy*SCALE/(4*pi))
print("trapz-%d"%n, n**2, np.trapz(np.trapz(Zq, dx=dx), dx=dy)*SCALE/(4*pi))
print("simpson-%d"%n, n**2, simps(simps(Zq, dx=dx), dx=dy)*SCALE/(4*pi))
print("romb-%d"%n, n**2, romb(romb(Zq, dx=dx), dx=dy)*SCALE/(4*pi))
def quadpy_method(q, rule):
"""
Use *rule*="name:index" where name and index are chosen from below.
Available rule names and the corresponding indices::
AlbrechtCollatz: [1-5]
BazantOh: 9, 11, 13
HeoXu: 13, 15, 17, 19-[1-2], 21-[1-6], 23-[1-3], 25-[1-2], 27-[1-3],
29, 31, 33, 35, 37, 39-[1-2]
FliegeMaier: 4, 9, 16, 25
Lebedev: 3[a-c], 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 35,
41, 47, 53, 59, 65, 71, 77 83, 89, 95, 101, 107, 113, 119, 125, 131
McLaren: [1-10]
Stroud: U3 3-1, U3 5-[1-5], U3 7-[1-2], U3 8-1, U3 9-[1-3],
U3 11-[1-3], U3 14-1
"""
try:
import quadpy
except ImportError:
warnings.warn("use 'pip install quadpy' to enable quadpy.sphere tests")
return
from quadpy.sphere import (
AlbrechtCollatz,
BazantOh,
FliegeMaier,
HeoXu,
Lebedev,
McLaren,
Stroud,
integrate_spherical,
)
RULES = {
'AlbrechtCollatz': AlbrechtCollatz,
'BazantOh': BazantOh,
'HeoXu': HeoXu,
'FliegeMaier': FliegeMaier,
'Lebedev': Lebedev,
'McLaren': McLaren,
'Stroud': Stroud,
}
int_index = 'AlbrechtCollatz', 'McLaren'
rule_name, rule_index = rule.split(':')
index = int(rule_index) if rule_name in int_index else rule_index
rule_obj = RULES[rule_name](index)
fn = lambda azimuthal, polar: kernel_2d(q=q, theta=polar, phi=azimuthal)
Iq = integrate_spherical(fn, rule=rule_obj)/(4*pi)
print("%s degree=%d points=%s => %.15g"
% (rule, rule_obj.degree, len(rule_obj.points), Iq))
def plot_2d(q, n=300):
"""
Plot the 2D surface that needs to be integrated in order to compute
the BCC S(q) at a particular q, dnn and d_factor. *n* is the number
of points in the grid.
"""
theta = np.linspace(THETA_LOW, THETA_HIGH, n)
phi = np.linspace(PHI_LOW, PHI_HIGH, n)
Atheta, Aphi = np.meshgrid(theta, phi)
Zq = kernel_2d(q=q, theta=Atheta, phi=Aphi)
#Zq *= abs(sin(Atheta))
pylab.pcolor(degrees(theta), degrees(phi), log10(np.fmax(Zq, 1.e-6)))
pylab.axis('tight')
pylab.title("%s I(q,t) sin(t) for q=%g" % (KERNEL.__doc__, q))
pylab.xlabel("theta (degrees)")
pylab.ylabel("phi (degrees)")
cbar = pylab.colorbar()
cbar.set_label('log10 S(q)')
pylab.show()
def main():
import argparse
parser = argparse.ArgumentParser(
description="asymmetric integration explorer",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument('-s', '--shape', choices=SHAPES,
default='parallelepiped',
help='oriented shape')
parser.add_argument('-q', '--q_value', type=str, default='0.005',
help='Q value to evaluate')
parser.add_argument('pars', type=str, nargs='*', default=[],
help='p=val for p in shape parameters')
opts = parser.parse_args()
pars = {k: v for par in opts.pars for k, v in [par.split('=')]}
build_shape(opts.shape, **pars)
Q = float(opts.q_value)
if opts.shape == 'sphere':
print("exact", NORM*sp.sas_3j1x_x(Q*RADIUS)**2)
# Methods from quadpy, if quadpy is available
# AlbrechtCollatz: [1-5]
# BazantOh: 9, 11, 13
# HeoXu: 13, 15, 17, 19-[1-2], 21-[1-6], 23-[1-3], 25-[1-2], 27-[1-3],
# 29, 31, 33, 35, 37, 39-[1-2]
# FliegeMaier: 4, 9, 16, 25
# Lebedev: 3[a-c], 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 35,
# 41, 47, 53, 59, 65, 71, 77 83, 89, 95, 101, 107, 113, 119, 125, 131
# McLaren: [1-10]
# Stroud: U3 3-1, U3 5-[1-5], U3 7-[1-2], U3 8-1, U3 9-[1-3],
# U3 11-[1-3], U3 14-1
quadpy_method(Q, "AlbrechtCollatz:5")
quadpy_method(Q, "HeoXu:39-2")
quadpy_method(Q, "FliegeMaier:25")
quadpy_method(Q, "Lebedev:19")
quadpy_method(Q, "Lebedev:131")
quadpy_method(Q, "McLaren:10")
quadpy_method(Q, "Stroud:U3 14-1")
print("gauss-20 points=%d => %.15g" % gauss_quad_2d(Q, n=20))
print("gauss-76 points=%d => %.15g" % gauss_quad_2d(Q, n=76))
print("gauss-150 points=%d => %.15g" % gauss_quad_2d(Q, n=150))
print("gauss-500 points=%d => %.15g" % gauss_quad_2d(Q, n=500))
print("gauss-1025 points=%d => %.15g" % gauss_quad_2d(Q, n=1025))
print("gauss-2049 points=%d => %.15g" % gauss_quad_2d(Q, n=2049))
print("gauss-20 usub points=%d => %.15g" % gauss_quad_usub(Q, n=20))
print("gauss-76 usub points=%d => %.15g" % gauss_quad_usub(Q, n=76))
print("gauss-150 usub points=%d => %.15g" % gauss_quad_usub(Q, n=150))
#gridded_2d(Q, n=2**8+1)
gridded_2d(Q, n=2**10+1)
#gridded_2d(Q, n=2**12+1)
#gridded_2d(Q, n=2**15+1)
# adaptive forms on models for which the calculations are fast enough
SLOW_SHAPES = {
'fcc_paracrystal', 'bcc_paracrystal', 'sc_paracrystal',
'core_shell_parallelepiped',
}
if opts.shape not in SLOW_SHAPES:
print("dblquad", *scipy_dblquad_2d(Q))
print("semi-romberg-100", *semi_romberg_2d(Q, n=100))
print("romberg", *scipy_romberg_2d(Q))
with mp.workprec(100):
print("mpmath", *mp_quad_2d(mp.mpf(opts.q_value)))
plot_2d(Q, n=200)
if __name__ == "__main__":
main()
|