File: precision.py

package info (click to toggle)
sasmodels 1.0.11-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 16,444 kB
  • sloc: python: 26,150; ansic: 8,036; makefile: 150; sh: 50
file content (876 lines) | stat: -rwxr-xr-x 31,075 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
#!/usr/bin/env python
r"""
Show numerical precision of various expressions.

Evaluates the same function(s) in single and double precision and compares
the results to 500 digit mpmath evaluation of the same function.

Note: a quick way to generation C and python code for taylor series
expansions from sympy:

    import sympy as sp
    x = sp.var("x")
    f = sp.sin(x)/x
    t = sp.series(f, n=12).removeO()  # taylor series with no O(x^n) term
    p = sp.horner(t)   # Horner representation
    p = p.replace(x**2, sp.var("xsq")  # simplify if alternate terms are zero
    p = p.n(15)  # evaluate coefficients to 15 digits (optional)
    c_code = sp.ccode(p, assign_to=sp.var("p"))  # convert to c code
    py_code = c[:-1]  # strip semicolon to convert c to python

    # mpmath has pade() rational function approximation, which might work
    # better than the taylor series for some functions:
    P, Q = mp.pade(sp.Poly(t.n(15),x).coeffs(), L, M)
    P = sum(a*x**n for n,a in enumerate(reversed(P)))
    Q = sum(a*x**n for n,a in enumerate(reversed(Q)))
    c_code = sp.ccode(sp.horner(P)/sp.horner(Q), assign_to=sp.var("p"))

    # There are richardson and shanks series accelerators in both sympy
    # and mpmath that may be helpful.
"""

import os
import sys

sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))

import numpy as np
import scipy.special

# Note: mpmath.pi and numpy.pi are not interchangeable; don't import pi from
# numpy as we usually do, but instead be explicit about which one we want each
# time it we use it.
from numpy import inf

try:
    from mpmath import mp
except ImportError:
    # CRUFT: mpmath used to be a package in sympy
    from sympy.mpmath import mp
#import matplotlib; matplotlib.use('TkAgg')
import pylab

from sasmodels import core, data, direct_model, modelinfo


class Comparator:
    def __init__(self, name, mp_function, np_function, ocl_function, xaxis, limits):
        self.name = name
        self.mp_function = mp_function
        self.np_function = np_function
        self.ocl_function = ocl_function
        self.xaxis = xaxis
        self.limits = limits

    def __repr__(self):
        return "Comparator(%s)"%self.name

    def call_mpmath(self, vec, bits=500):
        """
        Direct calculation using mpmath extended precision library.
        """
        with mp.workprec(bits):
            return [self.mp_function(mp.mpf(x)) for x in vec]

    def call_numpy(self, x, dtype):
        """
        Direct calculation using numpy/scipy.
        """
        x = np.asarray(x, dtype)
        return self.np_function(x)

    def call_ocl(self, x, dtype, platform='ocl'):
        """
        Calculation using sasmodels ocl libraries.
        """
        x = np.asarray(x, dtype)
        model = core.build_model(self.ocl_function, dtype=dtype)
        calculator = direct_model.DirectModel(data.empty_data1D(x), model)
        return calculator(background=0)

    def run(self, xrange="log", diff="relative"):
        r"""
        Compare accuracy of different methods for computing f.

        *xrange* is::

            log:    [10^-3,10^5]
            logq:   [10^-4, 10^1]
            linear: [1,1000]
            zoom:   [1000,1010]
            neg:    [-100,100]

        For arbitrary range use "start:stop:steps:scale" where scale is
        one of log, lin, or linear.

        *diff* is "relative", "absolute" or "none"

        *x_bits* is the precision with which the x values are specified.  The
        default 23 should reproduce the equivalent of a single precisio
        """
        linear = not xrange.startswith("log")
        if xrange == "zoom":
            start, stop, steps = 1000, 1010, 2000
        elif xrange == "neg":
            start, stop, steps = -100.1, 100.1, 2000
        elif xrange == "linear":
            start, stop, steps = 1, 1000, 2000
            start, stop, steps = 0.001, 2, 2000
        elif xrange == "log":
            start, stop, steps = -3, 5, 400
        elif xrange == "logq":
            start, stop, steps = -4, 1, 400
        elif ':' in xrange:
            parts = xrange.split(':')
            linear = parts[3] != "log" if len(parts) == 4 else True
            steps = int(parts[2]) if len(parts) > 2 else 400
            start = float(parts[0])
            stop = float(parts[1])

        else:
            raise ValueError("unknown range "+xrange)
        with mp.workprec(500):
            # Note: we make sure that we are comparing apples to apples...
            # The x points are set using single precision so that we are
            # examining the accuracy of the transformation from x to f(x)
            # rather than x to f(nearest(x)) where nearest(x) is the nearest
            # value to x in the given precision.
            if linear:
                start = max(start, self.limits[0])
                stop = min(stop, self.limits[1])
                qrf = np.linspace(start, stop, steps, dtype='single')
                #qrf = np.linspace(start, stop, steps, dtype='double')
                qr = [mp.mpf(float(v)) for v in qrf]
                #qr = mp.linspace(start, stop, steps)
            else:
                start = np.log10(max(10**start, self.limits[0]))
                stop = np.log10(min(10**stop, self.limits[1]))
                qrf = np.logspace(start, stop, steps, dtype='single')
                #qrf = np.logspace(start, stop, steps, dtype='double')
                qr = [mp.mpf(float(v)) for v in qrf]
                #qr = [10**v for v in mp.linspace(start, stop, steps)]

        target = self.call_mpmath(qr, bits=500)
        pylab.subplot(121)
        self.compare(qr, 'single', target, linear, diff)
        pylab.legend(loc='best')
        pylab.subplot(122)
        self.compare(qr, 'double', target, linear, diff)
        pylab.legend(loc='best')
        pylab.suptitle(self.name + " compared to 500-bit mpmath")

    def compare(self, x, precision, target, linear=False, diff="relative"):
        r"""
        Compare the different computation methods using the given precision.
        """
        if precision == 'single':
            #n=11; plotdiff(x, target, self.call_mpmath(x, n), 'mp %d bits'%n, diff=diff)
            #n=23; plotdiff(x, target, self.call_mpmath(x, n), 'mp %d bits'%n, diff=diff)
            pass
        elif precision == 'double':
            #n=53; plotdiff(x, target, self.call_mpmath(x, n), 'mp %d bits'%n, diff=diff)
            #n=83; plotdiff(x, target, self.call_mpmath(x, n), 'mp %d bits'%n, diff=diff)
            pass
        plotdiff(x, target, self.call_numpy(x, precision), 'numpy '+precision, diff=diff)
        plotdiff(x, target, self.call_ocl(x, precision, 0), 'OpenCL '+precision, diff=diff)
        pylab.xlabel(self.xaxis)
        if diff == "relative":
            pylab.ylabel("relative error")
        elif diff == "absolute":
            pylab.ylabel("absolute error")
        else:
            pylab.ylabel(self.name)
            pylab.semilogx(x, target, '-', label="true value")
        if linear:
            pylab.xscale('linear')

def plotdiff(x, target, actual, label, diff):
    """
    Plot the computed value.

    Use relative error if SHOW_DIFF, otherwise just plot the value directly.
    """
    if diff == "relative":
        err = np.array([(abs((t-a)/t) if t != 0 else a) for t, a in zip(target, actual)], 'd')
        #err = np.clip(err, 0, 1)
        pylab.loglog(x, err, '-', label=label, alpha=0.7)
    elif diff == "absolute":
        err = np.array([abs(t-a) for t, a in zip(target, actual)], 'd')
        pylab.loglog(x, err, '-', label=label, alpha=0.7)
    else:
        limits = np.min(target), np.max(target)
        pylab.semilogx(x, np.clip(actual, *limits), '-', label=label, alpha=0.7)

def make_ocl(function, name, source=[]):
    class Kernel:
        pass
    Kernel.__file__ = name+".py"
    Kernel.name = name
    Kernel.parameters = []
    Kernel.source = source
    Kernel.Iq = function
    model_info = modelinfo.make_model_info(Kernel)
    return model_info

# Hack to allow second parameter A in the gammainc and gammaincc functions.
# Create a 2-D variant of the precision test if we need to handle other two
# parameter functions.
A = 1
def parse_extra_pars():
    """
    Parse the command line looking for the second parameter "A=..." for the
    gammainc/gammaincc functions.
    """
    global A

    A_str = str(A)
    pop = []
    for k, v in enumerate(sys.argv[1:]):
        if v.startswith("A="):
            A_str = v[2:]
            pop.append(k+1)
    if pop:
        sys.argv = [v for k, v in enumerate(sys.argv) if k not in pop]
        A = float(A_str)

parse_extra_pars()


# =============== FUNCTION DEFINITIONS ================

FUNCTIONS = {}
def add_function(name, mp_function, np_function, ocl_function,
                 shortname=None, xaxis="x", limits=(-inf, inf)):
    if shortname is None:
        shortname = name.replace('(x)', '').replace(' ', '')
    FUNCTIONS[shortname] = Comparator(name, mp_function, np_function, ocl_function, xaxis, limits)

add_function(
    name="J0(x)",
    mp_function=mp.j0,
    np_function=scipy.special.j0,
    ocl_function=make_ocl("return sas_J0(q);", "sas_J0", ["lib/polevl.c", "lib/sas_J0.c"]),
)
add_function(
    name="J1(x)",
    mp_function=mp.j1,
    np_function=scipy.special.j1,
    ocl_function=make_ocl("return sas_J1(q);", "sas_J1", ["lib/polevl.c", "lib/sas_J1.c"]),
)
add_function(
    name="JN(-3, x)",
    mp_function=lambda x: mp.besselj(-3, x),
    np_function=lambda x: scipy.special.jn(-3, x),
    ocl_function=make_ocl("return sas_JN(-3, q);", "sas_JN",
                          ["lib/polevl.c", "lib/sas_J0.c", "lib/sas_J1.c", "lib/sas_JN.c"]),
    shortname="J-3",
)
add_function(
    name="JN(3, x)",
    mp_function=lambda x: mp.besselj(3, x),
    np_function=lambda x: scipy.special.jn(3, x),
    ocl_function=make_ocl("return sas_JN(3, q);", "sas_JN",
                          ["lib/polevl.c", "lib/sas_J0.c", "lib/sas_J1.c", "lib/sas_JN.c"]),
    shortname="J3",
)
add_function(
    name="JN(2, x)",
    mp_function=lambda x: mp.besselj(2, x),
    np_function=lambda x: scipy.special.jn(2, x),
    ocl_function=make_ocl("return sas_JN(2, q);", "sas_JN",
                          ["lib/polevl.c", "lib/sas_J0.c", "lib/sas_J1.c", "lib/sas_JN.c"]),
    shortname="J2",
)
add_function(
    name="2 J1(x)/x",
    mp_function=lambda x: 2*mp.j1(x)/x,
    np_function=lambda x: 2*scipy.special.j1(x)/x,
    ocl_function=make_ocl("return sas_2J1x_x(q);", "sas_2J1x_x", ["lib/polevl.c", "lib/sas_J1.c"]),
)
add_function(
    name="J1(x)",
    mp_function=mp.j1,
    np_function=scipy.special.j1,
    ocl_function=make_ocl("return sas_J1(q);", "sas_J1", ["lib/polevl.c", "lib/sas_J1.c"]),
)
add_function(
    name="Si(x)",
    mp_function=mp.si,
    np_function=lambda x: scipy.special.sici(x)[0],
    ocl_function=make_ocl("return sas_Si(q);", "sas_Si", ["lib/sas_Si.c"]),
)
#import fnlib
#add_function(
#    name="fnlibJ1",
#    mp_function=mp.j1,
#    np_function=fnlib.J1,
#    ocl_function=make_ocl("return sas_J1(q);", "sas_J1", ["lib/polevl.c", "lib/sas_J1.c"]),
#)
add_function(
    name="sin(x)",
    mp_function=mp.sin,
    np_function=np.sin,
    #ocl_function=make_ocl("double sn, cn; SINCOS(q,sn,cn); return sn;", "sas_sin"),
    ocl_function=make_ocl("return sin(q);", "sas_sin"),
)
add_function(
    name="sin(x)/x",
    mp_function=lambda x: mp.sin(x)/x if x != 0 else 1,
    ## scipy sinc function is inaccurate and has an implied pi*x term
    #np_function=lambda x: scipy.special.sinc(x/pi),
    ## numpy sin(x)/x needs to check for x=0
    np_function=lambda x: np.sin(x)/x,
    ocl_function=make_ocl("return sas_sinx_x(q);", "sas_sinc"),
)
add_function(
    name="cos(x)",
    mp_function=mp.cos,
    np_function=np.cos,
    #ocl_function=make_ocl("double sn, cn; SINCOS(q,sn,cn); return cn;", "sas_cos"),
    ocl_function=make_ocl("return cos(q);", "sas_cos"),
)
add_function(
    name="gamma(x)",
    mp_function=mp.gamma,
    np_function=scipy.special.gamma,
    ocl_function=make_ocl("return sas_gamma(q);", "sas_gamma", ["lib/sas_gamma.c"]),
    limits=(-3.1, 10),
)
add_function(
    name="gammaln(x)",
    mp_function=mp.loggamma,
    np_function=scipy.special.gammaln,
    ocl_function=make_ocl("return sas_gammaln(q);", "sas_gammaln", ["lib/sas_gammainc.c"]),
    #ocl_function=make_ocl("return lgamma(q);", "sas_gammaln"),
)
add_function(
    # Note: "a" is given as A=... on the command line via parse_extra_pars
    name="gammainc(x)",
    mp_function=lambda x, a=A: mp.gammainc(a, a=0, b=x)/mp.gamma(a),
    np_function=lambda x, a=A: scipy.special.gammainc(a, x),
    ocl_function=make_ocl("return sas_gammainc(%.15g,q);"%A, "sas_gammainc", ["lib/sas_gammainc.c"]),
)
add_function(
    # Note: "a" is given as A=... on the command line via parse_extra_pars
    name="gammaincc(x)",
    mp_function=lambda x, a=A: mp.gammainc(a, a=x, b=mp.inf)/mp.gamma(a),
    np_function=lambda x, a=A: scipy.special.gammaincc(a, x),
    ocl_function=make_ocl("return sas_gammaincc(%.15g,q);"%A, "sas_gammaincc", ["lib/sas_gammainc.c"]),
)
add_function(
    name="erf(x)",
    mp_function=mp.erf,
    np_function=scipy.special.erf,
    ocl_function=make_ocl("return sas_erf(q);", "sas_erf", ["lib/polevl.c", "lib/sas_erf.c"]),
    limits=(-5., 5.),
)
add_function(
    name="erfc(x)",
    mp_function=mp.erfc,
    np_function=scipy.special.erfc,
    ocl_function=make_ocl("return sas_erfc(q);", "sas_erfc", ["lib/polevl.c", "lib/sas_erf.c"]),
    limits=(-5., 5.),
)
add_function(
    name="expm1(x)",
    mp_function=mp.expm1,
    np_function=np.expm1,
    ocl_function=make_ocl("return expm1(q);", "sas_expm1"),
    limits=(-5., 5.),
)
add_function(
    name="arctan(x)",
    mp_function=mp.atan,
    np_function=np.arctan,
    ocl_function=make_ocl("return atan(q);", "sas_arctan"),
)
add_function(
    name="3 j1(x)/x",
    mp_function=lambda x: 3*(mp.sin(x)/x - mp.cos(x))/(x*x),
    # Note: no taylor expansion near 0
    np_function=lambda x: 3*(np.sin(x)/x - np.cos(x))/(x*x),
    ocl_function=make_ocl("return sas_3j1x_x(q);", "sas_j1c", ["lib/sas_3j1x_x.c"]),
)
add_function(
    name="(1-cos(x))/x^2",
    mp_function=lambda x: (1 - mp.cos(x))/(x*x),
    np_function=lambda x: (1 - np.cos(x))/(x*x),
    ocl_function=make_ocl("return (1-cos(q))/q/q;", "sas_1mcosx_x2"),
)
add_function(
    name="(1-sin(x)/x)/x",
    mp_function=lambda x: 1/x - mp.sin(x)/(x*x),
    np_function=lambda x: 1/x - np.sin(x)/(x*x),
    ocl_function=make_ocl("return (1-sas_sinx_x(q))/q;", "sas_1msinx_x_x"),
)
add_function(
    name="(1/2-sin(x)/x+(1-cos(x))/x^2)/x",
    mp_function=lambda x: (0.5 - mp.sin(x)/x + (1-mp.cos(x))/(x*x))/x,
    np_function=lambda x: (0.5 - np.sin(x)/x + (1-np.cos(x))/(x*x))/x,
    ocl_function=make_ocl("return (0.5-sin(q)/q + (1-cos(q))/q/q)/q;", "sas_T2"),
)
add_function(
    name="fmod_2pi",
    mp_function=lambda x: mp.fmod(x, 2*mp.pi),
    np_function=lambda x: np.fmod(x, 2*np.pi),
    ocl_function=make_ocl("return fmod(q, 2*M_PI);", "sas_fmod"),
)
add_function(
    name="expm1(x)/x",
    # Note: should be 1 when x = 0
    mp_function=lambda x: mp.expm1(x)/x,
    np_function=lambda x: np.expm1(x)/x,
    ocl_function=make_ocl("return (q==0.) ? 1. : expm1(q)/q;", "sas_exp1_x"),
)
add_function(
    name="sq_expm1(x)/x",
    # Note: should be 1 when x = 0
    mp_function=lambda x: (mp.expm1(x)/x)**2,
    np_function=lambda x: (np.expm1(x)/x)**2,
    ocl_function=make_ocl("return (q==0.) ? 1. : square(expm1(q)/q);", "sas_square_exp1_x"),
)

# TODO: move to sas_special
def sas_langevin(x):
    scalar = np.isscalar(x)
    if scalar:
        x = np.array([x]) # should inherit dtype for single if given single
    f = np.empty_like(x)
    cutoff = 0.1 if f.dtype == np.float64 else 1.0
    #cutoff *= 10
    index = x < cutoff
    xp = x[index]
    xpsq = xp*xp
    f[index] = xp / (3. + xpsq / (5. + xpsq/(7. + xpsq/(9.))))
    # 4 terms gets to 1e-7 single, 1e-14 double. Can get to 1e-15 double by adding
    # another 4 terms and setting cutoff at 1.0. Not worthwhile. Instead we would
    # need an expansion about x somewhere between 1 and 10 for the interval [0.1, 100.]
    #f[index] = xp / (3. + xpsq / (5. + xpsq/(7. + xpsq/(9. + xpsq/(11.0 + xpsq/(13. + xpsq/(15. + xpsq/17.)))))))
    xp = x[~index]
    f[~index] = 1/np.tanh(xp) - 1/xp
    return f[0] if scalar else f

def sas_langevin_x(x):
    scalar = np.isscalar(x)
    if scalar:
        x = np.array([x]) # should inherit dtype for single if given single
    f = np.empty_like(x)
    cutoff = 0.1 if f.dtype == np.float64 else 1.0
    index = x < cutoff
    xp = x[index]
    xpsq = xp*xp
    f[index] = 1. / (3. + xpsq / (5. + xpsq/(7. + xpsq/(9.))))
    xp = x[~index]
    f[~index] = (1/np.tanh(xp) - 1/xp)/xp
    return f[0] if scalar else f

add_function(
    name="langevin(x)",
    mp_function=lambda x: (1/mp.tanh(x) - 1/x),
    np_function=sas_langevin,
    #ocl_function=make_ocl("return q < 0.7 ? q*(1./3. + q*q*(-1./45. + q*q*(2./945. + q*q*(-1./4725.) + q*q*(2./93555.)))) : 1/tanh(q) - 1/q;", "sas_langevin"),
    #ocl_function=make_ocl("return q < 1e-5 ? q/3. : 1/tanh(q) - 1/q;", "sas_langevin"),
    ocl_function=make_ocl("""
#if FLOAT_SIZE>4  // DOUBLE_PRECISION
#  define LANGEVIN_CUTOFF 0.1
#else
#  define LANGEVIN_CUTOFF 1.0
#endif
    const double qsq = q*q;
    return (q < LANGEVIN_CUTOFF) ? q / (3. + qsq / (5. + qsq/(7. + qsq/(9.)))) : 1/tanh(q) - 1/q;
    """, "sas_langevin"),
)
add_function(
    name="langevin(x)/x",
    mp_function=lambda x: (1/mp.tanh(x) - 1/x)/x,
    np_function=sas_langevin_x,
    ocl_function=make_ocl("""
#if FLOAT_SIZE>4  // DOUBLE_PRECISION
#  define LANGEVIN_CUTOFF 0.1
#else
#  define LANGEVIN_CUTOFF 1.0
#endif
    const double qsq = q*q;
    return (q < LANGEVIN_CUTOFF) ? 1. / (3. + qsq / (5. + qsq/(7. + qsq/(9.)))) : (1/tanh(q) - 1/q)/q;
    """, "sas_langevin_x"),
)
add_function(
    name="gauss_coil",
    mp_function=lambda x: 2*(mp.exp(-x**2) + x**2 - 1)/x**4,
    np_function=lambda x: 2*(np.expm1(-x**2) + x**2)/x**4,
    ocl_function=make_ocl("""
    const double qsq = q*q;
    // For double: use O(5) Pade with 0.5 cutoff (10 mad + 1 divide)
    // For single: use O(7) Taylor with 0.8 cutoff (7 mad)
    if (qsq < 0.0) {
        const double x = qsq;
        if (0) { // 0.36 single
            // PadeApproximant[2*Exp[-x^2] + x^2-1)/x^4, {x, 0, 4}]
            return (x*x/180. + 1.)/((1./30.*x + 1./3.)*x + 1);
        } else if (0) { // 1.0 for single
            // padeapproximant[2*exp[-x^2] + x^2-1)/x^4, {x, 0, 6}]
            const double A1=1./24., A2=1./84, A3=-1./3360;
            const double B1=3./8., B2=3./56., B3=1./336.;
            return (((A3*x + A2)*x + A1)*x + 1.)/(((B3*x + B2)*x + B1)*x + 1.);
        } else if (0) { // 1.0 for single, 0.25 for double
            // PadeApproximant[2*Exp[-x^2] + x^2-1)/x^4, {x, 0, 8}]
            const double A1=1./15., A2=1./60, A3=0., A4=1./75600.;
            const double B1=2./5., B2=1./15., B3=1./180., B4=1./5040.;
            return ((((A4*x + A3)*x + A2)*x + A1)*x + 1.)
                  /((((B4*x + B3)*x + B2)*x + B1)*x + 1.);
        } else { // 1.0 for single, 0.5 for double
            // PadeApproximant[2*Exp[-x^2] + x^2-1)/x^4, {x, 0, 8}]
            const double A1=1./12., A2=2./99., A3=1./2640., A4=1./23760., A5=-1./1995840.;
            const double B1=5./12., B2=5./66., B3=1./132., B4=1./2376., B5=1./95040.;
            return (((((A5*x + A4)*x + A3)*x + A2)*x + A1)*x + 1.)
                  /(((((B5*x + B4)*x + B3)*x + B2)*x + B1)*x + 1.);
        }
    } else if (qsq < 0.8) {
        const double x = qsq;
        const double C0 = +1.;
        const double C1 = -1./3.;
        const double C2 = +1./12.;
        const double C3 = -1./60.;
        const double C4 = +1./360.;
        const double C5 = -1./2520.;
        const double C6 = +1./20160.;
        const double C7 = -1./181440.;
        //return ((((C5*x + C4)*x + C3)*x + C2)*x + C1)*x + C0;
        //return (((((C6*x + C5)*x + C4)*x + C3)*x + C2)*x + C1)*x + C0;
        return ((((((C7*x + C6)*x + C5)*x + C4)*x + C3)*x + C2)*x + C1)*x + C0;
    } else {
        return 2.*(expm1(-qsq) + qsq)/(qsq*qsq);
    }
    """, "sas_debye"),
)

def mp_star_polymer(x, arms=3): # x = q*Rg
    from mpmath import expm1
    v = x * arms / (3*arms - 2)
    term1 = v + expm1(-v)
    term2 = (arms- 1)/2 * expm1(-v)**2
    return 2 * (term1 + term2) / (arms * v**2) if v > 0 else 1

def np_star_polymer(x, arms=3):
    from numpy import expm1, polyval
    scalar = np.isscalar(x)
    if scalar:
        x = np.array([x]) # should inherit dtype for single if given single
    #T1 = [1, -1/3, 1/12, -1/60, 1/360, -1/2520, 1/20160, -1/181440][::-1]
    T1 = [1, -1/3, 1/12, -1/60, 1/360, -1/2520][::-1]
    #T2 = [1, -1, 7/12, -1/4, 31/360, -1/40][::-1]
    f = np.empty_like(x)
    cutoff = 0.03 if f.dtype == np.float64 else 1.0
    index = (x == 0.)
    f[index] = 1.0
    index = ~index & (x < cutoff)
    v = x * arms / (3*arms - 2)
    vi = v[index]
    #f[index] = polyval(T1, vi)/arms + (1 - 1/arms)*polyval(T2, vi)
    #f[index] = 2/(arms*vi)*(1 + expm1(-vi)/vi) + (1 - 1/arms)*polyval(T2, vi)
    f[index] = polyval(T1, vi)/arms + (1 - 1/arms)*(expm1(-vi)/vi)**2
    #f[index] = 2/(arms*vi)*(1 + expm1(-vi)/vi) + (1 - 1/arms)*(expm1(-vi)/vi)**2

    term1 = v[~index] + expm1(-v[~index])
    term2 = (arms - 1)/2 * expm1(-v[~index])**2
    f[~index] = 2 * (term1 + term2) / (arms * v[~index]**2)
    return f

ocl_star_polymer = """
    const int arms = 3;
    const double v = q * arms / (3.0 * arms - 2.0);
// Note: cutoff values are for (Q Rg)^2.
#if FLOAT_SIZE>4
#define STAR_POLYMER_CUTOFF 0.03
#else
#define STAR_POLYMER_CUTOFF 1.0
#endif

    if (q == 0.) {
        return 1.;
    } else if (q <= STAR_POLYMER_CUTOFF) {
        double P1 = 1. + v*(-1./3. + v*(1./12. + v*(-1./60. + v*(1./360. + v*(-1./2520)))));
        //double P2 = 1. + v*(-1. + v*(7./12. - v*(-1./4.)));
        return P1/arms + (1. - 1./arms)*square(expm1(-v)/v);
    } else {
        double term1 = v + expm1(-v);
        double term2 = ((arms - 1.0)/2.0) * square(expm1(-v));
        return (2.0 * (term1 + term2)) / (arms * v * v);
    }
"""

add_function(
    name="star_polymer(arms=3)",
    mp_function=mp_star_polymer,
    np_function=np_star_polymer,
    ocl_function=make_ocl(ocl_star_polymer, "star_polymer", []),
    shortname="star_polymer",
    xaxis="$(Q R_g)^2$ (unitless)",
)


RADIUS=3000
LENGTH=30
THETA=45
def mp_cyl(x):
    f = mp.mpf
    theta = f(THETA)*mp.pi/f(180)
    qr = x * f(RADIUS)*mp.sin(theta)
    qh = x * f(LENGTH)/f(2)*mp.cos(theta)
    be = f(2)*mp.j1(qr)/qr
    si = mp.sin(qh)/qh
    background = f(0)
    #background = f(1)/f(1000)
    volume = mp.pi*f(RADIUS)**f(2)*f(LENGTH)
    contrast = f(5)
    units = f(1)/f(10000)
    #return be
    #return si
    return units*(volume*contrast*be*si)**f(2)/volume + background
def np_cyl(x):
    f = np.float64 if x.dtype == np.float64 else np.float32
    theta = f(THETA)*f(np.pi)/f(180)
    qr = x * f(RADIUS)*np.sin(theta)
    qh = x * f(LENGTH)/f(2)*np.cos(theta)
    be = f(2)*scipy.special.j1(qr)/qr
    si = np.sin(qh)/qh
    background = f(0)
    #background = f(1)/f(1000)
    volume = f(np.pi)*f(RADIUS)**2*f(LENGTH)
    contrast = f(5)
    units = f(1)/f(10000)
    #return be
    #return si
    return units*(volume*contrast*be*si)**f(2)/volume + background
ocl_cyl = """\
    double THETA = %(THETA).15e*M_PI_180;
    double qr = q*%(RADIUS).15e*sin(THETA);
    double qh = q*0.5*%(LENGTH).15e*cos(THETA);
    double be = sas_2J1x_x(qr);
    double si = sas_sinx_x(qh);
    double background = 0;
    //double background = 0.001;
    double volume = M_PI*square(%(RADIUS).15e)*%(LENGTH).15e;
    double contrast = 5.0;
    double units = 1e-4;
    //return be;
    //return si;
    return units*square(volume*contrast*be*si)/volume + background;
"""%{"LENGTH":LENGTH, "RADIUS": RADIUS, "THETA": THETA}
add_function(
    name="cylinder(r=%g, l=%g, theta=%g)"%(RADIUS, LENGTH, THETA),
    mp_function=mp_cyl,
    np_function=np_cyl,
    ocl_function=make_ocl(ocl_cyl, "ocl_cyl", ["lib/polevl.c", "lib/sas_J1.c"]),
    shortname="cylinder",
    xaxis="$q/A^{-1}$",
)

lanczos_gamma = """\
    const double coeff[] = {
            76.18009172947146, -86.50532032941677,
            24.01409824083091, -1.231739572450155,
            0.1208650973866179e-2,-0.5395239384953e-5
            };
    const double x = q;
    double tmp  = x + 5.5;
    tmp -= (x + 0.5)*log(tmp);
    double ser = 1.000000000190015;
    for (int k=0; k < 6; k++) ser += coeff[k]/(x + k+1);
    return -tmp + log(2.5066282746310005*ser/x);
"""
add_function(
    name="loggamma(x)",
    mp_function=mp.loggamma,
    np_function=scipy.special.gammaln,
    ocl_function=make_ocl(lanczos_gamma, "lgamma"),
)

replacement_expm1 = """\
      double x = (double)q;  // go back to float for single precision kernels
      // Adapted from the cephes math library.
      // Copyright 1984 - 1992 by Stephen L. Moshier
      if (x != x || x == 0.0) {
         return x; // NaN and +/- 0
      } else if (x < -0.5 || x > 0.5) {
         return exp(x) - 1.0;
      } else {
         const double xsq = x*x;
         const double p = (((
            +1.2617719307481059087798E-4)*xsq
            +3.0299440770744196129956E-2)*xsq
            +9.9999999999999999991025E-1);
         const double q = ((((
            +3.0019850513866445504159E-6)*xsq
            +2.5244834034968410419224E-3)*xsq
            +2.2726554820815502876593E-1)*xsq
            +2.0000000000000000000897E0);
         double r = x * p;
         r =  r / (q - r);
         return r+r;
       }
"""
add_function(
    name="sas_expm1(x)",
    mp_function=mp.expm1,
    np_function=np.expm1,
    ocl_function=make_ocl(replacement_expm1, "sas_expm1"),
)

# Alternate versions of 3 j1(x)/x, for posterity
def taylor_3j1x_x(x):
    """
    Calculation using taylor series.
    """
    # Generate coefficients using the precision of the target value.
    n = 5
    cinv = [3991680, -45360, 840, -30, 3]
    three = x.dtype.type(3)
    p = three/np.array(cinv, x.dtype)
    return np.polyval(p[-n:], x*x)
add_function(
    name="3 j1(x)/x: taylor",
    mp_function=lambda x: 3*(mp.sin(x)/x - mp.cos(x))/(x*x),
    np_function=taylor_3j1x_x,
    ocl_function=make_ocl("return sas_3j1x_x(q);", "sas_j1c", ["lib/sas_3j1x_x.c"]),
)
def trig_3j1x_x(x):
    r"""
    Direct calculation using linear combination of sin/cos.

    Use the following trig identity:

    .. math::

        a \sin(x) + b \cos(x) = c \sin(x + \phi)

    where $c = \surd(a^2+b^2)$ and $\phi = \tan^{-1}(b/a) to calculate the
    numerator $\sin(x) - x\cos(x)$.
    """
    one = x.dtype.type(1)
    three = x.dtype.type(3)
    c = np.sqrt(one + x*x)
    phi = np.arctan2(-x, one)
    return three*(c*np.sin(x+phi))/(x*x*x)
add_function(
    name="3 j1(x)/x: trig",
    mp_function=lambda x: 3*(mp.sin(x)/x - mp.cos(x))/(x*x),
    np_function=trig_3j1x_x,
    ocl_function=make_ocl("return sas_3j1x_x(q);", "sas_j1c", ["lib/sas_3j1x_x.c"]),
)
def np_2J1x_x(x):
    """
    numpy implementation of 2J1(x)/x using single precision algorithm
    """
    # pylint: disable=bad-continuation
    f = x.dtype.type
    ax = abs(x)
    if ax < f(8.0):
        y = x*x
        ans1 = f(2)*(f(72362614232.0)
                  + y*(f(-7895059235.0)
                  + y*(f(242396853.1)
                  + y*(f(-2972611.439)
                  + y*(f(15704.48260)
                  + y*(f(-30.16036606)))))))
        ans2 = (f(144725228442.0)
                  + y*(f(2300535178.0)
                  + y*(f(18583304.74)
                  + y*(f(99447.43394)
                  + y*(f(376.9991397)
                  + y)))))
        return ans1/ans2
    else:
        y = f(64.0)/(ax*ax)
        xx = ax - f(2.356194491)
        ans1 = (f(1.0)
                  + y*(f(0.183105e-2)
                  + y*(f(-0.3516396496e-4)
                  + y*(f(0.2457520174e-5)
                  + y*f(-0.240337019e-6)))))
        ans2 = (f(0.04687499995)
                  + y*(f(-0.2002690873e-3)
                  + y*(f(0.8449199096e-5)
                  + y*(f(-0.88228987e-6)
                  + y*f(0.105787412e-6)))))
        sn, cn = np.sin(xx), np.cos(xx)
        ans = np.sqrt(f(0.636619772)/ax) * (cn*ans1 - (f(8.0)/ax)*sn*ans2) * f(2)/x
        return -ans if (x < f(0.0)) else ans
add_function(
    name="2 J1(x)/x:alt",
    mp_function=lambda x: 2*mp.j1(x)/x,
    np_function=lambda x: np.asarray([np_2J1x_x(v) for v in x], x.dtype),
    ocl_function=make_ocl("return sas_2J1x_x(q);", "sas_2J1x_x", ["lib/polevl.c", "lib/sas_J1.c"]),
)

ALL_FUNCTIONS = set(FUNCTIONS.keys())
ALL_FUNCTIONS.discard("loggamma")  # use cephes-based gammaln instead
ALL_FUNCTIONS.discard("3j1/x:taylor")
ALL_FUNCTIONS.discard("3j1/x:trig")
ALL_FUNCTIONS.discard("2J1/x:alt")

# =============== MAIN PROGRAM ================

def usage():
    names = ", ".join(sorted(ALL_FUNCTIONS))
    print("""\
usage: precision.py [-f/a/r] [-x<range>] "name" ...
where
    -f indicates that the function value should be plotted,
    -a indicates that the absolute error should be plotted,
    -r indicates that the relative error should be plotted (default),
    -x<range> indicates the steps in x, where <range> is one of the following
        log indicates log stepping in [10^-3, 10^5] (default)
        logq indicates log stepping in [10^-4, 10^1]
        linear indicates linear stepping in [1, 1000]
        zoom indicates linear stepping in [1000, 1010]
        neg indicates linear stepping in [-100.1, 100.1]
        start:stop:n[:stepping] indicates an n-step plot in [start, stop]
            or [10^start, 10^stop] if stepping is "log" (default n=400)
Some functions (notably gammainc/gammaincc) have an additional parameter A
which can be set from the command line as A=value.  Default is A=1.

Name is one of:
    """+names)
    sys.exit(1)

def main():
    import sys
    diff = "relative"
    xrange = "log"
    options = [v for v in sys.argv[1:] if v.startswith('-')]
    for opt in options:
        if opt == '-f':
            diff = "none"
        elif opt == '-r':
            diff = "relative"
        elif opt == '-a':
            diff = "absolute"
        elif opt.startswith('-x'):
            xrange = opt[2:]
        else:
            usage()

    names = [v for v in sys.argv[1:] if not v.startswith('-')]
    if not names:
        usage()

    if names[0] == "all":
        cutoff = names[1] if len(names) > 1 else ""
        names = list(sorted(ALL_FUNCTIONS))
        names = [k for k in names if k >= cutoff]
    if any(k not in FUNCTIONS for k in names):
        usage()
    multiple = len(names) > 1
    pylab.interactive(multiple)
    for k in names:
        pylab.clf()
        comparator = FUNCTIONS[k]
        comparator.run(xrange=xrange, diff=diff)
        if multiple:
            input()
    if not multiple:
        pylab.show()

if __name__ == "__main__":
    main()