1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
|
#!/usr/bin/env python
r"""
Show numerical precision of various expressions.
Evaluates the same function(s) in single and double precision and compares
the results to 500 digit mpmath evaluation of the same function.
Note: a quick way to generation C and python code for taylor series
expansions from sympy:
import sympy as sp
x = sp.var("x")
f = sp.sin(x)/x
t = sp.series(f, n=12).removeO() # taylor series with no O(x^n) term
p = sp.horner(t) # Horner representation
p = p.replace(x**2, sp.var("xsq") # simplify if alternate terms are zero
p = p.n(15) # evaluate coefficients to 15 digits (optional)
c_code = sp.ccode(p, assign_to=sp.var("p")) # convert to c code
py_code = c[:-1] # strip semicolon to convert c to python
# mpmath has pade() rational function approximation, which might work
# better than the taylor series for some functions:
P, Q = mp.pade(sp.Poly(t.n(15),x).coeffs(), L, M)
P = sum(a*x**n for n,a in enumerate(reversed(P)))
Q = sum(a*x**n for n,a in enumerate(reversed(Q)))
c_code = sp.ccode(sp.horner(P)/sp.horner(Q), assign_to=sp.var("p"))
# There are richardson and shanks series accelerators in both sympy
# and mpmath that may be helpful.
"""
import os
import sys
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
import numpy as np
import scipy.special
# Note: mpmath.pi and numpy.pi are not interchangeable; don't import pi from
# numpy as we usually do, but instead be explicit about which one we want each
# time it we use it.
from numpy import inf
try:
from mpmath import mp
except ImportError:
# CRUFT: mpmath used to be a package in sympy
from sympy.mpmath import mp
#import matplotlib; matplotlib.use('TkAgg')
import pylab
from sasmodels import core, data, direct_model, modelinfo
class Comparator:
def __init__(self, name, mp_function, np_function, ocl_function, xaxis, limits):
self.name = name
self.mp_function = mp_function
self.np_function = np_function
self.ocl_function = ocl_function
self.xaxis = xaxis
self.limits = limits
def __repr__(self):
return "Comparator(%s)"%self.name
def call_mpmath(self, vec, bits=500):
"""
Direct calculation using mpmath extended precision library.
"""
with mp.workprec(bits):
return [self.mp_function(mp.mpf(x)) for x in vec]
def call_numpy(self, x, dtype):
"""
Direct calculation using numpy/scipy.
"""
x = np.asarray(x, dtype)
return self.np_function(x)
def call_ocl(self, x, dtype, platform='ocl'):
"""
Calculation using sasmodels ocl libraries.
"""
x = np.asarray(x, dtype)
model = core.build_model(self.ocl_function, dtype=dtype)
calculator = direct_model.DirectModel(data.empty_data1D(x), model)
return calculator(background=0)
def run(self, xrange="log", diff="relative"):
r"""
Compare accuracy of different methods for computing f.
*xrange* is::
log: [10^-3,10^5]
logq: [10^-4, 10^1]
linear: [1,1000]
zoom: [1000,1010]
neg: [-100,100]
For arbitrary range use "start:stop:steps:scale" where scale is
one of log, lin, or linear.
*diff* is "relative", "absolute" or "none"
*x_bits* is the precision with which the x values are specified. The
default 23 should reproduce the equivalent of a single precisio
"""
linear = not xrange.startswith("log")
if xrange == "zoom":
start, stop, steps = 1000, 1010, 2000
elif xrange == "neg":
start, stop, steps = -100.1, 100.1, 2000
elif xrange == "linear":
start, stop, steps = 1, 1000, 2000
start, stop, steps = 0.001, 2, 2000
elif xrange == "log":
start, stop, steps = -3, 5, 400
elif xrange == "logq":
start, stop, steps = -4, 1, 400
elif ':' in xrange:
parts = xrange.split(':')
linear = parts[3] != "log" if len(parts) == 4 else True
steps = int(parts[2]) if len(parts) > 2 else 400
start = float(parts[0])
stop = float(parts[1])
else:
raise ValueError("unknown range "+xrange)
with mp.workprec(500):
# Note: we make sure that we are comparing apples to apples...
# The x points are set using single precision so that we are
# examining the accuracy of the transformation from x to f(x)
# rather than x to f(nearest(x)) where nearest(x) is the nearest
# value to x in the given precision.
if linear:
start = max(start, self.limits[0])
stop = min(stop, self.limits[1])
qrf = np.linspace(start, stop, steps, dtype='single')
#qrf = np.linspace(start, stop, steps, dtype='double')
qr = [mp.mpf(float(v)) for v in qrf]
#qr = mp.linspace(start, stop, steps)
else:
start = np.log10(max(10**start, self.limits[0]))
stop = np.log10(min(10**stop, self.limits[1]))
qrf = np.logspace(start, stop, steps, dtype='single')
#qrf = np.logspace(start, stop, steps, dtype='double')
qr = [mp.mpf(float(v)) for v in qrf]
#qr = [10**v for v in mp.linspace(start, stop, steps)]
target = self.call_mpmath(qr, bits=500)
pylab.subplot(121)
self.compare(qr, 'single', target, linear, diff)
pylab.legend(loc='best')
pylab.subplot(122)
self.compare(qr, 'double', target, linear, diff)
pylab.legend(loc='best')
pylab.suptitle(self.name + " compared to 500-bit mpmath")
def compare(self, x, precision, target, linear=False, diff="relative"):
r"""
Compare the different computation methods using the given precision.
"""
if precision == 'single':
#n=11; plotdiff(x, target, self.call_mpmath(x, n), 'mp %d bits'%n, diff=diff)
#n=23; plotdiff(x, target, self.call_mpmath(x, n), 'mp %d bits'%n, diff=diff)
pass
elif precision == 'double':
#n=53; plotdiff(x, target, self.call_mpmath(x, n), 'mp %d bits'%n, diff=diff)
#n=83; plotdiff(x, target, self.call_mpmath(x, n), 'mp %d bits'%n, diff=diff)
pass
plotdiff(x, target, self.call_numpy(x, precision), 'numpy '+precision, diff=diff)
plotdiff(x, target, self.call_ocl(x, precision, 0), 'OpenCL '+precision, diff=diff)
pylab.xlabel(self.xaxis)
if diff == "relative":
pylab.ylabel("relative error")
elif diff == "absolute":
pylab.ylabel("absolute error")
else:
pylab.ylabel(self.name)
pylab.semilogx(x, target, '-', label="true value")
if linear:
pylab.xscale('linear')
def plotdiff(x, target, actual, label, diff):
"""
Plot the computed value.
Use relative error if SHOW_DIFF, otherwise just plot the value directly.
"""
if diff == "relative":
err = np.array([(abs((t-a)/t) if t != 0 else a) for t, a in zip(target, actual)], 'd')
#err = np.clip(err, 0, 1)
pylab.loglog(x, err, '-', label=label, alpha=0.7)
elif diff == "absolute":
err = np.array([abs(t-a) for t, a in zip(target, actual)], 'd')
pylab.loglog(x, err, '-', label=label, alpha=0.7)
else:
limits = np.min(target), np.max(target)
pylab.semilogx(x, np.clip(actual, *limits), '-', label=label, alpha=0.7)
def make_ocl(function, name, source=[]):
class Kernel:
pass
Kernel.__file__ = name+".py"
Kernel.name = name
Kernel.parameters = []
Kernel.source = source
Kernel.Iq = function
model_info = modelinfo.make_model_info(Kernel)
return model_info
# Hack to allow second parameter A in the gammainc and gammaincc functions.
# Create a 2-D variant of the precision test if we need to handle other two
# parameter functions.
A = 1
def parse_extra_pars():
"""
Parse the command line looking for the second parameter "A=..." for the
gammainc/gammaincc functions.
"""
global A
A_str = str(A)
pop = []
for k, v in enumerate(sys.argv[1:]):
if v.startswith("A="):
A_str = v[2:]
pop.append(k+1)
if pop:
sys.argv = [v for k, v in enumerate(sys.argv) if k not in pop]
A = float(A_str)
parse_extra_pars()
# =============== FUNCTION DEFINITIONS ================
FUNCTIONS = {}
def add_function(name, mp_function, np_function, ocl_function,
shortname=None, xaxis="x", limits=(-inf, inf)):
if shortname is None:
shortname = name.replace('(x)', '').replace(' ', '')
FUNCTIONS[shortname] = Comparator(name, mp_function, np_function, ocl_function, xaxis, limits)
add_function(
name="J0(x)",
mp_function=mp.j0,
np_function=scipy.special.j0,
ocl_function=make_ocl("return sas_J0(q);", "sas_J0", ["lib/polevl.c", "lib/sas_J0.c"]),
)
add_function(
name="J1(x)",
mp_function=mp.j1,
np_function=scipy.special.j1,
ocl_function=make_ocl("return sas_J1(q);", "sas_J1", ["lib/polevl.c", "lib/sas_J1.c"]),
)
add_function(
name="JN(-3, x)",
mp_function=lambda x: mp.besselj(-3, x),
np_function=lambda x: scipy.special.jn(-3, x),
ocl_function=make_ocl("return sas_JN(-3, q);", "sas_JN",
["lib/polevl.c", "lib/sas_J0.c", "lib/sas_J1.c", "lib/sas_JN.c"]),
shortname="J-3",
)
add_function(
name="JN(3, x)",
mp_function=lambda x: mp.besselj(3, x),
np_function=lambda x: scipy.special.jn(3, x),
ocl_function=make_ocl("return sas_JN(3, q);", "sas_JN",
["lib/polevl.c", "lib/sas_J0.c", "lib/sas_J1.c", "lib/sas_JN.c"]),
shortname="J3",
)
add_function(
name="JN(2, x)",
mp_function=lambda x: mp.besselj(2, x),
np_function=lambda x: scipy.special.jn(2, x),
ocl_function=make_ocl("return sas_JN(2, q);", "sas_JN",
["lib/polevl.c", "lib/sas_J0.c", "lib/sas_J1.c", "lib/sas_JN.c"]),
shortname="J2",
)
add_function(
name="2 J1(x)/x",
mp_function=lambda x: 2*mp.j1(x)/x,
np_function=lambda x: 2*scipy.special.j1(x)/x,
ocl_function=make_ocl("return sas_2J1x_x(q);", "sas_2J1x_x", ["lib/polevl.c", "lib/sas_J1.c"]),
)
add_function(
name="J1(x)",
mp_function=mp.j1,
np_function=scipy.special.j1,
ocl_function=make_ocl("return sas_J1(q);", "sas_J1", ["lib/polevl.c", "lib/sas_J1.c"]),
)
add_function(
name="Si(x)",
mp_function=mp.si,
np_function=lambda x: scipy.special.sici(x)[0],
ocl_function=make_ocl("return sas_Si(q);", "sas_Si", ["lib/sas_Si.c"]),
)
#import fnlib
#add_function(
# name="fnlibJ1",
# mp_function=mp.j1,
# np_function=fnlib.J1,
# ocl_function=make_ocl("return sas_J1(q);", "sas_J1", ["lib/polevl.c", "lib/sas_J1.c"]),
#)
add_function(
name="sin(x)",
mp_function=mp.sin,
np_function=np.sin,
#ocl_function=make_ocl("double sn, cn; SINCOS(q,sn,cn); return sn;", "sas_sin"),
ocl_function=make_ocl("return sin(q);", "sas_sin"),
)
add_function(
name="sin(x)/x",
mp_function=lambda x: mp.sin(x)/x if x != 0 else 1,
## scipy sinc function is inaccurate and has an implied pi*x term
#np_function=lambda x: scipy.special.sinc(x/pi),
## numpy sin(x)/x needs to check for x=0
np_function=lambda x: np.sin(x)/x,
ocl_function=make_ocl("return sas_sinx_x(q);", "sas_sinc"),
)
add_function(
name="cos(x)",
mp_function=mp.cos,
np_function=np.cos,
#ocl_function=make_ocl("double sn, cn; SINCOS(q,sn,cn); return cn;", "sas_cos"),
ocl_function=make_ocl("return cos(q);", "sas_cos"),
)
add_function(
name="gamma(x)",
mp_function=mp.gamma,
np_function=scipy.special.gamma,
ocl_function=make_ocl("return sas_gamma(q);", "sas_gamma", ["lib/sas_gamma.c"]),
limits=(-3.1, 10),
)
add_function(
name="gammaln(x)",
mp_function=mp.loggamma,
np_function=scipy.special.gammaln,
ocl_function=make_ocl("return sas_gammaln(q);", "sas_gammaln", ["lib/sas_gammainc.c"]),
#ocl_function=make_ocl("return lgamma(q);", "sas_gammaln"),
)
add_function(
# Note: "a" is given as A=... on the command line via parse_extra_pars
name="gammainc(x)",
mp_function=lambda x, a=A: mp.gammainc(a, a=0, b=x)/mp.gamma(a),
np_function=lambda x, a=A: scipy.special.gammainc(a, x),
ocl_function=make_ocl("return sas_gammainc(%.15g,q);"%A, "sas_gammainc", ["lib/sas_gammainc.c"]),
)
add_function(
# Note: "a" is given as A=... on the command line via parse_extra_pars
name="gammaincc(x)",
mp_function=lambda x, a=A: mp.gammainc(a, a=x, b=mp.inf)/mp.gamma(a),
np_function=lambda x, a=A: scipy.special.gammaincc(a, x),
ocl_function=make_ocl("return sas_gammaincc(%.15g,q);"%A, "sas_gammaincc", ["lib/sas_gammainc.c"]),
)
add_function(
name="erf(x)",
mp_function=mp.erf,
np_function=scipy.special.erf,
ocl_function=make_ocl("return sas_erf(q);", "sas_erf", ["lib/polevl.c", "lib/sas_erf.c"]),
limits=(-5., 5.),
)
add_function(
name="erfc(x)",
mp_function=mp.erfc,
np_function=scipy.special.erfc,
ocl_function=make_ocl("return sas_erfc(q);", "sas_erfc", ["lib/polevl.c", "lib/sas_erf.c"]),
limits=(-5., 5.),
)
add_function(
name="expm1(x)",
mp_function=mp.expm1,
np_function=np.expm1,
ocl_function=make_ocl("return expm1(q);", "sas_expm1"),
limits=(-5., 5.),
)
add_function(
name="arctan(x)",
mp_function=mp.atan,
np_function=np.arctan,
ocl_function=make_ocl("return atan(q);", "sas_arctan"),
)
add_function(
name="3 j1(x)/x",
mp_function=lambda x: 3*(mp.sin(x)/x - mp.cos(x))/(x*x),
# Note: no taylor expansion near 0
np_function=lambda x: 3*(np.sin(x)/x - np.cos(x))/(x*x),
ocl_function=make_ocl("return sas_3j1x_x(q);", "sas_j1c", ["lib/sas_3j1x_x.c"]),
)
add_function(
name="(1-cos(x))/x^2",
mp_function=lambda x: (1 - mp.cos(x))/(x*x),
np_function=lambda x: (1 - np.cos(x))/(x*x),
ocl_function=make_ocl("return (1-cos(q))/q/q;", "sas_1mcosx_x2"),
)
add_function(
name="(1-sin(x)/x)/x",
mp_function=lambda x: 1/x - mp.sin(x)/(x*x),
np_function=lambda x: 1/x - np.sin(x)/(x*x),
ocl_function=make_ocl("return (1-sas_sinx_x(q))/q;", "sas_1msinx_x_x"),
)
add_function(
name="(1/2-sin(x)/x+(1-cos(x))/x^2)/x",
mp_function=lambda x: (0.5 - mp.sin(x)/x + (1-mp.cos(x))/(x*x))/x,
np_function=lambda x: (0.5 - np.sin(x)/x + (1-np.cos(x))/(x*x))/x,
ocl_function=make_ocl("return (0.5-sin(q)/q + (1-cos(q))/q/q)/q;", "sas_T2"),
)
add_function(
name="fmod_2pi",
mp_function=lambda x: mp.fmod(x, 2*mp.pi),
np_function=lambda x: np.fmod(x, 2*np.pi),
ocl_function=make_ocl("return fmod(q, 2*M_PI);", "sas_fmod"),
)
add_function(
name="expm1(x)/x",
# Note: should be 1 when x = 0
mp_function=lambda x: mp.expm1(x)/x,
np_function=lambda x: np.expm1(x)/x,
ocl_function=make_ocl("return (q==0.) ? 1. : expm1(q)/q;", "sas_exp1_x"),
)
add_function(
name="sq_expm1(x)/x",
# Note: should be 1 when x = 0
mp_function=lambda x: (mp.expm1(x)/x)**2,
np_function=lambda x: (np.expm1(x)/x)**2,
ocl_function=make_ocl("return (q==0.) ? 1. : square(expm1(q)/q);", "sas_square_exp1_x"),
)
# TODO: move to sas_special
def sas_langevin(x):
scalar = np.isscalar(x)
if scalar:
x = np.array([x]) # should inherit dtype for single if given single
f = np.empty_like(x)
cutoff = 0.1 if f.dtype == np.float64 else 1.0
#cutoff *= 10
index = x < cutoff
xp = x[index]
xpsq = xp*xp
f[index] = xp / (3. + xpsq / (5. + xpsq/(7. + xpsq/(9.))))
# 4 terms gets to 1e-7 single, 1e-14 double. Can get to 1e-15 double by adding
# another 4 terms and setting cutoff at 1.0. Not worthwhile. Instead we would
# need an expansion about x somewhere between 1 and 10 for the interval [0.1, 100.]
#f[index] = xp / (3. + xpsq / (5. + xpsq/(7. + xpsq/(9. + xpsq/(11.0 + xpsq/(13. + xpsq/(15. + xpsq/17.)))))))
xp = x[~index]
f[~index] = 1/np.tanh(xp) - 1/xp
return f[0] if scalar else f
def sas_langevin_x(x):
scalar = np.isscalar(x)
if scalar:
x = np.array([x]) # should inherit dtype for single if given single
f = np.empty_like(x)
cutoff = 0.1 if f.dtype == np.float64 else 1.0
index = x < cutoff
xp = x[index]
xpsq = xp*xp
f[index] = 1. / (3. + xpsq / (5. + xpsq/(7. + xpsq/(9.))))
xp = x[~index]
f[~index] = (1/np.tanh(xp) - 1/xp)/xp
return f[0] if scalar else f
add_function(
name="langevin(x)",
mp_function=lambda x: (1/mp.tanh(x) - 1/x),
np_function=sas_langevin,
#ocl_function=make_ocl("return q < 0.7 ? q*(1./3. + q*q*(-1./45. + q*q*(2./945. + q*q*(-1./4725.) + q*q*(2./93555.)))) : 1/tanh(q) - 1/q;", "sas_langevin"),
#ocl_function=make_ocl("return q < 1e-5 ? q/3. : 1/tanh(q) - 1/q;", "sas_langevin"),
ocl_function=make_ocl("""
#if FLOAT_SIZE>4 // DOUBLE_PRECISION
# define LANGEVIN_CUTOFF 0.1
#else
# define LANGEVIN_CUTOFF 1.0
#endif
const double qsq = q*q;
return (q < LANGEVIN_CUTOFF) ? q / (3. + qsq / (5. + qsq/(7. + qsq/(9.)))) : 1/tanh(q) - 1/q;
""", "sas_langevin"),
)
add_function(
name="langevin(x)/x",
mp_function=lambda x: (1/mp.tanh(x) - 1/x)/x,
np_function=sas_langevin_x,
ocl_function=make_ocl("""
#if FLOAT_SIZE>4 // DOUBLE_PRECISION
# define LANGEVIN_CUTOFF 0.1
#else
# define LANGEVIN_CUTOFF 1.0
#endif
const double qsq = q*q;
return (q < LANGEVIN_CUTOFF) ? 1. / (3. + qsq / (5. + qsq/(7. + qsq/(9.)))) : (1/tanh(q) - 1/q)/q;
""", "sas_langevin_x"),
)
add_function(
name="gauss_coil",
mp_function=lambda x: 2*(mp.exp(-x**2) + x**2 - 1)/x**4,
np_function=lambda x: 2*(np.expm1(-x**2) + x**2)/x**4,
ocl_function=make_ocl("""
const double qsq = q*q;
// For double: use O(5) Pade with 0.5 cutoff (10 mad + 1 divide)
// For single: use O(7) Taylor with 0.8 cutoff (7 mad)
if (qsq < 0.0) {
const double x = qsq;
if (0) { // 0.36 single
// PadeApproximant[2*Exp[-x^2] + x^2-1)/x^4, {x, 0, 4}]
return (x*x/180. + 1.)/((1./30.*x + 1./3.)*x + 1);
} else if (0) { // 1.0 for single
// padeapproximant[2*exp[-x^2] + x^2-1)/x^4, {x, 0, 6}]
const double A1=1./24., A2=1./84, A3=-1./3360;
const double B1=3./8., B2=3./56., B3=1./336.;
return (((A3*x + A2)*x + A1)*x + 1.)/(((B3*x + B2)*x + B1)*x + 1.);
} else if (0) { // 1.0 for single, 0.25 for double
// PadeApproximant[2*Exp[-x^2] + x^2-1)/x^4, {x, 0, 8}]
const double A1=1./15., A2=1./60, A3=0., A4=1./75600.;
const double B1=2./5., B2=1./15., B3=1./180., B4=1./5040.;
return ((((A4*x + A3)*x + A2)*x + A1)*x + 1.)
/((((B4*x + B3)*x + B2)*x + B1)*x + 1.);
} else { // 1.0 for single, 0.5 for double
// PadeApproximant[2*Exp[-x^2] + x^2-1)/x^4, {x, 0, 8}]
const double A1=1./12., A2=2./99., A3=1./2640., A4=1./23760., A5=-1./1995840.;
const double B1=5./12., B2=5./66., B3=1./132., B4=1./2376., B5=1./95040.;
return (((((A5*x + A4)*x + A3)*x + A2)*x + A1)*x + 1.)
/(((((B5*x + B4)*x + B3)*x + B2)*x + B1)*x + 1.);
}
} else if (qsq < 0.8) {
const double x = qsq;
const double C0 = +1.;
const double C1 = -1./3.;
const double C2 = +1./12.;
const double C3 = -1./60.;
const double C4 = +1./360.;
const double C5 = -1./2520.;
const double C6 = +1./20160.;
const double C7 = -1./181440.;
//return ((((C5*x + C4)*x + C3)*x + C2)*x + C1)*x + C0;
//return (((((C6*x + C5)*x + C4)*x + C3)*x + C2)*x + C1)*x + C0;
return ((((((C7*x + C6)*x + C5)*x + C4)*x + C3)*x + C2)*x + C1)*x + C0;
} else {
return 2.*(expm1(-qsq) + qsq)/(qsq*qsq);
}
""", "sas_debye"),
)
def mp_star_polymer(x, arms=3): # x = q*Rg
from mpmath import expm1
v = x * arms / (3*arms - 2)
term1 = v + expm1(-v)
term2 = (arms- 1)/2 * expm1(-v)**2
return 2 * (term1 + term2) / (arms * v**2) if v > 0 else 1
def np_star_polymer(x, arms=3):
from numpy import expm1, polyval
scalar = np.isscalar(x)
if scalar:
x = np.array([x]) # should inherit dtype for single if given single
#T1 = [1, -1/3, 1/12, -1/60, 1/360, -1/2520, 1/20160, -1/181440][::-1]
T1 = [1, -1/3, 1/12, -1/60, 1/360, -1/2520][::-1]
#T2 = [1, -1, 7/12, -1/4, 31/360, -1/40][::-1]
f = np.empty_like(x)
cutoff = 0.03 if f.dtype == np.float64 else 1.0
index = (x == 0.)
f[index] = 1.0
index = ~index & (x < cutoff)
v = x * arms / (3*arms - 2)
vi = v[index]
#f[index] = polyval(T1, vi)/arms + (1 - 1/arms)*polyval(T2, vi)
#f[index] = 2/(arms*vi)*(1 + expm1(-vi)/vi) + (1 - 1/arms)*polyval(T2, vi)
f[index] = polyval(T1, vi)/arms + (1 - 1/arms)*(expm1(-vi)/vi)**2
#f[index] = 2/(arms*vi)*(1 + expm1(-vi)/vi) + (1 - 1/arms)*(expm1(-vi)/vi)**2
term1 = v[~index] + expm1(-v[~index])
term2 = (arms - 1)/2 * expm1(-v[~index])**2
f[~index] = 2 * (term1 + term2) / (arms * v[~index]**2)
return f
ocl_star_polymer = """
const int arms = 3;
const double v = q * arms / (3.0 * arms - 2.0);
// Note: cutoff values are for (Q Rg)^2.
#if FLOAT_SIZE>4
#define STAR_POLYMER_CUTOFF 0.03
#else
#define STAR_POLYMER_CUTOFF 1.0
#endif
if (q == 0.) {
return 1.;
} else if (q <= STAR_POLYMER_CUTOFF) {
double P1 = 1. + v*(-1./3. + v*(1./12. + v*(-1./60. + v*(1./360. + v*(-1./2520)))));
//double P2 = 1. + v*(-1. + v*(7./12. - v*(-1./4.)));
return P1/arms + (1. - 1./arms)*square(expm1(-v)/v);
} else {
double term1 = v + expm1(-v);
double term2 = ((arms - 1.0)/2.0) * square(expm1(-v));
return (2.0 * (term1 + term2)) / (arms * v * v);
}
"""
add_function(
name="star_polymer(arms=3)",
mp_function=mp_star_polymer,
np_function=np_star_polymer,
ocl_function=make_ocl(ocl_star_polymer, "star_polymer", []),
shortname="star_polymer",
xaxis="$(Q R_g)^2$ (unitless)",
)
RADIUS=3000
LENGTH=30
THETA=45
def mp_cyl(x):
f = mp.mpf
theta = f(THETA)*mp.pi/f(180)
qr = x * f(RADIUS)*mp.sin(theta)
qh = x * f(LENGTH)/f(2)*mp.cos(theta)
be = f(2)*mp.j1(qr)/qr
si = mp.sin(qh)/qh
background = f(0)
#background = f(1)/f(1000)
volume = mp.pi*f(RADIUS)**f(2)*f(LENGTH)
contrast = f(5)
units = f(1)/f(10000)
#return be
#return si
return units*(volume*contrast*be*si)**f(2)/volume + background
def np_cyl(x):
f = np.float64 if x.dtype == np.float64 else np.float32
theta = f(THETA)*f(np.pi)/f(180)
qr = x * f(RADIUS)*np.sin(theta)
qh = x * f(LENGTH)/f(2)*np.cos(theta)
be = f(2)*scipy.special.j1(qr)/qr
si = np.sin(qh)/qh
background = f(0)
#background = f(1)/f(1000)
volume = f(np.pi)*f(RADIUS)**2*f(LENGTH)
contrast = f(5)
units = f(1)/f(10000)
#return be
#return si
return units*(volume*contrast*be*si)**f(2)/volume + background
ocl_cyl = """\
double THETA = %(THETA).15e*M_PI_180;
double qr = q*%(RADIUS).15e*sin(THETA);
double qh = q*0.5*%(LENGTH).15e*cos(THETA);
double be = sas_2J1x_x(qr);
double si = sas_sinx_x(qh);
double background = 0;
//double background = 0.001;
double volume = M_PI*square(%(RADIUS).15e)*%(LENGTH).15e;
double contrast = 5.0;
double units = 1e-4;
//return be;
//return si;
return units*square(volume*contrast*be*si)/volume + background;
"""%{"LENGTH":LENGTH, "RADIUS": RADIUS, "THETA": THETA}
add_function(
name="cylinder(r=%g, l=%g, theta=%g)"%(RADIUS, LENGTH, THETA),
mp_function=mp_cyl,
np_function=np_cyl,
ocl_function=make_ocl(ocl_cyl, "ocl_cyl", ["lib/polevl.c", "lib/sas_J1.c"]),
shortname="cylinder",
xaxis="$q/A^{-1}$",
)
lanczos_gamma = """\
const double coeff[] = {
76.18009172947146, -86.50532032941677,
24.01409824083091, -1.231739572450155,
0.1208650973866179e-2,-0.5395239384953e-5
};
const double x = q;
double tmp = x + 5.5;
tmp -= (x + 0.5)*log(tmp);
double ser = 1.000000000190015;
for (int k=0; k < 6; k++) ser += coeff[k]/(x + k+1);
return -tmp + log(2.5066282746310005*ser/x);
"""
add_function(
name="loggamma(x)",
mp_function=mp.loggamma,
np_function=scipy.special.gammaln,
ocl_function=make_ocl(lanczos_gamma, "lgamma"),
)
replacement_expm1 = """\
double x = (double)q; // go back to float for single precision kernels
// Adapted from the cephes math library.
// Copyright 1984 - 1992 by Stephen L. Moshier
if (x != x || x == 0.0) {
return x; // NaN and +/- 0
} else if (x < -0.5 || x > 0.5) {
return exp(x) - 1.0;
} else {
const double xsq = x*x;
const double p = (((
+1.2617719307481059087798E-4)*xsq
+3.0299440770744196129956E-2)*xsq
+9.9999999999999999991025E-1);
const double q = ((((
+3.0019850513866445504159E-6)*xsq
+2.5244834034968410419224E-3)*xsq
+2.2726554820815502876593E-1)*xsq
+2.0000000000000000000897E0);
double r = x * p;
r = r / (q - r);
return r+r;
}
"""
add_function(
name="sas_expm1(x)",
mp_function=mp.expm1,
np_function=np.expm1,
ocl_function=make_ocl(replacement_expm1, "sas_expm1"),
)
# Alternate versions of 3 j1(x)/x, for posterity
def taylor_3j1x_x(x):
"""
Calculation using taylor series.
"""
# Generate coefficients using the precision of the target value.
n = 5
cinv = [3991680, -45360, 840, -30, 3]
three = x.dtype.type(3)
p = three/np.array(cinv, x.dtype)
return np.polyval(p[-n:], x*x)
add_function(
name="3 j1(x)/x: taylor",
mp_function=lambda x: 3*(mp.sin(x)/x - mp.cos(x))/(x*x),
np_function=taylor_3j1x_x,
ocl_function=make_ocl("return sas_3j1x_x(q);", "sas_j1c", ["lib/sas_3j1x_x.c"]),
)
def trig_3j1x_x(x):
r"""
Direct calculation using linear combination of sin/cos.
Use the following trig identity:
.. math::
a \sin(x) + b \cos(x) = c \sin(x + \phi)
where $c = \surd(a^2+b^2)$ and $\phi = \tan^{-1}(b/a) to calculate the
numerator $\sin(x) - x\cos(x)$.
"""
one = x.dtype.type(1)
three = x.dtype.type(3)
c = np.sqrt(one + x*x)
phi = np.arctan2(-x, one)
return three*(c*np.sin(x+phi))/(x*x*x)
add_function(
name="3 j1(x)/x: trig",
mp_function=lambda x: 3*(mp.sin(x)/x - mp.cos(x))/(x*x),
np_function=trig_3j1x_x,
ocl_function=make_ocl("return sas_3j1x_x(q);", "sas_j1c", ["lib/sas_3j1x_x.c"]),
)
def np_2J1x_x(x):
"""
numpy implementation of 2J1(x)/x using single precision algorithm
"""
# pylint: disable=bad-continuation
f = x.dtype.type
ax = abs(x)
if ax < f(8.0):
y = x*x
ans1 = f(2)*(f(72362614232.0)
+ y*(f(-7895059235.0)
+ y*(f(242396853.1)
+ y*(f(-2972611.439)
+ y*(f(15704.48260)
+ y*(f(-30.16036606)))))))
ans2 = (f(144725228442.0)
+ y*(f(2300535178.0)
+ y*(f(18583304.74)
+ y*(f(99447.43394)
+ y*(f(376.9991397)
+ y)))))
return ans1/ans2
else:
y = f(64.0)/(ax*ax)
xx = ax - f(2.356194491)
ans1 = (f(1.0)
+ y*(f(0.183105e-2)
+ y*(f(-0.3516396496e-4)
+ y*(f(0.2457520174e-5)
+ y*f(-0.240337019e-6)))))
ans2 = (f(0.04687499995)
+ y*(f(-0.2002690873e-3)
+ y*(f(0.8449199096e-5)
+ y*(f(-0.88228987e-6)
+ y*f(0.105787412e-6)))))
sn, cn = np.sin(xx), np.cos(xx)
ans = np.sqrt(f(0.636619772)/ax) * (cn*ans1 - (f(8.0)/ax)*sn*ans2) * f(2)/x
return -ans if (x < f(0.0)) else ans
add_function(
name="2 J1(x)/x:alt",
mp_function=lambda x: 2*mp.j1(x)/x,
np_function=lambda x: np.asarray([np_2J1x_x(v) for v in x], x.dtype),
ocl_function=make_ocl("return sas_2J1x_x(q);", "sas_2J1x_x", ["lib/polevl.c", "lib/sas_J1.c"]),
)
ALL_FUNCTIONS = set(FUNCTIONS.keys())
ALL_FUNCTIONS.discard("loggamma") # use cephes-based gammaln instead
ALL_FUNCTIONS.discard("3j1/x:taylor")
ALL_FUNCTIONS.discard("3j1/x:trig")
ALL_FUNCTIONS.discard("2J1/x:alt")
# =============== MAIN PROGRAM ================
def usage():
names = ", ".join(sorted(ALL_FUNCTIONS))
print("""\
usage: precision.py [-f/a/r] [-x<range>] "name" ...
where
-f indicates that the function value should be plotted,
-a indicates that the absolute error should be plotted,
-r indicates that the relative error should be plotted (default),
-x<range> indicates the steps in x, where <range> is one of the following
log indicates log stepping in [10^-3, 10^5] (default)
logq indicates log stepping in [10^-4, 10^1]
linear indicates linear stepping in [1, 1000]
zoom indicates linear stepping in [1000, 1010]
neg indicates linear stepping in [-100.1, 100.1]
start:stop:n[:stepping] indicates an n-step plot in [start, stop]
or [10^start, 10^stop] if stepping is "log" (default n=400)
Some functions (notably gammainc/gammaincc) have an additional parameter A
which can be set from the command line as A=value. Default is A=1.
Name is one of:
"""+names)
sys.exit(1)
def main():
import sys
diff = "relative"
xrange = "log"
options = [v for v in sys.argv[1:] if v.startswith('-')]
for opt in options:
if opt == '-f':
diff = "none"
elif opt == '-r':
diff = "relative"
elif opt == '-a':
diff = "absolute"
elif opt.startswith('-x'):
xrange = opt[2:]
else:
usage()
names = [v for v in sys.argv[1:] if not v.startswith('-')]
if not names:
usage()
if names[0] == "all":
cutoff = names[1] if len(names) > 1 else ""
names = list(sorted(ALL_FUNCTIONS))
names = [k for k in names if k >= cutoff]
if any(k not in FUNCTIONS for k in names):
usage()
multiple = len(names) > 1
pylab.interactive(multiple)
for k in names:
pylab.clf()
comparator = FUNCTIONS[k]
comparator.run(xrange=xrange, diff=diff)
if multiple:
input()
if not multiple:
pylab.show()
if __name__ == "__main__":
main()
|